
TARGET BASED ACCEPTING
NETWORKS OF EVOLUTIONARY

PROCESSORS WITH REGULAR FILTERS

Bianca Truthe
Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik

Universitätsplatz 2, D-39016 Magdeburg, Germany
Email: bianca.truthe@ovgu.de

Abstract
In this paper, a new definition of accepting networks – called target based accepting networks –
is given. In a target based accepting network of evolutionary processors, each node is equipped
with a regular language – the target set. As soon as a node contains a word of its target set,
the input word is accepted by the network. In this way, no further output nodes are necessary.
It is shown that conventional accepting networks with regular filters and target based accepting
networks with regular filters have the same computational power. However, the number of
processors needed for accepting a language can be reduced when using target based networks.

1. Introduction

Motivated by some models of massively parallel computer architectures, networks of language
processors have been introduced in [6] by E. Csuhaj-Varjú and A. Salomaa. Such a network
can be considered as a graph where the nodes are sets of productions and at any moment of
time a language is associated with a node.

Inspired by biological processes, J. Castellanos, C. Mart́ın-Vide, V. Mitrana and
J. Sempere introduced in [4] a special type of networks of language processors which are
called networks with evolutionary processors because the allowed productions model the point
mutation known from biology. The sets of productions have to be substitutions of one letter
by another letter or insertions of letters or deletion of letters; the nodes are then called substi-
tution, insertion, or deletion node, respectively. Results on networks of evolutionary processors
can be found e. g. in [4], [5], [3], [1].

The generative capacity of networks with regular filters and evolutionary processors where only
two types of nodes are allowed were investigated in [8] and [2].

Accepting networks of evolutionary processors with regular filters were introduced by J. Das-
sow and V. Mitrana in [7]. Further results on such networks were published in [9].

222 Bianca Truthe

In the present paper, we give a new definition of accepting networks (called target based
accepting networks). It is shown that, for every conventional accepting network, there exists
a target based network accepting the same language and the converse that, for every target
based accepting network, there exists a conventional network accepting the same language. So
both kinds of accepting networks have the same computational power. However, the number of
processors needed for accepting a language can be reduced when using target based networks.

We show that every context-sensitive language can be accepted by a target based accepting
network of evolutionary processors with regular filters and with exactly one processor (a sub-
stitution processor). Any recursively enumerable language can be accepted by a target based
network with exactly one insertion processor and exactly one substitution or deletion processor.

2. Definitions

We assume that the reader is familiar with the basic concepts of formal language theory (see
e. g. [10]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words (strings) over an alphabet V (including the empty word λ).
The length of a word w is denoted by |w|. When we add new letters of an alphabet U to a
given alphabet V , then we assume that V ∩ U = ∅.

A phrase structure grammar is specified as a quadruple G = (N, T, P, S) where N is a set of
non-terminals, T is a set of terminals, P is a finite set of productions which are written as
α→ β with α ∈ (N ∪ T)∗ \ T ∗ and β ∈ (N ∪ T)∗, and S ∈ N is the axiom.

We call a production α→ β a substitution if |α| = |β| = 1 and a deletion if |α| = 1 and β = λ.
Insertion is the counterpart of deletion. We write λ→ a, where a is a letter. The application of
an insertion λ→ a derives from a word w any word w1aw2 with w = w1w2 for some (possibly
empty) words w1 and w2.

We now introduce the basic concept of this paper, the target based accepting networks of
evolutionary processors.

Definition 2.1.

1. A target based accepting network of evolutionary processors of size n is a tuple

T (n) = (U, V,N1, N2, . . . , Nn, E, j)

where

• U and V are finite alphabets (the input and network alphabet, resp.), U ⊆ V ,

• for 1 ≤ i ≤ n, Ni = (Mi, Ii, Oi, Bi) where

– Mi is a set of evolution rules of a certain type, Mi ⊆ {a → b | a, b ∈ V } or
Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 223

– Ii, Oi, and Bi are regular sets over V ,

• E is a subset of {1, 2, . . . , n} × {1, 2, . . . , n}, and

• j is a natural number such that 1 ≤ j ≤ n.

2. A configuration C of T (n) is an n-tuple C = (C(1), C(2), . . . , C(n)) where C(i) is a subset
of V ∗ for 1 ≤ i ≤ n.

3. Let C = (C(1), C(2), . . . , C(n)) and C ′ = (C ′(1), C ′(2), . . . , C ′(n)) be two configurations
of T (n). We say that C derives C ′ in one

– evolutionary step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n, C ′(i) consists of all words
w ∈ C(i) to which no rule of Mi is applicable and of all words w for which there are
a word v ∈ C(i) and a rule p ∈Mi such that v =⇒p w holds,

– communication step (written as C ` C ′) if, for 1 ≤ i ≤ n,

C ′(i) = (C(i) \Oi) ∪
⋃

(k,i)∈E

C(k) ∩Ok ∩ Ii.

