
DCFS
2007

DCFS
2007

V. Geffert, G. Pighizzini (eds.): Proceedings of the 9th workshop
Descriptional Complexity of Formal Systems. High Tatras, Slovakia, July 20 – 22, 2007.

(Pages 141 – 152)

Remarks on Context-free Parallel Communicating

Grammar Systems Generating Crossed Agreements

Bianca Truthe

Facultat de Lletres – GRLMC – Universitat Rovira i Virgili
Plaça Imperial Tàrraco 1 – E-43005 Tarragona – Spain

bianca@truthe.de

Abstract. When modeling natural languages, three phenomena should
be considered: the so-called multiple agreements, crossed agreements
and replication. These aspects are represented by the three languages
K1 = { anbncn | n ≥ 1 }, K2 = { anbmcndm | m ≥ 1, n ≥ 1 }, and
K3 = {ww |w ∈ { a, b }

+
}, respectively.

In the present paper, we give parallel communicating grammar sys-
tems (PC grammar systems) that are context-free and that generate the
non-context-free language K2 but have less components than those sys-
tems published so far. In two cases, the results are optimal. This paper
follows [5], where linear and right-linear systems have been considered
for generating the language K2, besides systems for the languages K1

and K3.

Keywords: parallel communicating grammar systems, number of com-
ponents, crossed agreements

1 Introduction and Definitions

A parallel communicating grammar system (PC grammar system) consists of
several grammars. For solving a task, the components (grammars) work simul-
taneously and are allowed to communicate. According to the monograph [2], a
communication is done by request: a component can request the whole word gen-
erated by another component. A minimal synchronization is assumed: In each
time unit every component carries out a rewriting step or the system performs a
communication.

If no component wants to communicate, then each grammar derives its current
sentential form by a rewriting step according to its production rules (if a gram-
mar has reached a terminal word, it keeps it; if the sentential form of a grammar
contains only nonterminals for which the grammar has no rules, then the compo-
nent blocks the whole system). If a component wants to get the sentential form
of another component, then it introduces a query symbol that indicates to which
component the query is sent. When the query is satisfied, the query symbol is
rewritten by the sentential form obtained. In one rewriting step, a grammar may

The research was supported by the Alexander von Humboldt Foundation of the Federal

Republic of Germany.

142 Bianca Truthe

introduce several query symbols. All queries of a component are satisfied simul-
taneously and only, if all the requested sentential forms do not contain query
symbols, otherwise the sentential form is not changed in this step. If a compo-
nent which has been asked has sent a query to another component, then it first
waits for an answer and, after receiving, it sends its own answer.

The grammars do not perform further rewriting steps before all sentential
forms are query free; especially those components that are not involved in a
communication do nothing in this moment. It can happen that two components
issue a query to each other at the same time. Then none of the queries is satisfied
and the components wait for each other – this causes a deadlock of the system.

In the returning mode, each component restarts with its start symbol after
satisfying a query; in the non-returning mode the components continue with their
current words.

We give the formal definitions now. For more details, we refer to [2]. By #(A)
and |w|A we quote the cardinality of the set A and the number of occurrences of
a letter of the alphabet A in the word w, respectively.

Let n ≥ 1 be a natural number. A PC grammar system of degree n is
an (n + 3)-tuple

Γ(n) = (N, T, K, (P1, S1), (P2, S2), . . . , (Pn, Sn))

where

• N is a finite set (the set of nonterminals),

• T is a finite set (the set of terminals),

• K = { Q1, . . . , Qn } is a set of n query symbols (with the sets N , T , K

being pairwise disjoint) and

• (Pi, Si) are the components of the system, where Si ∈ N and

Gi = (N ∪ K, T, Pi, Si)

is a Chomsky grammar (i = 1, . . . , n).

A PC grammar system is called centralized, if only one component (the so-
called master) issues query symbols, and non-centralized otherwise. A PC gram-
mar system is called regular, right-linear, linear, context-free etc., if the rules
in the components have the respective property. In [6], it was shown that cen-
tralized PC grammar systems with right-linear components are more powerful
than centralized systems with regular components. In a regular rule, exactly one
terminal appears on the right hand side, whereas in right-linear rules, arbitrary
many terminals are allowed. A rule A → B with A, B ∈ N (without terminals)
is called a chain rule.

