
E. Csuhaj-Varjú, Z. Ésik (Eds.): Automata and Formal Languages.

AFL 2008, Balatonfüred, Hungary, May 27-30, 2008. Proceedings, pages 158 - 169.

Subregularly Tree Controlled Grammars and Languages

Jürgen Dassow and Bianca Truthe

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik

PSF 4120, D-39016 Magdeburg, Germany

Abstract

Tree controlled grammars are context-free grammars where the associated
language only contains those terminal words which have a derivation where the
word of any level of the corresponding derivation tree belongs to a given regular
language. We present some results on the power of such grammars where we
restrict the regular languages to some known subclasses of the family of regular
languages.

1 Introduction

It is a well-known fact that the most investigated class of formal languages, the
regular and context-free languages, are not able to cover all phenomena which are
known from natural languages, programming languages etc. Thus, there have been
introduced many grammars with a context-free core and some mechanism which con-
trols the sequences of rules in a derivation or the applicability of a rule etc. (see [2]
and [7]). One such control mechanism was introduced by Culik II and Maurer

in [1] where the structure of the derivation trees is restricted by the requirement
that all words belonging to a level of the derivation tree have to be in a given regular
language. Păun proved that the generative power of these grammars, called tree con-
trolled grammars, coincides with that of context-sensitive grammars (if erasing rules
are forbidden) or arbitrary phrase structure grammars (if erasing rules are allowed).
Among the classical decision problems only membership is decidable for context-
sensitive languages which is known to be PSPACE-complete. But if one restricts the
underlying context-free grammars to be unambiguous, then the membership problem
can be solved in quadratic time and a lot of important non-context-free languages
can be generated. Thus it is a natural question to consider restricted versions of tree
controlled grammars. In this paper we discuss restrictions for the regular languages
that contain the words of the levels of the derivation trees.

As classes of control languages, we regard some subclasses of the family of regular
languages. These subfamilies are formed by
– finite languages,
– nilpotent languages (which are accepted by automata which do not change the

state after a fixed number of transitions),
– combinational languages (which are accepted by automata modelling circuits),
– ordered languages (where the transitions of the accepting automata preserve an

order on the state set),

158

Subregularly Tree Controlled Grammars and Languages

– suffix-closed (or multiple-entry or fully-initial languages) languages (which are
accepted by automata where the computation can start in any state),

– commutative languages (which are closed under permutations of the letters in a
word),

– circular languages (which are closed under cyclic shifts of the letters in a word),
– non-counting (or star-free) languages (which can be described by expressions using

only union, concatenation, and complement).
In most cases we show that the obtained language family coincides with some known
language family as the context-sensitive languages, the E0L languages or matrix
languages (of finite index); in the remaining cases we present some lower bounds for
the generative power.

2 Definitions

Throughout the paper, we assume that the reader is familiar with the basic concepts
of formal language theory; for details we refer to [7], [6], and [2].

For an alphabet V = {a1, a2, . . . , am} and a word w ∈ V ∗, we define the Parikh
vector πV (w) = (n(a1), n(a2), . . . , n(am)) where n(ai), 1 ≤ i ≤ m, is the number of
occurrences of ai in w.

By FIN , REG , CF , CS , and RE we denote the families of finite, regular, context-
free, context-sensitive languages, and recursively enumerable languages. For a lan-
guage L over V, we set

Suf (L) = {y | xy ∈ L for some x ∈ V ∗},

Comm(L) = {ai1 . . . ain | a1 . . . an ∈ L, n ≥ 1, {i1, i2, . . . , in} = {1, 2, . . . , n}},

Circ(L) = {ai+1ai+2 . . . ana1a2 . . . ai | n ≥ 1, 1 ≤ i ≤ n, a1a2 . . . an ∈ L}.

It is known that Suf (L) is regular for a regular language L.

With any derivation in a context-free grammar G, we associate a derivation tree.
With any derivation tree t of height k and any number 0 ≤ j ≤ k, we associate the
words of level j and the sentential form of level j which are given by all nodes of
depth j read from left to right and all nodes of depth j and all leaves of depth less
than j read from left to right, respectively.

Obviously, if w and v are sentential forms of two successive levels, then w =⇒∗ v
holds and this derivation is obtained by a parallel replacement of all nonterminals
occurring in w.