The computation of a network T (n) on an input word w ∈ V ∗ is a sequence of configura-
tions Cw

t = (Cw
t (1), Cw

t (2), . . . , Cw
t (n)), t ≥ 0, such that

– Cw
0 = (Cw

0 (1), Cw
0 (2), . . . , Cw

0 (n)) where Cw
0 (j) = {w} and Cw

0 (i) = ∅
for 1 ≤ i ≤ n and i 6= j,

– for any t ≥ 0, Cw
2t derives Cw

2t+1 in one evolutionary step: Cw
2t =⇒ Cw

2t+1,

– for any t ≥ 0, Cw
2t+1 derives Cw

2t+2 in one communication step: Cw
2t+1 ` Cw

2t+2.

4. Let O be the set of all nodes with a non-empty target set. The languages Lw(T (n)) weakly
accepted by T (n) and Ls(T (n)) strongly accepted by T (n) are defined as

Lw(T (n)) = { w ∈ U∗ | ∃t ≥ 0∃o ∈ O : Cw
t (o) ∩Bo 6= ∅ } ,

Ls(T (n)) = { w ∈ U∗ | ∃t ≥ 0∀o ∈ O : Cw
t (o) ∩Bo 6= ∅ } ,

where Cw
t = (Cw

t (1), Cw
t (2), . . . , Cw

t (n)), t ≥ 0 is the computation of T (n) on w.

Intuitively, a network with evolutionary processors is a graph consisting of some, say n, nodes
N1, N2, . . . , Nn (called processors) and the set of edges given by E such that there is a directed
edge from Nk to Ni if and only if (k, i) ∈ E. The node Nj is called the input node; every
node No with Bo 6= ∅ is called an output node. Any processor Ni consists of a set of evolution
rules Mi, an input filter Ii, an output filter Oi, and a target (base) language Bi. We say that Ni

is a substitution node or a deletion node or an insertion node if Mi ⊆ {a → b | a, b ∈ V } or
Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ → b | b ∈ V }, respectively. The input filter Ii and the
output filter Oi control the words which are allowed to enter and to leave the node, respectively.
With any node Ni and any time moment t ≥ 0 we associate a set Ct(i) of words (the words
contained in the node at time t). Initially, the input node Nj contains an input word w; all

224 Bianca Truthe

other nodes do not contain words. In an evolutionary step, we derive from Ct(i) all words by
applying rules from the set Mi. In a communication step, any processor Ni sends out all words
Ct(i) ∩Oi (which pass the output filter) to all processors to which a directed edge exists (only
the words from Ct(i) \Oi remain in the set associated with Ni) and, moreover, it receives from
any processor Nk such that there is an edge from Nk to Ni all words sent by Nk and passing
the input filter Ii of Ni, i. e., the processor Ni gets in addition all words of (Ct(k) ∩ Ok) ∩ Ii.
We start with an evolutionary step and then communication steps and evolutionary steps are
alternately performed. The language accepted consists of all words w such that if w is given
as an input word in the node Nj then, at some moment t, t ≥ 0, one output node (for weak
acceptance) contains a word of its target set or all output nodes (for strong acceptance) contain
a word of their target sets.

For comparing target based networks with conventional ones, we give their definition, too.

Definition 2.2.

1. An accepting network of evolutionary processors of size n is a tuple

N (n) = (U, V,N1, N2, . . . , Nn, E, j, O)

where

• U , V , E, and j are defined as in Definition 2.1,

• for 1 ≤ i ≤ n, Ni = (Mi, Ii, Oi) where Mi, Ii, and Oi are defined as in Definition 2.1,

• O ⊆ { 1, . . . , n }.

2. The configuration and computation of a network are defined as in Definition 2.1.

3. The languages Lw(N (n)) weakly accepted by N (n) and Ls(N (n)) strongly accepted by N (n)

are defined as

Lw(N (n)) = { w ∈ U∗ | ∃t ≥ 0∃o ∈ O : Cw
t (o) 6= ∅ } ,

Ls(N (n)) = { w ∈ U∗ | ∃t ≥ 0∀o ∈ O : Cw
t (o) 6= ∅ } ,

where Cw
t = (Cw

t (1), Cw
t (2), . . . , Cw

t (n)), t ≥ 0 is the computation of N (n) on w.

The main difference of this definition to the previous one is that each processor Ni in a target
based network is equipped additionally with a target (base) language Bi for 1 ≤ i ≤ n whereas
a conventional network has designated output nodes. A target based network accepts an input
word if it can be transformed into a word of the base language of one or all output nodes. A
conventional network accepts an input word if at some moment one or all output nodes contain
a word.

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 225

3. Computational Power

We now show that target based and conventional accepting networks have the same compu-
tational power. However, the number of processors needed for accepting a language can be
reduced when using target based networks.

Theorem 3.1. Every network given according to Definition 2.2 can be transformed into a target
based network that accepts the same language.

Proof. Let n ≥ 1 be a natural number and N (n) = (U, V,N1, N2, . . . , Nn, E, j, O) be a con-
ventional accepting network of evolutionary processors with Ni = (Mi, Ii, Oi) for 1 ≤ i ≤ n.
If one sets Bi = ∅ for the nodes Ni that are not output nodes (1 ≤ i ≤ n and i /∈ O) as
well as Mo = ∅ and Bo = V ∗ for the output nodes (o ∈ O), then the target based net-
work T (n) = (U, V,N ′1, N

′
2, . . . , N

′
n, E, j) with N ′i = (Mi, Ii, Oi, Bi) accepts the same language

as N (n), because Cw
t (o) ∩ V ∗ 6= ∅ holds if and only if Cw

t (o) 6= ∅. Hence, Lw(N (n)) = Lw(T (n))
and Ls(N (n)) = Ls(T (n)).