Let Γ(n) = (N, T, K, (P1, S1), . . . , (Pn, Sn)) be a PC grammar system with n

components. A configuration of the PC grammar system Γ(n) is an n-tuple

(w1, . . . , wn) with wi ∈ (N ∪ T ∪ K)∗.

Remarks on Context-free PC Grammar Systems for Crossed Agreements 143

The PC grammar system Γ(n) derives a configuration (x1, . . . , xn) to a configu-
ration (y1, . . . , yn) in the returning or non-returning mode (written formally as

(x1, . . . , xn) =⇒ (y1, . . . , yn)

maybe with the index R for ‘returning’ or N for ‘non-returning’ appended to the
symbol =⇒), if one of the following cases holds:

(I) No word xi, i = 1, . . . , n, contains a query symbol.
For i = 1, . . . , n, either we have xi =⇒Gi

yi or xi ∈ T ∗ and yi = xi.

(II) A word xi, i = 1, . . . , n, contains a query symbol.
For each index i = 1, . . . , n we have: If the word xi contains a query
symbol, then there are a number mi ≥ 1 (the number of query symbols),
words zi,1, . . . , zi,mi+1 ∈ (N ∪ T)∗ and natural numbers ti,1, . . . , ti,mi

∈
{ 1, . . . , n } such that the word xi is composed as

xi = zi,1Qti,1 · · · zi,mi
Qti,mi

zi,mi+1.

If a word xti,j (j ∈ { 1, . . . , mi }) contains a query symbol, then yi = xi

otherwise
yi = zi,1xti,1zi,2xti,2 · · · zi,tixti,mi

zi,mi+1.

If the word xi does not contain a query symbol, we have yi = xi in the
non-returning mode and there are two cases in the returning mode:

• There is a word xk with the query symbol Qi and such that |xtk,j
|K = 0

for all j = 1, . . . , mk. Then yi = Si (if the i-th component is asked but
does not ask itself, it returns to the start symbol after answering).

• There is no such word xk. Then we have yi = xi (if the i-th component
is not involved in communication, the sentential form does not change).

By =⇒∗ we denote the reflexive and transitive closure of the relation =⇒.
The configuration (S1, . . . , Sn) is called the start configuration; each configu-

ration (w1, . . . , wn) with w1 ∈ T ∗ is called an end configuration of the system Γ,
if it can be reached from the start configuration, i. e. if

(S1, . . . , Sn) =⇒∗ (w1, . . . , wn).

The languages LR(Γ(n)) and LN(Γ(n)) generated by a PC grammar system Γ(n)

in the returning and non-returning mode, respectively, are the sets containing all
words w ∈ T ∗, for which there exist words w2, . . . , wn such that (w, w2, . . . , wn)
is an end configuration of Γ(n):

Lx(Γ(n)) = { w ∈ T ∗ | (S1, . . . , Sn) =⇒∗

x (w, w2, . . . , wn) } for x ∈ { R, N } .

The sets of regular, right-linear, linear and context-free grammars, we denote
by REG , RL, LIN , and CF , respectively.

For Y ∈ { PC ,CPC } and X ∈ { REG ,RL,LIN ,CF }, we denote by

• PC nX the set of all PC grammar systems (centralized or not) with at
most n components of type X,

144 Bianca Truthe

• CPC nX the set of all centralized PC grammar systems with at most n

components of type X,

• LR(YnX) the set of all languages that are generated by a YnX-system in
the returning mode,

• LN(YnX) the set of all languages that are generated by a YnX-system in
the non-returning mode.

By cooperation, even regular grammars are able to generate non-context-free
languages (examples can be found in [2] and [4]). This is important since context-
free languages are not sufficient for modeling natural languages and also artificial
languages (a more detailed discussion can be read in [3]).

Three non-context-free phenomena occurring with natural languages are the
so-called multiple agreements, crossed agreements and replication. They are rep-
resented by the languages

K1 = { anbncn | n ≥ 1 } ,

K2 = { anbmcndm | m ≥ 1, n ≥ 1 } and

K3 =
{

ww
∣

∣ w ∈ { a, b }+ }

.

In [5], we gave some PC grammar systems for generating these languages and
discussed the tightness of the number of their components with respect to their
types.

