
H. Leung and G. Pighizzini (Eds.): DCFS 2006, Las Cruces, NM, USA, Proceedings.

Computer Science Technical Report NMSU-CS-2006-001, pp. 241-249, 2006.

On the Degree Complexity of Special Non-Context-Free

Languages with Respect to PC Grammar Systems∗

Jürgen Dassow and Bianca Truthe†

Otto-von-Guericke-Universität Magdeburg, Fakultät für Informatik
Postfach 4120, D-39016 Magdeburg, Germany
{dassow,truthe}@iws.cs.uni-magdeburg.de

Abstract

When modeling natural languages, three languages are of special interest. In nat-
ural languages, there occur phenomena like multiple agreements, crossed agreements
and replication. These aspects are represented by the three languages
K1 = {anbncn |n ≥ 1}, K2 = {anbmcndm |m,n ≥ 1} and K3 = {ww |w ∈ {a, b}+},
respectively.

In the present paper, we give parallel communicating grammar systems (PC gram-
mar systems) that generate the languages K1, K2 and K3 but use less or less powerful
components than those systems published so far. This improves existing results.

1 Introduction and Definitions

A parallel communicating grammar system (PC grammar system) consists of several gram-
mars with their own production rules and sentential forms. For solving a task, the com-
ponents (grammars) work simultaneously and are allowed to communicate. According to
the monograph [2], a communication is done by request: a component can request the
whole word generated by another component. A minimal synchronization is assumed: In
each time unit every component carries out a rewriting step or the system performs a
communication step. If no component wants to communicate, then each grammar de-
rives its current sentential form by a rewriting step according to its production rules (if
a grammar has reached already a terminal word, it keeps it and does not disturb the
other components; if the sentential form of a grammar contains only those nonterminals
for which the grammar has no rules, then the component blocks the whole system). If
components communicate, then all requests are satisfied simultaneously (if possible). If a
component which has been asked has sent a request to another component, then it first
waits for an answer and second it sends its own answer. In this situation, it can happen
that two components wait for each other – this leads to a deadlock of the system. In the
returning mode, each component restarts with its start symbol after satisfying a request;
in the non-returning mode the components continue with their current words.

∗The authors would like to thank György Vaszil and the anonymous referees for their remarks.
†Corresponding author

241

Those components that are not involved in a communication do nothing in this mo-
ment; especially, they do not perform a rewriting step. If a component does not get its
request satisfied, its sentential form remains unchanged.

We give the formal definitions now.
Let n ≥ 1 be a natural number. A PC grammar system of degree n is an (n+3)-tuple

Γ = (N,T, K, (P1, S1), . . . , (Pn, Sn))

where N is a finite set (the set of nonterminals), T is a finite set (the set of terminals)
with T ∩N = ∅, K = {Q1, . . . , Qn } is a set of n request symbols (K ∩ (N ∪ T) = ∅) and
(Pi, Si) are the components of the system, where Si ∈ N and Gi = (N ∪K, T, Pi, Si) is a
Chomsky grammar (i = 1, . . . , n).

A PC grammar system is called centralized, if request symbols are introduced only
by the first component, and non-centralized otherwise. A PC grammar system is called
regular, right-linear, linear, context-free etc., if the rules in the components have the
respective property. In [6], it was shown that centralized PC grammar systems with right-
linear components are more powerful than centralized systems with regular components.
A rule A → B without a terminal is called a chain rule.

A configuration of a PC grammar system with n components is an n-tuple (w1, . . . , wn)
with wi ∈ (N ∪ T ∪ K)∗. A PC grammar system Γ = (N,T, K, (P1, S1), . . . , (Pn, Sn))
derives a configuration (x1, . . . , xn) to a configuration (y1, . . . , yn) in the returning or non-
returning mode (written formally as (x1, . . . , xn) =⇒ (y1, . . . , yn) maybe with the index R
for ‘returning’ or N for ‘non-returning’), if one of the following cases holds:

1. No word xi, i = 1, . . . , n, contains a request symbol.
For i = 1, . . . , n, we have xi =⇒Gi yi or xi ∈ T ∗ and yi = xi.