Due to the construction given in the previous proof, a target based network needs at most as
many processors for accepting a language as a conventional network.

If a conventional network accepts a word then it is accepted in an even numbered moment
(immediately in the beginning of the process or after a communication step). A target based
network can accept a word also in an odd numbered moment (if in some node Ni, a word
w /∈ Bi is derived during an evolutionary step to a word w′ ∈ Bi). To treat this difference,
we call a target based network T acceptance uniform if all nodes No = (Mo, Io, Oo, Bo) with
Bo 6= ∅ satisfy Mo = ∅. Since a word in an acceptance indicating node cannot be modified, an
input word can always be accepted in an even numbered moment.

The target based network constructed in the proof of Theorem 3.1 is also acceptance uniform.
We first show that, for every target based network T , there is an acceptance uniform target
based network A that accepts the same language and then we prove that, for every acceptance
uniform target based network A, there is a conventional network N that accepts the same
language.

Lemma 3.2. Every target based network can be transformed into an acceptance uniform target
based network that accepts the same language.

Proof. Let n ≥ 1 be a natural number and T (n) = (U, V,N1, N2, . . . , Nn, E, j) be a target based
accepting network of evolutionary processors Ni = (Mi, Ii, Oi, Bi). Let O = { o | Bo 6= ∅ } be
the set of all indices of output nodes.

We construct a target based network A(7n) = (U, V,N ′1, N
′
2, . . . , N

′
7n, E

′, j) as follows. For every
node Ni of T (n) (1 ≤ i ≤ n), we construct seven nodes that are connected according to the

226 Bianca Truthe

following graph:

N ′i = (∅, V ∗, V ∗, ∅),
N ′i+n = (Mi, V

∗, V ∗, ∅),
N ′i+2n = (∅, V ∗ \Oi, V

∗, ∅),
N ′i+3n = (∅, V ∗, V ∗, ∅),
N ′i+4n = (∅, Oi, V

∗, ∅),
N ′i+5n = (∅, Ii, V ∗, ∅),
N ′i+6n = (∅, Bi, V

∗, Bi).

WVUTPQRSi + 3n

��

WVUTPQRSi + 2noo

WVUTPQRSi //

��?
??

??
?
WVUTPQRSi + n

OO

//

��

WVUTPQRSi + 4n
if (i, k) ∈ E

��?
??

??
?

WVUTPQRSi + 6n WVUTPQRSk + 5n //WVUTPQRSk

The network A(7n) is acceptance uniform.

In T (n), a loss-less evolution-communication cycle has the form

w ∈ C2t(i) =⇒ w′ ∈ C2t+1(i) ` w′ ∈ C2(t+1)(k)

if w =⇒Mi
w′ as well as w′ ∈ Oi ∩ Ik and (i, k) ∈ E or w′ /∈ Oi and k = i.

This corresponds in A(7n) to the following cycle (the configuration is denoted by K here):

w ∈ K8t(i) =⇒ w ∈ K8t+1(i) (no evolution in N ′i)
` w ∈ K8t+2(i+ n)

and w ∈ K8t+2(i+ 6n) if w ∈ Bi

w ∈ K8t+2(i+ n) =⇒ w′ ∈ K8t+3(i+ n) with w =⇒Mi
w′

` w′ ∈ K8t+4(i+ 2n) if w′ /∈ Oi

w′ ∈ K8t+4(i+ 4n) if w′ ∈ Oi

and w′ ∈ K8t+4(i+ 6n) if w′ ∈ Bi

w′ ∈ K8t+4(i+ 2n) =⇒ w′ ∈ K8t+5(i+ 2n) (no evolution in N ′i+2n)
` w′ ∈ K8t+6(i+ 3n)

=⇒ w′ ∈ K8t+7(i+ 3n) (no evolution in N ′i+3n)
` w′ ∈ K8(t+1)(i)

w′ ∈ K8t+4(i+ 4n) =⇒ w′ ∈ K8t+5(i+ 4n) (no evolution in N ′i+4n)
` w′ ∈ K8t+6(k + 5n) if (i, k) ∈ E and w′ ∈ Ik

=⇒ w′ ∈ K8t+7(k + 5n) (no evolution in N ′k+5n)
` w′ ∈ K8(t+1)(k).

Now let z ∈ Cw
t (o)∩Bo for o ∈ O be a word that indicates acceptance of the input word in T (n).

There are two cases.

Case 1. The time t is even. Let t′ = t
2
. According to the derivation cycle above, we have

z ∈ C2t′(o) therefore z ∈ K8t′(o), z ∈ K8t′+1(o) and z ∈ K8t′+2(o + 6n) because z ∈ Bo.
Since t′ = t

2
, we have z ∈ K4t+2(o+ 6n).