In the present paper, we give context-free PC grammar systems that generate
the non-context-free language K2 but have less components than those systems
published so far. In two cases, the results are optimal. This paper follows [5],
where only linear and right-linear systems have been considered for generating
the language K2 (besides further results for generating the languages K1 and K3).
When allowing context-free rules, the number of necessary components can be
further reduced.

2 PC grammar systems for the language K2

In [5], right-linear and linear systems for generating the language K2 are given.
The present paper follows these investigations by studying context-free but non-
linear PC grammar systems.

In [4], a context-free PC grammar system with three components and a
context-free PC grammar system with ten components were given which gen-
erate the language K2 the in the returning and non-returning mode, respectively.
In [1], a context-free, centralized PC grammar system with four components was
given that generates this language in the returning mode and another one with
five components for the non-returning mode.

According to the number of components, the best PC grammar systems for
generating the language K2 with non-linear components are so far

• a CPC 5CF -system in the non-returning mode ([1]),

• a CPC 4CF -system in the returning mode ([1]) and

Remarks on Context-free PC Grammar Systems for Crossed Agreements 145

• a PC 3CF -system in the returning mode ([4]).

In this section, we give

• a PC 2CF -system for the returning mode,

• a CPC 3CF -system for the returning mode and

• a CPC 2CF -system for the non-returning mode

and we hereby improve the known results with respect to the number of necessary
components.

We start with a PC 2CF -system working in the returning mode.

Theorem 1. The PC 2CF-system

Γ1 = (
{

S1, S2, S
′

1, T, B, D, B′, D′
}

, { a, b, c, d } , { Q1, Q2 } , (P1, S1), (P2, S2))

with

P1 =
{

S1 → aTcD, T → aTc, T → B, B → bB′, D → dD′
}

∪
{

B → b, D → d, S1 → S′

1, S′

1 → Q2

}

,

P2 =
{

S2 → S2, S2 → Q1, B′ → B, D′ → D
}

.

generates the language K2 in the returning mode.

Proof. The Figure 1 illustrates the system.

B // 77bB′ b

S1
//

$$H
HHHHHHHHH aTcDFF

OO

// 77dD′ d

S′

1
// Q2

S2

��
// Q1 B′ // B D′ // D

Figure 1. Illustration of the PC 2CF -system Γ1 in the returning mode

The PC grammar system Γ1 works in the returning mode as follows. The
first component generates the as and cs and exactly a b and a d and possibly a
nonterminal for more bs and ds. The second component first waits and then issues
a query to the first component. If this happens too early, it receives an ‘unknown’
nonterminal, and, hence, can rewrite one nonterminal at most. Then the systems
blocks, because the second components is not ready to issue a query. If the second
component does not issue a query in the appropriate time, the first one blocks.
The system also blocks if the first component contains only one nonterminal (B′ or
D′) when being asked. This can be derived in the second component, but it blocks

146 Bianca Truthe

after one step because there is no more rule applicable and the first component
is not ready for a query. Hence, when the second component issues a query, the
first component must contain exactly one B′ and D′. These two nonterminals are
rewritten in the second component. After this, the first component requests this
word, derives both nonterminals (generates a terminal both times) and has to be
asked by the second component again in time (after two steps). By this method,
the bs and ds are generated in the same number of occurrences. This procedure
repeats until the first component generates terminals.

We remark a specialty of this system here. All terminals are generated only
in the first component. The rules of the second component all are chain rules.
They serve to ‘steer’ the first component. By this manner, the first component
is forced to produce in an ordered way. All ‘wrong’ derivations are omitted.

If the first component applies the rule S1 → S′

1 first, then the system will
eventually block because S′

1 will arrive in the second component or S2 reaches
the first component but both nonterminals are not derivable in the respective
other component, or the components issue a query to each other at the same
time. Hence, we first apply S1 → aTcD to S1. If the second component issues
a query, while the sentential form of the first component contains a nonterminal
T , B or D, then the second component can perform at most one rewriting step
and blocks because the first component is not able to query after one step.