2. A word xi, i = 1, . . . , n, contains a request symbol.
For each index i = 1, . . . , n we have: If the word xi contains a request symbol, then
there are a natural number mi ≥ 1, words zi,1, . . . , zi,mi+1 ∈ (N ∪ T)∗ and natural
numbers ti,1, . . . , ti,mi ∈ { 1, . . . , n } such that xi = zi,1Qti,1 · · · zi,miQti,mi

zi,mi+1. If
a word xti,j (j ∈ { 1, . . . ,mi }) contains a request symbol, then yi = xi otherwise
yi = zi,1xti,1zi,2xti,2 · · · zi,tixti,mi

zi,mi+1. If the word xi does not contain a request
symbol, we have yi = xi in the non-returning mode and there are two cases in the
returning mode:

• There is a word xk with the request symbol Qi and such that |xtk,j
|K = 0 for

all j = 1, . . . ,mk. Then yi = Si (if the i-th component is asked but does not
ask itself, it returns to the start symbol after answering).

• There is no such word xk. Then we have yi = xi (if the i-th component is not
involved in communication, the sentential form does not change).

By =⇒∗ we denote the reflexive and transitive closure of the relation =⇒.
The configuration (S1, . . . , Sn) is called the start configuration; each configuration

(w1, . . . , wn) with w1 ∈ T ∗ is called an end configuration of the system Γ, if it can be
reached from the start configuration, i. e. if (S1, . . . , Sn) =⇒∗ (w1, . . . , wn).

242

The languages LR(Γ) and LN(Γ) generated by a PC grammar system Γ in the returning
and non-returning mode, respectively, are the sets of all words w ∈ T ∗, for which words
w2, . . . , wn exist such that (w,w2, . . . , wn) is an end configuration of Γ:

Lx(Γ) = { w ∈ T ∗ | (S1, . . . , Sn) =⇒∗
x (w,w2, . . . , wn) } for x ∈ { R,N } .

For Y ∈ { PC ,CPC } and X ∈ { REG ,RL,LIN ,CF }, we denote by

• PC nX the set of all PC grammar systems (centralized or not) with at most n
components of type X,

• CPC nX the set of all centralized PC grammar systems with at most n components
of type X,

• LR(YnX) the set of all languages that are generated by a YnX-system in the returning
mode,

• LN(YnX) the set of all languages that are generated by a YnX-system in the non-
returning mode,

• LR+N(YnX) = LR(YnX)∩LN(YnX) the set of all languages that are generated by a
YnX-system in the returning mode and by a (possibly different) YnX-system in the
non-returning mode, and

• L(YnX) = LR(YnX) ∪ LN(YnX) the set of all languages that are generated by a
YnX-system in any of the modes.

By #a(w) we quote the number of occurrences of the letter a in the word w.
By cooperation, even regular grammars are able to generate non-context-free languages

(examples can be found in [2] and [4]). This is important since context-free languages are
not sufficient for the modeling of natural languages and also artificial languages (a more
detailed discussion can be read in [3]). Three non-context-free phenomena occurring with
natural languages are multiple agreements, crossed agreements and replication. They are
represented by the languages K1 = { anbncn | n ≥ 1 }, K2 = { anbmcndm | m ≥ 1, n ≥ 1 }
and K3 =

{
ww

∣∣ w ∈ { a, b }+ }
. In the following sections, we give some PC grammar

systems for generating these languages and discuss their tightness. By reasons of space
we give only sketches of proofs; for more detailed proofs we refer to [5].

2 Special PC Grammar Systems

Now we study the languages K1, K2 and K3 introduced above.

2.1 PC Grammar Systems for the Languages K1 and K3

In [4], K1 ∈ LR+N(CPC 3RL) was shown. We show that K1 ∈ LR+N(CPC 3REG) holds.
Let Γ1 = ({S1, S

′
1, S2, S

′
2, S3, S

′
3, B, C}, {a, b, c}, {Q1, Q2, Q3}, (P1, S1), (P2, S2), (P3, S3))

with

P1 = {S1→aB, B→bC,C→c, S1→aS′
1, S

′
1→aS′

1, S
′
1→aQ2, S1→aQ2, S

′
2→bQ3, S

′
3→c},

P2 = {S2 → aS′
2, S

′
2 → bS′

2} and P3 = {S3 → bS′
3, S

′
3 → cS′

3}.

243

At the beginning, the first component has three rules: S1 → aB, S1 → aS′
1 and S1 → aQ2.

In the first case, we obtain the derivation

(S1, S2, S3) =⇒ (aB, aS′
2, bS

′
3) =⇒ (abC, abS′

2, bcS
′
3) =⇒ (abc, abbS′

2, bccS
′
3).

The second case leads, after n more steps, to the configuration (an+1Q2, abnS′
2, bc

nS′
3).