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 227

Case 2. The time t is odd. In the previous step, an evolutionary rule of Mo was applied. Hence,
there exists z′ ∈ Ct−1(o) with z′ =⇒Mo z. Let t′ = t−1

2
. In A(7n), we have z′ ∈ K8t′(o),

following the cycle to z′ ∈ K8t′+2(o+n), z ∈ K8t′+3(o+n), and z ∈ K8t′+4(o+ 6n). Because
t′ = t−1

2
, we have z ∈ K4t(o+ 6n).

In both cases, we see: if for an input word w there is a time t such that Cw
t (o)∩Bo is not empty

for one/all output nodes then there is also a time t′ such that Kt′(o+ 6n) ∩Bo is not empty.

To show the convers, let z ∈ Kt(o+ 6n)∩Bo. If t is odd, then z was in the same node already
a step before (z ∈ Kt−1(o+ 6n)∩Bo) because there are no evolutionary rules in N ′o+6n. So, we
can assume t to be even. In a moment 8t′ or 8t′+6, the node N ′o+6n does not contain a word (it
can receive a word only by communication before time 8t′+ 2 and 8t′+ 4 and looses everything
in the next communication step). Hence, we have the following cases (we write t ≡ r (mod 8)
if and only if t = 8m+ r for an integer m).

Case 1. t ≡ 2 (mod 8): The word z was sent by N ′o. Hence, z ∈ Kt−1(o) and also z ∈ Kt−2(o)
(no evolution in N ′o). Since t−2 ≡ 0 (mod 8) let t′ = t−2

8
. We have z ∈ K8t′(o) and therefore

z ∈ C2t′(o) and z ∈ C t−2
4

(o).

Case 2. t ≡ 4 (mod 8): The word z was sent by N ′o+n. Hence, z ∈ Kt−1(o + n). There is a
word z′ with z′ ∈ Kt−2(o + n) and z′ =⇒Mo z. If we follow the cycle backwards, we obtain
z′ ∈ Kt−3(o), z

′ ∈ Kt−4(o) (no evolution in N ′o). Since t − 4 ≡ 0 (mod 8) let t′ = t−4
8

. We
have z′ ∈ K8t′(o) and therefore z′ ∈ C2t′(o). Because z′ =⇒Mo z, it holds z ∈ C2t′+1(o) and
z ∈ C t

4
(o).

In both cases, we have: if for an input word w there is a time t such that the set Kw
t (o+ 6n) ∩Bo

is not empty for one/all output nodes then there is also a time t′ such that Ct′(o) ∩ Bo is not
empty.

This yields Lw(T (n)) = Lw(A(7n)) and Ls(T (n)) = Ls(A(7n)).

Lemma 3.3. Every acceptance uniform target based network can be transformed into a con-
ventional network that accepts the same language.

Proof. Let n ≥ 0 and m ≥ 1 be natural numbers and

T (n+m) = (U, V,N1, N2, . . . , Nn+m, E, j)

be an acceptance uniform target based network of evolutionary processors with nodes
Ni = (Mi, Ii, Oi, Bi) for 1 ≤ i ≤ n+m where

Bi = ∅ for 1 ≤ i ≤ n and

Bi 6= ∅ for n+ 1 ≤ i ≤ n+m.

228 Bianca Truthe

Let O = { o | n+ 1 ≤ o ≤ n+m } be the set of all indices of output nodes. We construct a
conventional network

N (n+m+k) = (U, V,N ′1, N
′
2, . . . , N

′
n+m+k, E

′, e, O′)

with

k =

{
m, if 1 ≤ j ≤ n (the input node is not an output node),

2m+ 1, if n+ 1 ≤ j ≤ n+m (the input node is an output node)

as follows. For i = 1, . . . , n + m, we set N ′i = (Mi, Ii, Oi). Whenever (p, q) ∈ E is an edge in
T (n+m), we connect the nodes N ′p and N ′q.

Case 1. The input node is not an output node (1 ≤ j ≤ n). Then it will be the new input node,
too: e = j. For every output node No, we create a new processor N ′o+m = (∅, Io ∩ Bo, Oo).
These nodes are the output nodes of the conventional network:

O′ = { o+m | n+ 1 ≤ o ≤ n+m } = { o′ | n+ 1 +m ≤ o′ ≤ n+ 2m } .

Whenever (p, o) ∈ E is an edge in T (n+m) with 1 ≤ p ≤ n + m and o ∈ O, we also connect
the nodes N ′p and N ′o+m:

E1 = { (p, o+m) | (p, o) ∈ E, 1 ≤ p ≤ n+m, n+ 1 ≤ o ≤ n+m } .

Furthermore, we set E2 = ∅ and E3 = ∅.
Case 2. The input node is also an output node (n+ 1 ≤ j ≤ n+m). Then we set j′ = j + 2m

and we create a new input node N ′e = (∅, ∅, U∗) with e = n + 3m + 1. For every output
node No, we create two new processors N ′o+m = (∅, Io ∩ Bo, V

∗) and N ′o+2m = (∅, Bo, Oo).
The output nodes of the conventional network are the nodes N ′o+2m:

O′ = { o+ 2m | n+ 1 ≤ o ≤ n+m } = { o′ | n+ 1 + 2m ≤ o′ ≤ n+ 3m } .