After applying the rule T → aTc repeatedly and rewriting T , B and D,
the first component finally obtains a word of the form anβcnδ with n ≥ 1,
β ∈ { b, bB′ } and δ ∈ { d, dD′ }. Then, we have three cases (n ≥ 1 and
w2 ∈ { S2, Q1 }):

(I) (S1, S2) =⇒n+3 (anbcnd, w2),

(II) (S1, S2) =⇒n+3 (anβcnδ, w2) with β = b and δ = dD′ or β = bB′ and
δ = d or

(III) (S1, S2) =⇒n+3 (anbB′cnbD′, w2)

In the first case, the first component has derived a terminal word. If w2 = S2

in the second or third case, then the systems blocks because the first component
can apply no rule any more. In the second case with w2 = Q1, the second
component can perform only one rewriting step after its query has been satiesfied.
Since the first component needs two steps before it can issue a query, the second
component blocks the system. Hence, only the third case can occur with w2 = Q1:
(anbB′cndD′, Q1) =⇒ (S1, a

nbB′cndD′). If now S1 is not derived to S′

1, the
system blocks after two steps. Thus

(S1, a
nbB′cndD′) =⇒ 2(Q2, a

nbBcndD) =⇒ (anbBcndD, S2).

By the same argumentation as above, we have two possibilities for a non-blocking
continuation:

(I) (anbBcndD, S2) =⇒ 2(anb2cnd2, ∗) or

(II) (anbBcndD, S2) =⇒ 2(anb2B′cnd2D′, Q1).

Remarks on Context-free PC Grammar Systems for Crossed Agreements 147

The star marks that the corresponding component does not influence the sys-
tem any more and hence its contents is not important. Summarizing, only the
following derivations lead to terminal words:

(S1, S2) =⇒n+3 (anbcnd, ∗)

or

(S1, S2) =⇒n+3 (anbB′cndD′, Q1) n ≥ 1

=⇒6k (anbk+1B′cndk+1D′, Q1) k ≥ 0

=⇒ 6 (anbk+2cndk+2, ∗),

which yields together

(S1, S2) =⇒n+3+6k (anbk+1cndk+1, ∗) n ≥ 1, k ≥ 0.

Since no other terminal words are generated, the PC 2CF -system Γ1 generates
the language K2 in the returning mode. �

One context-free component is not sufficient to generate the language K2; hence,
this result is optimal. Now we give a CPC 3CF -system for the returning mode.

Theorem 2. The CPC 3CF-system

Γ2 = (N, { a, b, c, d } , { Q1, Q2, Q3 } , (P1, S1), (P2, S2), (P3, S3))

with

N =
{

S1, S2, S3, S
′

2, S
′

3, Z1, Z2, Z3, X, X ′, Y, Y ′, T, T ′, U, U ′, B, D, B̄, D̄
}

,

P1 = { S1 → Z1, Z1 → Z2, Z2 → Z3, Z3 → Z2, Z3 → Q2, B → Q2, D → Q3 }

∪
{

B̄ → b, D̄ → d
}

,

P2 =
{

S2 → X, X → X ′, X ′ → aUcD̄, U → B̄, U → U ′, U ′ → aUc
}

∪
{

S2 → Y, Y → Y ′, Y ′ → aTcD, T → B, T → T ′, T ′ → aTc
}

∪
{

S2 → S′

2, S′

2 → bB, S2 → B̄
}

,

P3 =
{

S3 → X, S3 → S′

3, X → S′

3, S′

3 → X, S′

3 → dD
}

∪
{

S3 → Y, Y → Y ′, Y ′ → D̄
}

generates the language K2 in the returning mode.

Proof. The Figure 2 illustrates the system.
We now give the formal details of the system. The first component issues

a query to the second component after 4 + 2k steps (k ≥ 0) for the first time.
The word in the second component is then ak+1β̄ck+1D̄ with β̄ ∈

{

U ′, B̄
}

or
ak+1βck+1D with β ∈ { T ′, B }. If β̄ = U ′ or β = T ′, the nonterminal U ′ or T ′,
respectively, enters the first component but cannot be derived there. Since the
system is centralized, these nonterminals cannot disappear. In this situation, we
do not obtain a terminal word. After 4 + 2k steps, the third component contains
X, S′

3 or dD. Since D cannot be derived, we only need to consider the other two
situations.