Hence, the second and third case can be considered together:

(S1, S2, S3) =⇒n≥1 (anQ2, abn−1S′
2, bc

n−1S′
3) =⇒ (an+1bn−1S′

2, ∗, bcn−1S′
3)

=⇒ (an+1bnQ3, ∗, bcnS′
3) =⇒ (an+1bn+1cnS′

3, ∗, ∗) =⇒ (an+1bn+1cn+1, ∗, ∗).

If a component is not asked any more and does not block the system, then the component
does not affect the computation any longer. In this case the component is marked by a
star ∗. The PC grammar system Γ1 generates the language K1 in both modes. The rules
of the system are regular (and not only right-linear).

Proposition 1 We have LR(Γ1) = LN(Γ1) = K1 and K1 ∈ LR+N(CPC 3REG).

According to [2, Theorem 7.9] the language K1 does not belong to the class LR(CPC 2RL)
and hence not to the class LR(CPC 2REG), since it is not context-free. The following
theorem states that the language K1 can not be generated by a CPC 2RL-system in the
non-returning mode, either.

Theorem 2 K1 /∈ LN(CPC 2RL).

Proof. We assume K1 = LN(Γ) for a centralized parallel communicating grammar system
Γ = (N, {a, b, c}, {Q1, Q2}, (P1, S1), (P2, S2)) with two components in the non-returning
mode. Let k1 = #(N) + 1, k2 = max{|x||A → xB ∈ P1 ∪ P2, x ∈ {a, b, c}∗, B ∈ N ∪ {λ}}
and k = (k1 + 2) · k2. We now consider the word z = a2kb2kc2k ∈ LN(Γ). We distinguish
three cases.
Case 1. The word z is generated without communication steps.

By using standard techniques and a pumping lemma, we obtain that LN(Γ) contains
a word a2kb2kc2k+s with s ≥ 1 which contradicts K1 = LN(Γ).
Case 2. The word z is generated with exactly one communication step.

Here we have one of the following derivations

(S1, S2) =⇒∗ (α1Q2, β1B) =⇒ (α1β1B, β1B) =⇒∗ (α1β1α2, β1β2B
′) (1)

with derivations D1 = S1 =⇒∗ α1Q2 and D2 = B =⇒∗ α2 with respect to the first
component, a derivation D3 = S2 =⇒∗ β1B with respect to P2, α1β1α2 = a2kb2kc2k and
D1 and D3 have the same length, or

(S1, S2) =⇒∗ (α1Q2, β1B) =⇒ (α1β1B, β1B) =⇒∗ (α1β1α2, β1β2) or (2)

(S1, S2) =⇒∗ (α1Q2, β1) =⇒ (α1β1, β1). (3)

We discuss only (1); the argumentation for (2) and (3) works analogously.
We consider the following two subcases.

Case 2.1. The word α1 contains the letter c.

244

Then α1 = a2kb2kcr for some r > 0 and β1 = cs for some s. Then we have a derivation

D = S1 =⇒∗ at0B0 =⇒∗ at0at1B1 =⇒∗ at0at1at2B2

=⇒∗ at0at1at2at3B3 =⇒∗ · · · =⇒∗ at0at1 · · · atk1Bk1 =⇒∗ a2kb2kcrQ2

with respect to P1, where ti > 0. By the choice of k1 there are numbers p and q such that
p < q and Bp = Bq. With respect to P2, we have a derivation

E = S2 =⇒∗ cl0C0 =⇒∗ cl0cl1C1 =⇒∗ · · · =⇒∗ cl0cl1 · · · clk1Ck1 =⇒∗ csB

such that the lengths of the derivations S1 =⇒∗ at0 · · · atiBi and S2 =⇒∗ cl0 · · · cliCi are
equal. Obviously, there are numbers p′ and q′ such that p′ < q′ and Cp′ = Cq′ . Let u1

and u2 be the length of the subderivations Bp =⇒∗ atBq and Cp′ =⇒∗ clCq′ , respectively.
We now construct the derivations D′ and E′ from D and E by performing u2-times and
u1-times the subderivations Bp =⇒∗ atBq and Cp′ =⇒∗ clCq′ in addition, respectively
(i. e., in both derivations we perform u1 ·u2 additional derivation steps). This leads to the
derivations

(S1, S2) =⇒∗ (a2k+u2tb2kcrQ2, c
s+u1lB) =⇒ (a2k+u2tb2kcrcs+u1lB, cs+u1lB)

=⇒∗ (a2k+u2tb2kc2k+u1l, cs+u1lβ2).