Whenever (p, o) ∈ E is an edge in T (n+m) with 1 ≤ p ≤ n + m and o ∈ O, we also connect
the nodes N ′p and N ′o+m:

E1 = { (p, o+m) | (p, o) ∈ E, 1 ≤ p ≤ n+m, n+ 1 ≤ o ≤ n+m } .

These intermediate nodes are connected to the output nodes:

E2 = { (o+m, o+ 2m) | n+ 1 ≤ o ≤ n+m } .

Additionally, we connect the new input node N ′e to N ′j′ and to any node N ′i with 1 ≤ i ≤ n
and (j, i) ∈ E and to any node N ′o and N ′o+m with n+ 1 ≤ o ≤ n+m and (j, o) ∈ E:

E3 = { (e, i) | (j, i) ∈ E, 1 ≤ i ≤ n+m } ∪ { (e, o+m) | (j, o) ∈ E, o ∈ O } ∪ { (e, j′) } .

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 229

� �
�

h
n+ m+1

new output nodes h
n+2m

h
n+1
h h

n+m
· · · · · ·

�
�

�
�

old output nodes

h1 hj hn· · · · · ·

�
�

�
�

old non-output nodes

h
n+2m+1
h

j′
h

n+3m
· · · · · ·

� �
�

h
n+ m+1

intermediate output nodesh
n+2m

�
��	 ��	

�
��	

h
n+1
hj h

n+m
· · · · · ·

�
�

�
�

old output nodes

h1 h hn· · · · · ·

�
�

�
�

old non-output nodes

h
�
�	

@
@R· · ·

new output nodes

new input node e'

& �6
Figure 1: Network constructed if the input node is not an output node (left) or it is (right)

The edge set of the new network is E ′ = E ∪E1∪E2∪E3. Figure 1 illustrates the construction
described above.

We now prove that the network N (n+m+k) accepts the same language as T (n+m). We first
consider the case 1 ≤ j ≤ n that the input node is not among the output nodes. Then no word
can be accepted immediately (in time t = 0).

If, for an input word w ∈ U∗, an output node No and a time t > 0, the condition z ∈ Cw
t (o)∩Bo

holds for a word z then t is even and we have one of the following possibilities:

Case 1. The node No has received the word z from some node Nl in the last step. Hence,
z ∈ Cw

t−1(l)∩Ol∩ Io and (l, o) ∈ E. Then also z ∈ Cw
t−1(l)∩Ol∩ Io∩Bo and z ∈ Cw

t (o+m).

Case 2. The word z was already in the node No. Then z ∈ Cw
t−1(o) and z /∈ Oo. Since Cw

0 (o) = ∅,
the word z arrived in some time from a node Nl in No. Let t′ be an even natural number
with t′ < t. Then z ∈ Cw

t′−1(l)∩Ol ∩ Io and (l, o) ∈ E. Then also z ∈ Cw
t′−1(l)∩Ol ∩ Io ∩Bo

and z ∈ Cw
t′ (o+m). Because z /∈ Oo, we have z ∈ Cw

t (o+m).

According to this case distinction, we have that if Cw
t (o) ∩ Bo 6= ∅ for one/all output nodes

then Cw
t (o+m) 6= ∅ holds, too. Hence, if a word w ∈ U∗ is accepted by T (n+m) then it is also

accepted by N (n+m+k).

If, for an input word w ∈ U∗, a node o′ ∈ O′ and a time t, the condition Cw
t (o′) 6= ∅ holds then

o′ = o + m for an index o with n + 1 ≤ o ≤ n + m, t is an even number and t > 0 (in the
beginning, we have Cw

0 (o′) = ∅ and the non-emptiness cannot arise by evolution) and we have
one of the following two situations (some word was sent in some time from a node N ′l):

Case 1. Let z ∈ Cw
t−1(l) ∩ Ol ∩ Io ∩ Bo (a word z was sent by N ′l). In this case, we also have

z ∈ Cw
t (o) ∩Bo.

Case 2. Let z ∈ Cw
t−1(o + m) (z was already contained in N ′o+m). Then z /∈ Oo. Since

Cw
0 (o + m) = ∅, the word z arrived in some time from a node N ′l in N ′o+m. Let t′ be

230 Bianca Truthe

an even natural number with t′ < t. Then z ∈ Cw
t′−1(l) ∩ Ol ∩ Io ∩ Bo and (l, o) ∈ E. Then

also z ∈ Cw
t′ (o) ∩Bo. Because z /∈ Oo, we have z ∈ Cw

t (o) ∩Bo.

Together, we have the result: if the condition Cw
t (o′) 6= ∅ holds for one/all output nodes then

Cw
t (o) ∩ Bo 6= ∅ holds, too. Hence, if a word w ∈ U∗ is accepted by N (n+m+k) then it is also

accepted by T (n+m).

We now consider the case n+ 1 ≤ j ≤ n+m that the input node is also an output node. Then
the input word could be accepted immediately (in time t = 0) by T (n+m).