148 Bianca Truthe

S1
// Z1

// Z2
//
Z3

//oo Q2 B // Q2

B̄ // b

D // Q3

D̄ // d

X // X ′ // aUcD̄

��

B̄

S2

??~~~~~~~~

 A
AA

AA
AA

A

��

// B̄ U ′

OO

Y // Y ′ // aTcD
��

��

B

S′

2
// bB T ′

OO

X

��
S3

>>}}}}}}}}
//

 @
@@

@@
@@

@
S′

3
//

OO

dD

Y // Y ′ // D̄

Figure 2. Illustration of the CPC 3CF -system Γ2 in the returning mode

There are the following cases:

1. (S1, S2, S3) =⇒4+2k (Q2, a
k+1B̄ck+1D̄, w3) with w3 ∈ { X, S′

3 },

2. (S1, S2, S3) =⇒4+2k (Q2, a
k+1Bck+1D, X) or

3. (S1, S2, S3) =⇒4+2k (Q2, a
k+1Bck+1D, S′

3).

Case 1. This case leads to (ak+1B̄ck+1D̄, S2, w3) =⇒ 2(ak+1bck+1d, ∗, ∗).
Case 2. We show that the configuration (ak+1Bck+1D, S2, X) does not lead to a
terminal word. There are two possibilities of the derivation:

(I) B → Q2: Then (ak+1Bck+1D, S2, X) =⇒ (ak+1Q2c
k+1D, B̄, S′

3), because
another derivation of S2 would yield a nonterminal which is not derivable
in the first component. The configuration changes to (ak+1B̄ck+1D,S2,S

′

3).
Only two of the possible successors do not lead immediatelly to a blocking
of the system:

(A) =⇒ (ak+1bck+1D, ∗, X) =⇒ (ak+1bck+1Q3, ∗, S
′

3)
=⇒ (ak+1bck+1S′

3, ∗, ∗).
The first component cannot derive the nonterminal S′

3 and blocks.

(B) =⇒ (ak+1B̄ck+1Q3, ∗, dD) =⇒ (ak+1B̄ck+1dD, ∗, S3).
If now D is derived to Q3, the system blocks after the communication.

Remarks on Context-free PC Grammar Systems for Crossed Agreements 149

Hence, the derivation continues to (ak+1bck+1dD, ∗, S′

3) and further to

(ak+1bck+1dQ3, ∗, dD) =⇒ (ak+1bck+1d2D, ∗, S3)

=⇒ (ak+1bck+1d2Q3, ∗, S
′

3).

After the communication the first component blocks.

(II) D → Q3: Then (ak+1Bck+1D, S2, X) =⇒ (ak+1Bck+1Q3, w2, S
′

3). Since
the first component has no rule for S′

3 it blocks after the communication,
regardless the value w2 of the second component.

The configuration (ak+1Bck+1D, S2, X) does not lead to a terminal word. Hence,
in this case, no terminal word is obtained.
Case 3. In this case, we obtain the configuration (ak+1Bck+1D, S2, S

′

3). Again,
there are two possibilities of the derivation:

(I) B → Q2:
Then (ak+1Bck+1D, S2, S

′

3) =⇒ (ak+1Q2c
k+1D, B̄, X), because another

derivation of S2 yields a nonterminal which is not rewritable in the first
component and another derivation of S′

3 causes the blocking. This con-
figuration leads to (ak+1B̄ck+1D, S2, X). The only continuations that do
not lead to an immediate blocking are:

(A) =⇒ (ak+1bck+1D, ∗, S′

3) =⇒ (ak+1bck+1Q3, ∗, dD)
=⇒ (ak+1bck+1dD, ∗, S3).

The next communication step moves a nonterminal into the first com-
ponent which is not derivable.

(B) =⇒ (ak+1B̄ck+1Q3, S2, S
′

3).
Also this configuration does not lead to a terminal word.

(II) D → Q3:
The application of this rule leads to (ak+1Bck+1Q3, w2, dD). In the third
component, S′

3 must have been rewritten by dD because the first com-
ponent cannot derive the nonterminal X. This leads to the configuration
(ak+1Bck+1dD, w2, S3). Now D must not be derived because otherwise
the arriving nonterminal from the third component cannot be rewritten.
Hence, we apply the rule B → Q2. In order to have success, w2 = S′