A tree controlled grammar is a quintuple G = (N,T, P, S,R) where
– (N,T, P, S) is a context-free grammar with a set N of nonterminals, a set T of

terminals, a set P of context-free non-erasing rules, and an axiom S,
– R is a regular set over (N ∪ T)∗.

The language L(G) generated by a tree controlled grammar G = (N,T, P, S,R)
consists of all words z ∈ T ∗ such that there is a derivation tree t where z is the word
obtained by reading the leaves from left to right and the words of all levels of t –
besides the last one – belong to R.

Let X be a subfamily of REG . Then we denote the family of languages generated
by tree controlled grammars G = (N,T, P, S,R) with R ∈ X by T C(X).

159

J. Dassow, B. Truthe

Example 1. As an example we consider the tree controlled grammar

G1 = ({S}, {a}, {S → SS, S → a}, S, {S}+).

Since no level can contain the symbol S as well as a terminal a, first one has to

replace any S by SS for a certain time before rewriting any S by a. Therefore the

levels of an allowed derivation tree consist of the words S, SS, SSSS, . . . , S2n
, a2n

for

some n ≥ 0. Thus L(G1) = {a2n
| n ≥ 0}.

Example 2. The tree controlled grammar

G2 = ({S,A,B,C,D,E}, {a, b}, P, S, {S, AB, aAbBa, aCba,Cb})

with P ={S → AB,A → aAb,B → Ba,A → ab,B → a,A → aCb,C → Cb,C → b}
generates the language L(G2) = {anbn+man | n ≥ 1, m ≥ 0}.

In [5] (see also [2]), it has been shown that a language L is generated by a tree
controlled grammar if and only if it is generated by a context-sensitive (or monotone)
grammar.

Theorem 3. ([5], [2]) T C(REG) = CS . 2

In this paper, we are interested in those language families which can be obtained
from tree controlled grammars G = (N,T, P, S,R) where the regular language be-
longs to some special subfamily of the family of regular languages. From the defini-
tion, the next statement follows immediately.

Lemma 4. If X ⊆ Y ⊆ REG, then T C(X) ⊆ T C(Y). 2

We consider the following restrictions for regular languages. Let L be a language
and V = alph(L) the minimal alphabet of L. We say that L is

– combinational iff it can be represented in the form L = V ∗A for some subset
A ⊆ V ,

– definite iff it can be represented in the form L = A ∪ V ∗B where A and B are
finite subsets of V ∗,

– nilpotent iff L is finite or V ∗ \ L is finite,

– commutative iff L = Comm(L),

– circular iff L = C irc(L),

– suffix-closed (or fully initial or multiple-entry language) iff xy ∈ L for some words
x, y ∈ V ∗ implies y ∈ L (or equivalently, Suf (L) = L),

– non-counting (or star-free) iff there is an integer k ≥ 1 such that, for any words
x, y, z ∈ V ∗, xykz ∈ L if and only if xyk+1z ∈ L,

– power-separating iff for any x ∈ V ∗ there is a natural number m ≥ 1 such that
either Jm

x ∩ L = ∅ or Jm
x ⊆ L where Jm

x = {xn | n ≥ m},

– ordered iff L is accepted by some finite automaton A = (Z, V, δ, z0 , F) where
(Z,�) is a totally ordered set and, for any a ∈ V , z � z′ implies δ(z, a) � δ(z′, a).

160

Subregularly Tree Controlled Grammars and Languages

It is obvious that combinational, definite, nilpotent and ordered languages are regu-
lar, whereas non-regular languages of the other above mentioned types exist.

By COMB , DEF , NIL, COMM , CIRC , SUF , NC , PS , and ORD we denote
the families of all combinational, definite, nilpotent, regular commutative, regular
circular, regular suffix-closed, regular non-counting, regular power-separating, and
ordered languages, respectively. The relations between these language families are
investigated e. g. in [4] and [8] and can be given by Figure 1. Moreover, we add the
family MON of all languages of the form V ∗, where V is an alphabet (languages of
MON are target sets of monoids).