If an input word w belongs to the set Bj then it is accepted by T (n+m). In the networkN (n+m+k),
the node N ′e does not modify the word, so w is sent out. It passes the input filter Bj of the
new output node N ′j′ and hence, it is also accepted by the conventional network N (n+m+k). On

the other hand, w is only accepted immediately (after one communication step) by N (n+m+k)

if it belongs to Bj.

If the input word w does not belong to Bj then the word is sent unchanged from Nj to any
node Nk in T (n+m) with (j, k) ∈ E or from N ′e to any node N ′k in N (n+m+k) with (j, k) ∈ E. It
does not pass the input filter of the output node N ′j′ . From here on, we have the same situation
as described above for the case 1 ≤ j ≤ n.

If a word arrives in some node N ′o+m then it will be sent during the next communication step
to the output node N ′o+2m. Hence, we have Cw

t (o)∩Bo 6= ∅ for one/all output nodes if and only
if Cw

t+2(o
′) 6= ∅ holds, too.

Hence, a word w ∈ U∗ is accepted by the target based network T (n+m) if and only if it is
accepted by the conventional network N (n+m+k).

All cases together yield

Lw(N (n+m+k)) = { w ∈ U∗ | ∃t ≥ 0 ∃o′ ∈ O′ : Cw
t (o′) 6= ∅ }

= { w ∈ U∗ | ∃t ≥ 0 ∃o ∈ O : Cw
t (o) ∩Bo 6= ∅ }

= Lw(T (n+m)),

and also

Ls(N (n+m+k)) = { w ∈ U∗ | ∃t ≥ 0∀o′ ∈ O′ : Cw
t (o′) 6= ∅ }

= { w ∈ U∗ | ∃t ≥ 0∀o ∈ O : Cw
t (o) ∩Bo 6= ∅ }

= Ls(T (n+m)),

because for each o ∈ O the node o′ ∈ O′ is uniquely determined.

The next theorem summarizes the previous results.

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 231

Theorem 3.4. Every target based network can be transformed into a conventional network that
accepts the same language.

Every language accepted by a conventional network is also accepted by a target based network
and vice versa. The number of processors a target based network needs for accepting a language
is not higher than the number of processors that a conventional network needs for the same
language.

In the following sections, we consider accepting networks with two types of nodes as presented
in [9] and show that in all cases we can omit the output nodes.

4. Networks with Processors of Two Types only

Deletion and substitution nodes do not increase the length of the words. Such nodes are also
called non-increasing. In a network with only non-increasing nodes, the length of every word in
every node at any step in the computation is bounded by the length of the input word. In [7], it
was shown that every network with substitution and deletion nodes accepts a context-sensitive
language. In [9], it was shown that every context-sensitive language can be accepted by a
network with one substitution node and one output node without rules.

Theorem 4.1. For any context-sensitive language L, there is a target based network S with
exactly one substitution node that weakly and strongly accepts the language L.

Proof. Let L be a context-sensitive language and G = (N, T, P, S) be a grammar in Kuroda
normal form with L(G) = L.

Let Let R1, R2, . . . , R8 be the following sets:

R1 = { x→ xp,0, xp,0 → A | A→ x ∈ P, A ∈ N, x ∈ N ∪ T } ,
R2 = { C → Cp,1 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈ N } ,
R3 = {D → Dp,2 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈ N } ,
R4 = { Cp,1 → Cp,3 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈ N } ,
R5 = {Dp,2 → Dp,4 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈ N } ,
R6 = { Cp,3 → A | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈ N } ,
R7 = {Dp,4 → B | p = AB → CD ∈ P, A,B,C,D ∈ N } ,
R8 = {Dp,4 → | p = A→ CD ∈ P, A,B,C,D ∈ N } .

We construct a target based network of evolutionary processors

S = (T, V, (M, ∅, O,B), { (1, 1) } , 1)

232 Bianca Truthe

with

V = N ∪ T ∪ { } ∪
⋃

p=A→x

{xp,0 } ∪
⋃

p=A→CD
p=AB→CD

{Cp,1, Dp,2, Cp,3, Dp,4 } ,

M = R1 ∪R2 ∪R3 ∪R4 ∪R5 ∪R6 ∪R7 ∪R8,

B =

{
{ }∗{S}{ }∗ ∪ {λ} if λ ∈ L,
{ }∗{S}{ }∗ otherwise,

and

O = V ∗ \ ((N ∪ T ∪ { })∗Ō(N ∪ T ∪ { })∗),

where

Ō = { xp,0 | p = A→ x ∈ P, A ∈ N, x ∈ N ∪ T }
∪ { Cp,1 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈ N }
∪ { Cp,1εDp,2 | p = A→ CD ∈ P or p = AB → CD ∈ P, ε ∈ { }∗ }
∪ { Cp,3εDp,2 | p = A→ CD ∈ P or p = AB → CD ∈ P, ε ∈ { }∗ }
∪ { Cp,3εDp,4 | p = A→ CD ∈ P or p = AB → CD ∈ P, ε ∈ { }∗ }
∪ { AεDp,4 | p = A→ CD ∈ P or p = AB → CD ∈ P, ε ∈ { }∗ }
∪ {λ } .