This implies a2k+u2tb2kc2k+u1l ∈ LN(Γ). Since a2k+u2tb2kc2k+u1l /∈ K1, we have a contra-
diction.
Case 2.2. The word α1 does not contain the letter c.

A contradiction to K1 = LN(Γ) is obtained similarly to Case 2.1.
Case 3. The word z is generated with at least two communication steps.

Now we have a derivation

(S1, S2) =⇒∗ (α1Q2, β1B1) =⇒ (α1β1B1, β1B1)
=⇒∗ (α1β1α2Q2, β1β2B2) =⇒ (α1β1α2β1β2B2, β1β2B2)
=⇒∗ (α1β1α2β1β2 · · ·βr−1αrβ1β2 · · ·βrαr+1, β1β2β3 · · ·βrβr+1Br+1)
= (z, β1β2β3 · · ·βrβr+1Br+1)

or a derivation of the analogous type but a terminating derivation S2 =⇒∗ β1β2 · · ·βi,
1 ≤ i ≤ r + 1 (which corresponds to βj = λ for i + 1 ≤ j ≤ r + 1). We discuss only the
above presented derivation.

Since β1 occurs at least two times as a subword of z, β1 cannot contain occurrences of
two different letters from {a, b, c}. Thus β1 = xr for some x ∈ {a, b, c} and some r ≥ 0.
Moreover, β2, β3, . . . , βr are also words in { x }∗.

We only discuss x = c. The argumentation for x = a and x = b can be given by some
modification. If x = c, then we obtain a contradiction by consideration analogous to those
in Subcase 2.1 since we can pump as in α1 without a change of the number of bs.

Consequently in all cases we obtain a contradiction which shows that our assumption
is false. Thus K1 /∈ LN(CPC 2RL). �

The language K1 cannot be generated by a CPC 2RL-system (regardless of the mode).
Hence the result above (Proposition 1) is optimal with respect to the type of the rules.

245

If we admit linear components, the number of the components can be reduced to two.
Let Γ2 = ({ S1, S2, S

′
1 } , { a, b, c } , {Q1, Q2 } , (P1, S1), (P2, S2)) with

P1 =
{

S1 → aS′
1c, S′

1 → aS′
1c, S′

1 → a2Q2c
2, S1 → a2Q2c

2, S2 → b, S1 → abc
}

and
P2 = { S2 → bS2 } .

If the first component does not derive the terminal word abc, then we obtain the derivation
(S1, S2) =⇒n (an+1Q2c

n+1, bnS2) =⇒ (an+1bnS2c
n+1, ∗) =⇒ (an+1bn+1cn+1, ∗) with n≥1.

The system Γ2 generates in both modes the language K1.

Theorem 3 K1 ∈ LR+N(CPC 3REG) ∩ LR+N(CPC 2LIN) \ L(CPC 2RL).

We now consider K3 =
{

ww
∣∣ w ∈ { a, b }+ }

. In [4] and [1], K3 ∈ LR+N(CPC 2CF)
and K3 ∈ LN(CPC 2RL) were proved, respectively. According to [2, Theorem 7.10], we
have K3 /∈ LR(PC 2RL). However, three components are sufficient.

Theorem 4 K3 ∈ LR(PC 3RL).

Proof. Let Γ3 = (N, { a, b } , {Q1, Q2, Q3 } , (P1, S1), (P2, S2), (P3, S3)) with

N =
{

S1, S2, S3, A, B, Ā, B̄, Ca, Cb, Ea, Eb

}
,

P1 =
{

S1 → A, S1 → B, S1 → Ā, S1 → B̄, S1 → Q2, Ca → aQ3, Cb → bQ3

}
,

P2 =
{

S2 → Q1, A → aQ1, B → bQ1, Ā → Ca, B̄ → Cb, Ea → a, Eb → b
}

,

P3 =
{

S3 → Q1, A → aQ1, B → bQ1, Ā → Ea, B̄ → Eb, Ea → Ea, Eb → Eb

}
.