REG

PS

55lllllll

NC

OO

CIRC

ddJJJJJJJJJJJJ

ORD

66mmmmmm

DEF

iiRRRRRRR

COMM

OO

SUF

hhRRRRRRRRRRRRRRRRRRRRRRRRRRRR

NIL

OO

22fffffffffffffffff
COMB

OO

FIN

OO

MON

OO

llXXXXXXXXXXXXXXXXX

::ttttttttttt

44hhhhhhhhhhhhhhhhhhhhhhhhhh

Figure 1: Hierarchy of subregular languages (an arrow from X to Y denotes X (Y , and if
two families are not connected by a directed path then they are incomparable)

A matrix grammar is a quadruple G = (N,T,M,S,Q) where

– N , T , and S are specified as in a context-free (or tree controlled) grammar,

– M = {m1,m2, . . . ,mr} is a finite set of finite sequences mi of context-free non-
erasing rules, i. e., mi = (Ai,1 → vi,1, Ai,2 → vi,2, . . . , Ai,ri

→ vi,ri
) for 1 ≤ i ≤ r,

(the elements of M are called matrices), and

– Q is a subset of the productions occurring in the matrices of M .

The application of a matrix mi is defined as a sequential application of the rules
of mi in the given order where a rule of Q can be ignored if its left-hand side does
not occur in the current sentential form, i. e., x =⇒mi

y holds iff there are words wj,
1 ≤ j ≤ ri + 1 such that x = w1, y = wri+1 and, for 1 ≤ j ≤ ri,

wj = xjAi,jyj and wj+1 = xjvi,jyj

or

wj = wj+1 and Ai,j does not occur in wj and Ai,j → vi,j ∈ Q.

The language L(G) generated by G consists of all words z ∈ T+ such that there is a
derivation

S =⇒mi1
v1 =⇒mi2

v2 =⇒mi3
. . . =⇒mit

vt = z

for some t ≥ 1.

For any matrix grammar G = (N,T,M,S,Q), any derivation

D : S = w0 =⇒mi1
w1 =⇒mi2

w2 =⇒mi3
. . . =⇒min

wn

161

J. Dassow, B. Truthe

in G and any word z ∈ L(G), we define the indexes by

Ind(G,D) = max{#N (wi) | 0 ≤ i ≤ n},

Ind(G, z) = min{Ind(G,D) | D is a derivation of z},

Ind(G) = sup{Ind(G, z) | z ∈ L(G)}.

By MAT and MAT fin, we denote the families of all languages which can be
generated by matrix grammars and matrix grammars G with a finite index Ind(G),
respectively.

An extended interactionless L system (abbreviated as E0L system) is a quadruple
G = (V, T, P,w) where V is an alphabet, T is a non-empty subset of V , w is a non-
empty word over V and P is a finite subset of V × V + such that, for any a ∈ V ,
there is at least one element a → v in P .

We say that x ∈ V + directly derives y ∈ V +, written as x =⇒ y, if x = x1x2 . . . xn

for some n ≥ 1, xi ∈ V , 1 ≤ i ≤ n, y = y1y2 . . . yn and xi → yi ∈ P for 1 ≤ i ≤ n,
i. e., any letter of x is replaced according to the rules of P . Thus the derivation
process in an E0L system is purely parallel. By =⇒∗ we denote the reflexive and
transitive closure of =⇒. The language L(G) generated by G is defined as

L(G) = {z | w =⇒∗ z, z ∈ T+}.

By E0L we denote the families of languages which are generated by E0L systems.

3 Generating the Family of Context-Sensitive Languages

The context-sensitive languages are all generatable by tree controlled grammars with
regular control sets that are suffix-closed, circular or ordered.

Theorem 5. T C(SUF) = CS

Proof. Let L be a context-sensitive language over an alphabet T without the empty
word (the modifications for the case with the empty word are left to the reader).
Then

L =
⋃

a∈T

{a}La,

where La = {w | aw ∈ L} is a context-sensitive language. By Theorem 3, for a ∈ T ,
there is a tree controlled grammar Ga = (Na, T, Pa, Sa, Ra) with L(Ga) = La.

We consider the tree controlled grammar G = (N,T, P, S,R) with

N = {S} ∪
⋃

a∈T

({Aa, Ca} ∪ Na),

P =
⋃

a∈T

({S → AaSa, Aa → Aa, Aa → Ca, Ca → a} ∪ Pa),

R = {S} ∪
⋃

a∈T

Suf ({Aa}Ra ∪ {Ca}T
∗).

162

Subregularly Tree Controlled Grammars and Languages

By definition, R is suffix-closed and regular.