The network S has only one node. Therefore, there is no difference between weak and strong
acceptance, and we write L(S) for the language accepted by the network S.

The empty word λ is accepted by S if and only if it is generated by G. By a case distinction
on the types of rules, one can show, that a non-empty word is accepted if and only if it can be
reduced to the axiom S by a reverse simulation of the generation process. For the details, we
refer to the section on non-deleting generating networks in [2].

The trick of this network is that the substitution processor can simulate the deletion by marking
symbols as deleted (the symbols are replaced by the special symbol). When simulating a
derivation w =⇒ v in G, we have to take into account that the corresponding word in the
substitution node may contain gaps in form of several occurrences of the special symbol .

An input word w ∈ T+ can be reduced to a word s ∈ { }∗{S}{ }∗ ⊆ B if and only if w is
generated by the grammar G. If the input word is λ, then it cannot be modified in the first
node. It is accepted if and only if it belongs to L(G).

Hence, we have proved L(G) = Lw(S) = Ls(S) = L.

This number of processors is optimal. The main difference between context-sensitive and non-
context-sensitive grammars is that, in arbitrary phrase structure grammars, erasing rules (λ-

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 233

rules) are allowed. In order to simulate a λ-rule in reverse direction, we introduce an insertion
node.

Theorem 4.2. For any recursively enumerable language L, there is a target based accepting
network N of evolutionary processors with exactly one substitution node and one insertion node
that weakly and strongly accepts the language L.

Proof. Let L be a recursively enumerable language and G = (N, T, P, S) be a grammar in
Kuroda normal form with L(G) = L.

The idea of the proof is to extend the network S constructed in the proof of Theorem 4.1 by
an inserting processor who is responsible for the reverse simulation of λ-rules.

For a formal definition, we have to implement that the insertion node gets the opportunity to
do something (the substitution processor must indicate that a word can pass to the insertion
node).

We construct a network of evolutionary processors

N = (T, V N , (MN
1 , I

N
1 , O

N
1 , B

N), (MN
2 , I

N
2 , O

N
2 , ∅), { (1, 2), (2, 1) } , 1)

with

V N = V ∪ { x′ | x ∈ N ∪ T } ,
MN

1 = M ∪ { x→ x′ | x ∈ N ∪ T } ∪ { x′ → x | x ∈ N ∪ T } ,
IN1 = IN2 = ON2 = (N ∪ T ∪ { })∗ { x′ | x ∈ N ∪ T } (N ∪ T ∪ { })∗,
ON1 = O ∪ IN1 ,
BN = B,

MN
2 = { λ→ A | A→ λ ∈ P } ,

where V , M , O, and B are defined as in the proof of Theorem 4.1.

Between two simulation phases, the substitution node can mark a symbol such that the word
can leave the node and enter the insertion node. This processor inserts a non-terminal that
belongs to a λ-rule of the grammar G and returns the word to the substitution node. This
processor then has to unmark the primed symbol. If marking or unmarking is not performed
in the correct moment, the word will be lost. The network N accepts the language that is
generated by the grammar G.

In [2], we have shown that every recursively enumerable language can be generated by a network
of one inserting processor and one deleting processor. Similar to the proof of this statement,
we proved in [11] that any recursively enumerable language can be accepted by a network with
exactly one deletion node, one insertion node, and one output node.

234 Bianca Truthe

Theorem 4.3. For any recursively enumerable language L, there is a target based accepting
network N of evolutionary processors with exactly one deletion node and one insertion node
that weakly and strongly accepts the language L.

Proof. Let L be a recursively enumerable language and G = (N, T, P, S) be a grammar in
Kuroda normal form with L(G) = L.

We define the sets of partial prefixes and partial suffixes of a word u by

PPref (u) = {x | u = xy, |y| ≥ 1}, and PSuf (u) = {y | u = xy, |x| ≥ 1},

respectively.

Let V = N ∪ T and V = V ∪ { }. We define a homomorphism h : V ∗ → V ∗ by h(a) = a for
a ∈ T and h(A) = A for A ∈ N and set W = { h(w) | w ∈ V ∗ }. We construct the following
network N = (T,X, (M1, I1, O1, ∅), (M2, I2, O2, {S }), E, 1) of evolutionary processors with

X = V ∪
⋃
p∈P

{p1, p2, p3, p4},

M1 = {λ→ } ∪ { λ→ pi | p ∈ P, 1 ≤ i ≤ 4 } ∪ { λ→ A | A ∈ N } ,
I1 = W \ {S } ,
O1 = X∗ \ (WR1,1W),

M2 = { pi → λ | p ∈ P, 1 ≤ i ≤ 4 } ∪ { x→ λ | x ∈ V } ,
I2 = WR1,2W,

O2 = X∗ \ (WR2,2W),

E = {(1, 2), (2, 1)}

where

R1,1 =
⋃

p=u→v∈P

({p1h(v), p1h(v)p2, p1p3h(v)p2, p1p3h(v)p2p4}

∪ {p1p3}PSuf (h(u)){h(v)p2p4})
R1,2 = { p1p3h(uv)p2p4 | p = u→ v ∈ P } ,
R2,2 =

⋃
p=u→v∈P

({p1p3h(u)}PPref (h(v)){p2p4} ∪ {p3h(u)p2p4, p3h(u)p4, h(u)p4}).