The first component decides which letter has to be produced next, the second and the
third component follow the instructions from the first one such that both components
produce the same word. In the end (marked by Ā or B̄), the second component carries
the information for the first component that there is still something to get, whereas the
third component has the information that the word is finished. �

2.2 PC Grammar Systems for the Language K2

In [4], a context-free PC grammar system with three components and a context-free PC
grammar system with ten components were given that generate the language K2 in the
returning and non-returning mode, respectively. In [1], a context-free, centralized PC
grammar system with four components was given that generates this language in the
returning mode, and one with five components that generates it in the non-returning
mode. In this section, we give linear and right-linear PC grammar systems with less
components and hence improve the existing results.

2.2.1 Linear Systems

The language K2 is generated in both modes by a linear, centralized PC grammar system
with three components and in each mode also by a linear PC grammar system with two
components.

Theorem 5 K2 ∈ LR+N(CPC 3LIN) ∩ LR+N(PC 2LIN).

246

Proof. We first give a CPC 3LIN -system which generates the language K2 in both deriva-
tion modes. Let Γ4 = (N, { a, b, c, d } , {Q1, Q2, Q3 } , (P1, S1), (P2, S2), (P3, S3)) with

N =
{

S1, S2, S3, A, B, C,D,A′, B′, C ′, D′, B̄, C̄
}

,

P1 =
{

S1 → D′, D′ → Dd, D → D′, D → aQ2cd
2, B → Q3, B̄ → b, S1 → A′, A′ → aA

}
∪

{
A → A′, A′ → a2bQ2d, C → Q3, C̄ → c, S1 → abcd, S1 → aQ2cd

2
}

,

P2 = { S2 → B,S2 → aBc,B → B′, B′ → B,B′ → aBc, S2 → C ′, C ′ → C,C ′ → bCd,C → C ′ } ,

P3 =
{

S3 → bB′, B′ → B̄, B̄ → bB′, S3 → C̄, C̄ → cC ′, C ′ → C̄
}

.

The first component (called the master) derives the word abcd directly or decides for
generating the ds or as. If the master generates ds, then it will ask the second component
(assistent) in an odd numbered step and receives a ‘useful’ answer (with the nontermi-
nal B) only if the assistent has generated the as and cs, otherwise the answer contains
a nonterminal (namely C ′) that the master cannot derive. Later the master asks the
third assistent in an even numbered rewriting step and receives a useful answer only if it
generated the bs. Hence, the only successful derivation in this case is

(S1, S2, S3) =⇒1+2k (aQ2cd
k+2, aiBci, bk+1B′) k ≥ 0, 0 ≤ i ≤ k + 1

=⇒ (ai+1Bci+1dk+2, ∗, bk+1B′) =⇒ (ai+1Q3c
i+1dk+2, ∗, bk+1B̄)

=⇒ (ai+1bk+1B̄ci+1dk+2, ∗, ∗) =⇒ (ai+1bk+2ci+1dk+2, ∗, ∗).

In this case, Γ4 generates the language L1 = { anbmcndm | m ≥ 2, 1 ≤ n ≤ m }.
If the master generates as, then it will ask the second assistent in an even numbered

step and the third assistent in an odd numbered rewriting step. In this case, the PC
grammar system Γ4 generates the language L2 = { anbmcndm | n ≥ 2, 1 ≤ m ≤ n }.

Each assistent will be asked by the master exactly once and will never stop working.
Therefore it makes no difference whether an assistent continues or returns after being
asked. Hence, the linear, centralized PC grammar system Γ4 generates the language
{ abcd } ∪ L1 ∪ L2 = K2 in the returning and non-returning mode. This proves the part
K2 ∈ LR+N(CPC 3LIN) of the assertion.

Now we will give a PC 2LIN -system that generates the language K2 in the returning
mode. Let Γ5 = ({ S1, S2, B, D, T } , { a, b, c, d } , {Q1, Q2 } , (P1, S1), (P2, S2)) with

P1 = { S1 → T, T → T, S1 → Q2d, S1 → Dd, D → Dd, D → Q2d, B → b } ,

P2 = { S2 → aS2c, S2 → aQ1c, T → B, B → bB } .

The second component first generates the as and cs. Afterwards it asks the master for the
‘agreement’ to start producing bs by receiving and processing the nonterminal T . This
works only if the master does not produce ds too early. If the second component generates
bs, but the first one does not produce ds after returning, then the system will never end.
Otherwise the first component generates the ds and asks sometime the second component
for the rest of the word.