Obviously, the words wi, 0 ≤ i ≤ n, defined by the level i of a derivation tree of G
have the forms w0 = S, w1 = Aaw

′
1, w2 = Aaw

′
2, . . . , wn−1 = Aaw

′
n−1, wn = Caz,

where w′
i ∈ Ra for 1 ≤ i ≤ n−1 and the generated word is az ∈ {a}La ⊆ L. Therefore

it easily follows that L(G) = L. Thus L ∈ T C(SUF) which proves CS ⊆ T C(SUF).
On the other hand, by Theorem 3 and Lemma 4, T C(SUF) ⊆ T C(REG) = CS . 2

For the next theorem, we use the same idea1.

Theorem 6. T C(CIRC) = CS .

Proof. Let L be a context-sensitive language over an alphabet T . Then

L = L1 ∪
⋃

(a,b)∈T 2

{a}Lab{b},

where L1 = {w ∈ L | |w| ≤ 1 } is a finite language and Lab = {w ∈ T ∗ | awb ∈ L} is
a context-sensitive language for any pair (a, b) ∈ T 2. By Theorem 3, for (a, b) ∈ T 2,
there is a tree controlled grammar Gab = (Nab, T, Pab, Sab, Rab) with L(Gab) = Lab.

We consider the tree controlled grammar G = (N,T, P, S,R) with

N = {S} ∪
⋃

x∈T

{[x,[̃ x,]x,]̃x} ∪
⋃

(a,b)∈T 2

Nab,

P = {S → w | w ∈ L1 } ∪
⋃

(a,b)∈T 2

({S →[aSab]b} ∪ Pab)

∪
⋃

x∈T

{[x →[x,[x → [̃ x,[̃ x → x,]x →]x,]x →]̃x,]̃x → x},

R = {S} ∪
⋃

(a,b)∈T 2

Circ({[a}Rab{]b} ∪ {̃[a}T
∗{̃]b}).

By definition, R is circular and regular.

Obviously, the words wi, 0 ≤ i ≤ n, defined by the level i of a derivation tree
of G have the forms w0 = S and w1 ∈ L1 or

w0 = S, w1 =[aw
′
1]b, w2 =[aw

′
2]b, . . . , wn−1 =[aw

′
n−1]b, wn = [̃ az]̃b,

where w′
i ∈ Rab for 1 ≤ i ≤ n − 1 and the generated word is azb ∈ {a}Lab{b} ⊆ L.

Therefore it easily follows that L(G) = L. Thus L ∈ T C(CIRC) which proves
CS ⊆ T C(CIRC). By Theorem 3 and Lemma 4, we also have T C(CIRC) ⊆ CS . 2

Theorem 7. T C(ORD) = CS

Proof. Let L be a context-sensitive language. Then there is a context-sensitive
grammar G = (N,T, P, S) in Kuroda normal form, i. e., P = P1 ∪ P2 where all rules
of P1 are of the form AB → CD, all rules of P2 are of the form A → BC or A → B

1Thanks to an anonymous referee.

163

J. Dassow, B. Truthe

or A → a with A,B,C,D ∈ N and a ∈ T , such that L(G) = L. We construct the
tree controlled grammar G = (N,T, P , S′, R) with

N = {X ′ | X ∈ V } ∪ {Xp | p ∈ P, X ∈ V }

∪ {A1,p, B2,p | p = AB → CD ∈ P1} ∪ {A1,p | p = A → v ∈ P2},

P = {X ′ → Xp,Xp → X ′ | X ∈ V, p ∈ P}

∪ {A′ → A1,p, B′ → B2,p, A1,p → C ′, B2,p → D′ | p = AB → CD ∈ P1}

∪ {A1,p → Y ′
1Y

′
2 . . . Y ′

n | p = A → Y1Y2 . . . Yn ∈ P2} ∪ {X ′ → X | X ∈ T},

R = {X ′ | X ∈ V }+ ∪
⋃

p=AB→CD∈P1

{Xp | X ∈ V }∗{A1,pB2,p}{Xp | X ∈ V }∗

∪
⋃

p=A→v∈P2

{Xp | X ∈ V }∗{A1,p}{Xp | X ∈ V }∗.