2

must hold. Then, the configuration (ak+1Bck+1dD, S′

2, S3) is changed to
(ak+1Q2c

k+1dD, bB, w3) with w3 ∈ { X, Y, S′

3 }.
The configuration (ak+1bBck+1dD, S2, X) does not lead to a terminal word
according to Case 2.
The configuration (ak+1bBck+1dD, S2,Y) leads to (ak+1bQ2c

k+1dD, B̄,Y ′)
because deriving D or deriving S2 by another rule cause the blocking of
the system. From this configuration, we obtain (ak+1bB̄ck+1dD, S2, Y

′).
Since Y ′ will be rewritten by D̄ in the next step and the third compo-
nent blocks thereafter, we have to apply the rule D → Q3. This leads
to (ak+1bB̄ck+1dQ3, ∗, D̄) and in the next step to (ak+1bB̄ck+1dD̄, ∗, S3).
In two steps, we obtain the word ak+1b2ck+1d2 in the first component.
Hence, (ak+1Bck+1D, S2, S

′

3) can yield the word ak+1b2ck+1d2.

150 Bianca Truthe

In the case of w3 = S′

3, the configuration (ak+1bBck+1dD, S2, S
′

3) was de-
rived from (ak+1Bck+1D, S2, S

′

3). Thus, this yields every configuration
(ak+1bmBck+1dmD, S2, S

′

3) with m ≥ 1. According to the argumentation
above, such a configuration yields finally the word ak+1bm+2ck+1dm+2.

The configuration (ak+1Bck+1D, S2, S
′

3) leads by alternating applications of
the rules D → Q3 and B → Q2 and suitable derivations of the second and third
component to the words anbmcndm with n ≥ 1 and m ≥ 2. Other words are not
produced.

Together with Case 1, the language generated in the returning mode by the
CPC 3CF -system Γ2 is LR(Γ2) = K2, which proves the claim. �

The ‘trick’ with the PC grammar system Γ2 is that one query has success only
in even numbered rewriting steps and the other query has success only in odd
numbered rewriting steps. By this means, the alternating production of bs and
ds is enforced.

Now we give a context-free, centralized PC grammar system with two com-
ponents that generates in the non-returning mode the language K2.

Theorem 3. The CPC 2CF-system

Γ3 = (N, { a, b, c, d } , { Q1, Q2 } , (P1, S1), (P2, S2))

with

N =
{

S1, S2, S
′

1, S
′

2, B, B′, D, D′, T̄ , B̄, E
}

,

P1 =
{

S1 → aQ2cd, S1 → aQ2cD, S1 → S′

1, S′

1 → S1, D → dD′
}

∪
{

D′ → D, D′ → d, T̄ → Q2, T̄ → aQ2c, B̄ → b
}

,

P2 =
{

S2 → T̄ , S2 → S′

2, S′

2 → aS2c, T̄ → B̄, B̄ → E, T̄ → bB, B → B′
}

∪
{

B′ → bB, B′ → B̄
}

generates the language K2 in the non-returning mode.

Proof. The Figure 3 illustrates the system.
The first component issues a query to the second component in an odd num-

bered step. The only nonterminals that can occur in the second component and
that are derivable by the first component are T̄ and B̄. Of these two, only T̄

occurs in an odd numbered step. In order to suceed with the derivation, the
first component has to catch the T̄ when it occurs (since it appears only once).
Consequently, we only need to consider derivations that start with the transition

(S1, S2) =⇒2k+1 (aQ2cδ, a
kT̄ ck), for k ≥ 0, δ ∈ { d, D } .

In the case of δ = d, we obtain

(aQ2cd, akT̄ ck) =⇒ (ak+1T̄ ck+1d, akT̄ ck)

=⇒ (ak+1+iQ2c
k+1+id, akB̄ck) 0 ≤ i ≤ 1

=⇒ (a2k+1+iB̄c2k+1+id, akB̄ck)

=⇒ (a2k+1+ibc2k+1+id, akEck).

Remarks on Context-free PC Grammar Systems for Crossed Agreements 151

aQ2cd

S1
//

;;xxxxxxxxx

##F
FF

FF
FF

FF
S′

1oo

aQ2cD

D // dD′ //
ZZ d T̄ //

!!C
CC

CC
CC

C Q2

aQ2c

B̄ // b

T̄

��

// B̄ // E

S2
//

..