The reverse simulation of the application of a rule p = a1 . . . as → b1 . . . bt to a sentential form
αa1 . . . asβ with x = h(α) and y = h(β) has the following form.

Target Based Accepting Networks of Evolutionary Processors with Regular Filters 235

In the insertion node, we have

xh(b1) . . . h(bt)y =⇒ xp1h(b1) . . . h(bt)y =⇒ xp1h(b1) . . . h(bt)p2y =⇒ xp1p3h(b1) . . . h(bt)p2y

=⇒ xp1p3h(b1) . . . h(bt)p2p4y =⇒ xp1p3 h(b1) . . . h(bt)p2p4y =⇒ xp1p3as h(b1) . . . h(bt)p2p4y

=⇒∗ xp1p3a2 . . . as (b1) . . . h(bt)p2p4y =⇒ xp1p3 a2 . . . as h(b1) . . . h(bt)p2p4y

=⇒ xp1p3a1 . . . as h(b1) . . . h(bt)p2p4y.

This word leaves the insertion node and enters the deletion node. There, the evolution continues
to

xp1p3a1 . . . as h(b1) . . . h(bt)p2p4y =⇒|h(bt)| xp1p3a1 . . . as h(b1) . . . h(bt−1)p2p4y

=⇒∗ xp1p3a1 . . . as h(b1)p2p4y =⇒|h(b1)| xp1p3a1 . . . as p2p4y

=⇒ xp3a1 . . . as p2p4y =⇒ xp3a1 . . . as p4y =⇒ xa1 . . . as p4y

=⇒ xa1 . . . as y.

If this word is S , the input word is accepted. Otherwise, the word enters the insertion node
again for the next simulation phase. Only those words remain in the network that are obtained
in the sequence described above; all other words get lost.

In all three cases, the number of nodes can be reduced if we use target based networks for
accepting a language instead of conventional networks.

References

[1] A. Alhazov, C. Mart́ın-Vide and Yu. Rogozhin, On the number of nodes in universal
networks of evolutionary processors. Acta Inf. 43 (2006), 331–339.

[2] A. Alhazov, J. Dassow, C. Mart́ın-Vide, Yu. Rogozhin and B. Truthe, On Networks of
Evolutionary Processors with Nodes of Two Types. Fundamenta Informaticae 91 (2009) 1, 1–15.

[3] J. Castellanos, P. Leupold and V. Mitrana, On the size complexity of hybrid networks of
evolutionary processors. Theor. Comput. Sci. 330 (2005), 205–220.

[4] J. Castellanos, C. Mart́ın-Vide, V. Mitrana and J. Sempere, Solving NP-complete prob-
lems with networks of evolutionary processors. In: Proc. IWANN, Lecture Notes in Computer
Science 2084, Springer-Verlag, Berlin, 2001, 621–628.

[5] J. Castellanos, C. Mart́ın-Vide, V. Mitrana and J. Sempere, Networks of evolutionary
processors. Acta Informatica 38 (2003), 517–529.

[6] E. Csuhaj-Varjú and A. Salomaa, Networks of parallel language processors. In: Gh. Păun
and A. Salomaa (eds.), New Trends in Formal Language Theory. Lecture Notes in Computer
Science 1218, Springer-Verlag, Berlin, 1997, 299–318.

236 Bianca Truthe

[7] J. Dassow and V. Mitrana, Accepting Networks of Non-Increasing Evolutionary Processors.
In: I. Petre and G. Rozenberg (eds.), Proceedings of NCGT 2008. Workshop on Natural Com-
puting and Graph Transformations. September 8, 2008, Leicester, UK. University of Leicester,
2008, 29–41.

[8] J. Dassow and B. Truthe, On the Power of Networks of Evolutionary Processors. In:
J. Durand-Lose and M. Margenstern (eds.), Machines, Computations and Universality,
MCU 2007, Orléans, France, September 10–13, 2007, Proceedings. Lecture Notes in Computer
Science 4664, Springer, 2007, 158–169.

[9] V. Mitrana and B. Truthe, On Accepting Networks of Evolutionary Processors with at Most
Two Types of Nodes. In: A. H. Dediu, A. M. Ionescu, and C. Mart́ın-Vide (eds.), Language
and Automata Theory and Applications, Third International Conference, LATA 2009, Tarragona,
Spain, April 2009, Proceedings. Lecture Notes in Computer Science 5457, Springer, 2009, 588–600.

[10] G. Rozenberg and A. Salomaa, Handbook of Formal Languages. Springer-Verlag, Berlin, 1997.

[11] B. Truthe, On small accepting networks of evolutionary processors with regular filters. In:
J. Dassow and B. Truthe (eds.), Colloquium on the Occasion of the 50th Birthday of Victor
Mitrana. Proceedings. Otto-von-Guericke-Universität Magdeburg, Germany, 2008, 37–52.