We first note that each level of a derivation tree of G contains only primed letters or
only letters belonging to the same rule p indicated by the index p or contains only
terminals. Let X ′

1X
′
2 . . . X ′

n be a word belonging to some level of a derivation tree.
Then in order to get the next level we have to choose a rule p ∈ P and any letter X ′

to replace by Xp or X1,p or X2,p. We now discuss the case p = AB → CD ∈ P1.
Then the new level has the form

(X1)p(X2)p . . . (Xr)pA1,pB2,p(Xr+3)p(Xr+4)p . . . (Xn)p

for some r, 0 ≤ r ≤ n − 2. Moreover, the word of the following level is

X ′
1X

′
2 . . . X ′

rC
′D′X ′

r+3X
′
r+4 . . . X ′

n.

Thus we have simulated a derivation step

X1X2 . . . XrABXr+3Xr+4 . . . Xn =⇒ X1X2 . . . XrCDXr+3Xr+4 . . . Xn

in the grammar G. Analogously, we can show that for p ∈ P2 also a simulation of a
derivation step in G is performed.

Since we start the derivation in G with S′ and the only way to terminate a
derivation in G is a simultaneous replacement of all letters X ′ by X ∈ T , it is easy
to see that G and G generate the same language L.

Moreover, R is an ordered language. It is easy to construct an ordered automaton
(N,Z, z0, δ, F) that accepts R (one moves to a larger state if one reads A1,p, the same
holds for A2,p, and uses an ordered set of rules in the context-sensitive grammar
which is transferred to the corresponding states); due to space limitations we omit
the formal construction. It can be found in [3].

Hence, we have CS ⊆ T C(ORD). The converse inclusions follows from Theorem 3
and Lemma 4 as above. 2

From Theorem 3 and Lemma 4, the next statement follows immediately.

Corollary 8. T C(NC) = T C(PS) = CS . 2

Hence, we obtain all context-sensitive languages also with non-counting or power-
separating control languages.

164

Subregularly Tree Controlled Grammars and Languages

4 Generation of Subfamilies of CS

In this section, we consider further families of control languages and give some char-
acterizations of the generated language families by other classes.

Theorem 9. T C(COMM) = MAT .

Proof. i) MAT ⊆ T C(COMM).

Let L be a matrix language. By [2], Definition 1.3.2 and Lemma 1.3.7, there is a
matrix grammar G = (N,T,M,S,Q) such that

N = {S,F} ∪ N1 ∪ N2, N1 ∩ N2 = ∅, S, F /∈ N1 ∪ N2,

any matrix m of M has one of the following forms

(a) m = (A → v1, B → C) with A ∈ N1, v1 ∈ (N1 ∪ T)+ ∪ {F} and B,C ∈ N2 or

(b) m = (A → v1, B → a) with A ∈ N1, v1 ∈ (N1 ∪ T)+, B ∈ N2 and a ∈ T or

(c) m = (S → AB) with A ∈ N1 and B ∈ N2 or (S → a) with a ∈ T ,

the set Q consists of all rules A → F occurring in a matrix of the form (a), and
L(G) = L holds.

We note that all non-terminated sentential forms of G – besides S – end with a
letter of N2. Let

N = {S} ∪ {X ′ | X ∈ N} ∪ {Xm | m ∈ M, X ∈ N}

∪ {Am,1, Bm,2 | m = (A → v1, B → v2)}.

We define the homomorphism h : N ∪ T → N ∪ T by h(X) = X ′ for X ∈ N and
h(a) = a for a ∈ T and construct the tree controlled grammar G = (N,T, P, S) with

P = {S → a | (S → a) ∈ M} ∪ {S → A′B′ | (S → AB) ∈ M}

∪ {X ′ → Xm | m ∈ M, X ∈ N} ∪ {Xm → X ′ | X ∈ N, m ∈ M}

∪ {A′ → Am,1, B
′ → Bm,2 | m = (A → v1, B → v2) ∈ M}

∪ {Am,1 → h(v1), Bm,2 → h(v2) | m = (A → v1, B → v2) ∈ M}

and the control set

R = {S} ∪
⋃

m=(A→v1,B→v2)∈M,v1 6=F

Comm({Xm | X ∈ N}∗{Am,1Bm,2})

∪
⋃

(A→v1,B→v2)∈M

Comm({X ′ | X ∈ N}∗({h(v1)h(v2)} ∪ {λ}))

∪
⋃

m=(A→F,B→C)∈M

Comm({Xm | X ∈ N,X 6= A}+{Bm,2})

∪
⋃

m=(A→F,B→C)∈M

Comm({X ′ | X ∈ N,X 6= A}+{C ′}).