S′

2
// aS2c[[

33

bB // B′

YY

44

Figure 3. Illustration of the CPC 2CF -system Γ3 in the non-returning mode

In the second component, T̄ has to be rewritten by B̄ because otherwise the first
component would receive an underivable nonterminal. In the case of δ = d, we
get all words anbcnd with n ≥ 1.

Let now δ = D. When the second component receives a query for the second
time, it must contain B̄ because the other possible nonterminals are not derivable
by the first component. After this communication, the second component can
perform only one rewriting step any more. Hence, in the first component, the
just arrived B̄ must be the only nonterminal left (all other nonterminals have to
be eliminated before). Other derivations do not have to be considered. The only
successful derivation is

(aQ2cD, akT̄ ck) =⇒ (ak+1T̄ ck+1D, akT̄ ck)

=⇒ (ak+1T̄ ck+1dD′, akbBck)

=⇒2l (ak+1T̄ ck+1dl+1D′, akbl+1Bck) l ≥ 0

=⇒ (ak+1T̄ ck+1dl+2, akbl+1B′ck)

=⇒ (ak+1+iQ2c
k+1+idl+2, akbl+1B̄ck) 0 ≤ i ≤ 1

=⇒ (a2k+1+ibl+1B̄c2k+1+idl+2, akbl+1B̄ck)

=⇒ (a2k+1+ibl+2c2k+1+idl+2, akbl+1Eck).

This derivation yields all words anbmcndm with n ≥ 1 and m ≥ 2. Together with
the case that δ = d, we also obtain the words for m = 1. These are the only words
that are produced. The CPC 2CF -system Γ3 generates in the non-returning mode
the language K2. �

Also the PC grammar system Γ3 uses the parity of the rewriting steps and controls
the communication.

The Theorems 1, 2 and 3 yield the following statement.

152 Bianca Truthe

Corollary 4. We have K2 ∈ LR(PC 2CF) ∩ LR(CPC 3CF) ∩ LN(CPC 2CF).

Since CPC nCF ⊆ PC nCF for any natural number n, also K2 ∈ LN(PC 2CF)
follows. It is not known, whether there is a CPC 2CF system which generates the
language K2 in the returning mode. However, as shown in [4], a special case of
crossed agreements that is represented by the language {anbmanbm |m≥1, n≥1}
can be generated by an CPC 2CF system in the returning mode.

3 Summary

The present paper gives three context-free parallel communicating grammar sys-
tems that generate the non-context-free language K2 = { anbmcndm | m, n ≥ 1 }
but need less components than systems published so far. For the non-returning
mode, the number of components was reduced from five to two; for the returning
mode, the number of components was reduced from three to two. In these two
cases, the result is tight. For the returning mode, the number of components in
centralized PC grammar systems was reduced from four to three.

Acknowledgements

The author thanks Jürgen Dassow and György Vaszil for the inspiration and
helpful discussions.

References

[1] A. Chiţu, PC Grammar Systems Versus Some Non-Context-Free Constructions from
Natural and Artificial Languages. In: G. Paun, A. Salomaa (eds.), New Trends in
Formal Languages. Lecture Notes in Computer Science 1218, Springer, 1997, 278–
287.

[2] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun, Grammar Systems: A Gram-
matical Approach to Distribution and Cooperation. Topics in Computer Science 5,
Gordon and Breach Science Publishers, 1994.

[3] J. Dassow, G. Păun, Regulated Rewriting in Formal Language Theory . EATCS 18,
Springer, 1989.

[4] J. Dassow, G. Păun, G. Rozenberg, Grammar systems. In: G. Rozenberg, A. Salomaa
(eds.), Handbook of Formal Languages. Springer, 1997, 155–213.

[5] J. Dassow, B. Truthe, On the degree complexity of special non-context-free languages
with respect to PC grammar systems. In: H. Leung, G. Pighizzini (eds.), 8th In-
ternational Workshop on Descriptional Complexity of Formal Systems, DCFS 2006,
Las Cruces, NM, USA, June 21–23, 2006, Proceedings. Computer Science Technical
Report NMSU-CS-2006-001, New Mexico State University Las Cruces, 2006, 241–
249.

[6] S. Dumitrescu, G. Păun, On the Power of Parallel Communicating Grammar Sys-
tems with Right-Linear Components. RAIRO Informatique Théorique et Applica-
tions/Theoretical Informatics and Applications 31 (1997) 4, 331–354.