It is easy to see that R is a commutative regular language (since one has only to
check that besides a finite number of occurrences of some letters all other letters

165

J. Dassow, B. Truthe

belong to {Xm | X ∈ N} or {X ′ | X ∈ N}, respectively, what can be done by a
finite automaton).

Since any nonterminal of G is replaced in any step and any primed or indexed
version of a letter in N2 is replaced by an indexed or primed version of a letter of N2

or a terminal, it is obvious that any word of a certain level of a derivation tree, which
is not a terminal word, ends with a primed or indexed version of a letter of N2.

Let us consider a derivation in G. After applying a rule to S we get a terminal
belonging to L(G) as well as to L(G) or a word A′B′ which is the sentential form
and the word of the first level. We have to replace A′ and B′ in parallel and the
result has to be Am1Bm2 for some matrix m ∈ M . The word of the next level will
be h(v1)h(v2). Thus we have simulated a rewrite step A′B′ =⇒ h(v1)h(v2) which
corresponds to an application of m to AB which yields v1v2.

Now let w ∈ Comm({X ′ | X ∈ N}∗({h(v1)h(v2)}∪{λ})) be the word of a level i
of some derivation tree of G. Then let w′ be the sentential form of this level and let
us assume that w′ = h(w′′) for some sentential form w′′ of G. If w ∈ T ∗, then we
have w′ ∈ T ∗ and thus w′ ∈ L(G) and w′ = w′′ ∈ L(G).

Let w = v1A
′
1v2A

′
2 . . . vnA′

n with vi ∈ T ∗ and Ai ∈ N for 1 ≤ i ≤ n. Then

(A1)m(A2)m . . . (At−1)m(At)m,1(At+1)m . . . (An−1)m(An)m,2

for some t, 1 ≤ t ≤ n− 1, is the word of level i + 1, if m = (At → v1, An → v2) ∈ M
and v1 /∈ {λ, F}, or

(A1)m(A2)m . . . (An−1)m(An)m,2

is the word of level i+1, if m = (A → F,An → v2) ∈ M and A 6= Ai for 1 ≤ i ≤ n−1.
We only discuss the former case; the latter can be handled analogously. The word of
level i + 2 is A′

1A
′
2 . . . A′

t−1h(v1)A
′
t+1 . . . A′

n−1h(v2) which is in R, too. Moreover, let
v′ be the sentential form of the level i + 2 and v′ = h(v′′) for some v′′ ∈ (N ∪ T)∗.
Obviously, w′′ =⇒m v′′ holds in G since we replaced non-terminals by themselves or
by h(v1) and h(v2) and have not changed the terminals. Hence any derivation in G
simulates a derivation in G and L(G) ⊆ L(G) follows.

By analogous considerations, one can show that any derivation in G can be
simulated which gives L(G) ⊆ L(G′). Therefore, we have L = L(G) = L(G′) and
MAT ⊆ T C(COMM).

ii) T C(COMM) ⊆ MAT .
Let L ∈ T C(COMM). There is a tree controlled grammar G = (N,T, P, S,R)

with L(G) = L where R ⊆ (N ∪ T)∗ is a regular commutative language. Let
N = {A1, A2, . . . , Am} and T = {a1, a2, . . . , ak}. Then the Parikh vectors have the
form

(n(A1), n(A2), . . . , n(Am), n(a1)n(a2), . . . , n(ak)).

Since R is regular, it is semi-linear; and because it is commutative, there are
natural numbers n ≥ 1, ri ≥ 0 for 1 ≤ i ≤ n, and #(N ∪ T)-dimensional vectors pi

and qi,j, 1 ≤ i ≤ n, 1 ≤ j ≤ ri, such that

R = π−1
N∪T (

n⋃

i=1

{pi +

ri∑

j=1

αi,jqi,j | αi,j ∈ N for 1 ≤ j ≤ ri})

166

Subregularly Tree Controlled Grammars and Languages

where πN∪T is the Parikh mapping.
With any letter a ∈ T , we associate two new letters Aa and A′

a and define a
homomorphism h : (N ∪ T)∗ → (N ∪ {Aa | a ∈ T})∗ by

h(A) = A for A ∈ N and h(a) = Aa for a ∈ T.

We define the matrix grammar G′ = (N ′, T ∪ {$},M, S,Q) where

N ′ = {S,F,C,C ′,D}∪N∪{A′ | A ∈ N}∪
⋃

a∈T

{Aa, A
′
a}∪

n⋃

i=1

{Bi, Bi,1, Bi,2, . . . , Bi,ri
},

Q consists of all rules with right-hand side F , and M consists of the matrices con-
structed as follows:

• (S → BiS)
(initial rules which choose an index i corresponding to a set

Hi = {pi +

ri∑

j=1

αi,jqi,j | αi,j ∈ N for 1 ≤ j ≤ ri}),

• for any vector pi = (n(A1), n(A2), . . . , n(Am), n(a1)n(a2), . . . , n(ak)), 1≤ i≤n,
we set

(Bi → Bi,j, (A1 → A′
1)

n(A1), (A2 → A′
2)

n(A2), . . . , (Am → A′
m)n(Am),

(Aa1 → A′
a1

)n(a1), (Aa2 → A′
a2

)n(a2), . . . , (Aak
→ A′

ak
)n(ak)) for 1 ≤ j ≤ ri,

(Bi → C, (A1 → A′
1)

n(A1), (A2 → A′
2)

n(A2), . . . , (Am → A′
m)n(Am),

(Aa1 → A′
a1

)n(a1), (Aa2 → A′
a2

)n(a2), . . . , (Aak
→ A′

ak
)n(ak)),

and any vector qi,j = (n(A1)
′, n(A2)

′, . . . , n(Am)′, n(a1)
′n(a2)

′, . . . , n(ak)
′),

1 ≤ i ≤ n, 1 ≤ j ≤ ri, we set

(Bi,j → Bi,j′ , (A1 → A′
1)

n(A1)′ , (A2 → A′
2)

n(A2)′ , . . . , (Am → A′
m)n(Am)′ ,

(Aa1 → A′
a1

)n(a1)′ , (Aa2 → A′
a2

)n(a2)′ , . . . , (Aak
→ A′

ak
)n(ak)′) for 1≤j′≤ri,

(Bi,j → C, (A1 → A′
1)

n(A1)′ , (A2 → A′
2)

n(A2)′ , . . . , (Am → A′
m)n(Am)′ ,

(Aa1 → A′
a1

)n(a1)′ , (Aa2 → A′
a2

)n(a2)′ , . . . , (Aak
→ A′

ak
)n(ak)′),

and (C → D,A1 → F,A2 → F, . . . , Am → F,Aa1 → F,Aa2 → F, . . . , Aam → F)
(if w is the scattered subword of the sentential form build by the letters of N ′,
by these rules we check whether or not h−1(w) belongs to π−1

N∪T (Hi); note that
h−1(w) is the word of some level),

• (D → D,A′ → h(w)) for A → w ∈ P ,
(D → D,A′

a → a) for a ∈ T ,
(D → Bi, A

′
1 → F,A′

2 → F, . . . , A′
m → F,A′

a1
→ F,A′

a2
→ F, . . . , A′

am
→ F)

for 1 ≤ i ≤ n
(we simulate the generation of the next level and choose an index, again),

167

J. Dassow, B. Truthe

• (D → $)
(this rule can only be applied if no nonterminal – besides D – is in the sentential
form, because after its use no other matrix can be applied).

By the explanations given to the matrices, the generated languages is $L. Thus
$L ∈ MAT . By the closure properties of MAT (see [2]), we get L ∈ MAT . 2

The matrix languages with finite index are exactly those generated by finitely
tree controlled grammars.

Theorem 10. T C(FIN) = MAT fin. 2

Proof. The inclusion MAT fin ⊆ T C(FIN) can be proved analogously to the proof
of Theorem 9. If Ind(G) = k we have only to take

k⋃

i=0

{X ′ | X ∈ N}i and

k⋃

i=0

{Xm | X ∈ N}i

instead of {X ′ | X ∈ N}∗ and {Xm | X ∈ N}∗. Note that the normal form result
carries over to finite index grammars, too.

The inclusion T C(FIN) ⊆ MAT fin can be proved by constructing a matrix gram-
mar that simulates a tree controlled grammar (see [3]). The number of non-terminals
in a sentential form of the matrix grammar equals the number of non-terminals in a
sentential form of a certain level of a derivation tree of the tree controlled grammar.
Hence, the constructed matrix grammar is of finite index. 2

We now present some results on the power of control by the families MON ,
COMB , DEF , and NIL.

Theorem 11.

i) E0L = T C(MON) ⊆ T C(COMB) ⊆ T C(DEF).

ii) E0L is properly included in T C(DEF). 2

Proof. i) For a proof of the equality E0L = T C(MON), we refer to [3]. The
inclusions follow from Lemma 4.

ii) The inclusion holds by i). The properness follows from FIN ⊆ DEF and
Example 2: L(G2) ∈ T C(FIN) ⊆ T C(DEF) but L(G2) /∈ E0L (see [6]). 2

Theorem 12. T C(FIN) ⊂ T C(NIL) and T C(MON) ⊂ T C(NIL). 2

Proof. All inclusions follow from Lemma 4. The first inclusion is proper because the
tree controlled grammar from Example 1 generates a non-semi-linear set, whereas
all languages in T C(FIN) = MAT fin are semi-linear by [2], Lemma 3.1.5. The
properness of the last inclusion follows from FIN ⊆ NIL and Example 2 (analogously
to Theorem 11.ii). 2

168

Subregularly Tree Controlled Grammars and Languages

5 Conclusion

First we summarize our results in Figure 2.

CS=T C(REG)=T C(SUF)=T C(ORD)
=T C(NC)=T C(PS)=T C(CIRC)

T C(DEF)

YYYYYYY

T C(COMM) = MAT

44iiiiiiiiiiiiii

T C(NIL)

dddddddddddddd
T C(COMB)

WWWWW

E0L = T C(MON)

ggg
llZZZZZZZZZZ

mm

OO

MAT fin = T C(FIN)

OO 44iiiiiiiiiiiiiii

CF

22ddddddddddddd

Figure 2: Hierarchy of families of tree controlled languages (an arrow from X to Y de-
notes X (Y ; two families which are not connected by a directed path, are not necessarily
incomparable)

Further we remember that E0L and MAT fin are known to be incomparable. The
strictness of some inclusions and the incomparability of some families remain as an
open problem.

In the paper we have considered grammars/systems without erasing rules. By
T Cλ(X) we denote the families of tree controlled grammars with erasing rules and
control sets in X. We note that all proofs of the paper remain valid, if we allow eras-
ing rules and take matrix grammars, E0L systems etc. with erasing rules. Therefore
taking into consideration that matrix grammars with erasing rules generate all recur-
sively languages and T Cλ(REG) = RE (see [2]), then we get the following results.

Theorem 13.

i) RE = T Cλ(REG) = T Cλ(SUF) = T Cλ(ORD) = T Cλ(NC)
= T Cλ(PS) = T Cλ(COMM) = T Cλ(CIRC),

ii) MAT fin = T Cλ(FIN) ⊂ T Cλ(NIL) ⊆ RE and T Cλ(MON) ⊂ T Cλ(NIL),

iii) CF ⊂ E0L = T Cλ(MON) ⊆ T Cλ(COMB) ⊆ T Cλ(DEF) ⊆ RE and

T Cλ(MON) ⊂ T Cλ(DEF). 2

References

[1] K. Culik II and H. Maurer, Tree controlled grammars. Comput. 19 (1977) 129–139.

[2] J. Dassow and Gh. Păun, Regulated Rewriting in Formal Language Theory. EATCS Mono-
graphs on Theoretical Computer Science 18, Springer-Verlag, 1989.

[3] J. Dassow and B. Truthe, Subregularly Tree Controlled Grammars and Languages. Technical
Report, Otto-von-Guericke-Univ. Magdeburg, Fakultät für Informatik, 2008.

[4] I.M. Havel, The theory of regular events II. Kybernetika 6 (1969) 520–544.

[5] Gh. Păun, On the generative capacity of tree controlled grammars. Computing 21 (1979)
213–220.

[6] G. Rozenberg and A. Salomaa, The Mathematical Theory of L Systems. Academic Press,
1980.

[7] G. Rozenberg and A. Salomaa (Eds.), Handbook of Formal Languages, Vol. I – III. Springer-
Verlag, Berlin, 1997.

[8] B. Wiedemann, Vergleich der Leistungsfähigkeit endlicher determinierter Automaten. Diplom-
arbeit, Universität Rostock, 1978.

169