For the non-returning mode, a similar system can be constructed. Since the sec-
ond component is asked only once, it is unimportant whether it works returning or non-
returning. This component remains unchanged. For working correctly in the non-returning
mode, the first component has to be in a well defined state when the second component is
asking. This state has to ensure that on the one hand the second component can start pro-
ducing bs and on the other hand the first component starts generating ds. From these con-
siderations we obtain Γ6 = ({ S1, S2, B, D, T } , { a, b, c, d } , {Q1, Q2 } , (P1, S1), (P2, S2))

247

with
P1 = { S1 → S1, S1 → T, T → Q2d, T → Dd, D → Dd, D → Q2d, B → b } and
P2 = { S2 → aS2c, S2 → aQ1c, T → B, B → bB } .

In both systems Γ5 and Γ6, the nonterminal T is the only nonterminal that the second
component can process. Hence, the following derivation is the only one which leads to a
terminal word:

(S1, S2) =⇒n≥1 (T, anQ1c
n) =⇒ (w1, a

nTcn) =⇒m≥1 (Q2d
m, anbm−1Bcn)

=⇒ (anbm−1Bcndm, w2) =⇒ (anbmcndm, w′
2),

where we have in the returning mode w1 = S1 and w2 = S2, in the non-returning mode
w1 = T and w2 = anbm−1Bcn and in both cases w2 =⇒ w′

2.
The PC grammar systems Γ5 and Γ6 prove the part K2 ∈ LR+N(PC 2LIN) of the

assertion. �

2.2.2 Right-linear Systems

In [7], K2 /∈ L(PC 2RL) and K2 ∈ LN(PC 3RL) were proved.

Theorem 6 K2 ∈ LR+N(CPC 4RL) ∩ LR(PC 3RL).

Proof. Let Γ7 = (N, { a, b, c, d } , {Q1, Q2, Q3, Q4 } , (R1, S1), (R2, S2), (R3, S3), (R4, S4))
with

N ={S1, S2, S3, A
′
1, A

′
2, A

′
3, B

′
1, B

′
2, B

′
3, A1, . . . , A11, B1, B2, B3, C2, C3, C4, T2, T3, T4, Z1, . . . , Z10},

R1 = {S1 → A′
1, A

′
1 → A′

2, A
′
2 → Q3, A

′
2 → aA′

3, A
′
3 → A′

1, S1 → B′
1, B

′
1 → B′

2, B
′
2 → Q2}

∪ {B′
2 → B′

3, B
′
3 → B′

1, T3 → Z1, Z1 → Z2, Z2 → Q4, T4 → aZ3, Z3 → Q3, Z3 → Z4}
∪ {Z4 → T4, T2 → aQ3, T2 → aZ5, Z5 → Z6, Z6 → T2, C3 → Z7, Z7 → Z8, Z8 → Q2}
∪ {C2 → Z9, Z9 → Z10, Z10 → Q4, C4 → d},

R2 = {S2 → A1, A1 → A2, A2 → A3, . . . , A8 → A9, A9 → cA10, A10 → C2, C2 → A9}
∪ {S2 → B1, B1 → B2, B2 → B3, B3 → B1, B2 → T2, T2 → A11, A11 → A9},

R3 = {S3 → A1, A1 → A2, A2 → A3, A3 → A1, A2 → T3, T3 → A4, A4 → A5}
∪ {A5 → A6, A6 → bA7, A7 → C3, C3 → A6, S3 → B1, B1 → A6},

R4 = {S4 → A1, A1 → A2, A2 → A3, A3 → A1, A2 → T4, T4 → A4, A4 → A5}
∪ {A5 → A6, . . . , A9 → A10, A10 → C4, C4 → dA9, S4 → B1, B1 → A11, A11 → A4}.

There are two suitable successors of the start configuration only: (A′
1, A1, A1, A1) and

(B′
1, B1, B1, B1). In the first case (the A-way), all words anbmcndm with m ≥ 1 and n ≥ m

are generated. The first component produces an−m first, then it asks the third component
whether it is ready to start with the bs, if so then it asks the fourth component for the
agreement to start with the ds. Then the first component produces the remaining am,
receives the bs, cs and finally the ds.

In the second case (the B-way), all words anbmcndm with n ≥ 1 and m ≥ n are
generated. The first component waits until the third component has produced bm−n, then
it asks the second one whether it is ready to start with the cs. If so, then each component
generates the remaining n letters of each type.

248

In all other cases, the system blocks, because the first component receives a nonterminal
which cannot be derived. Hence, Γ7 produces in the non-returning mode the language K2.

For a CPC 4RL-system in the returning mode, one simply has to replace the rules
T2 → A11 by S2 → A11, T3 → A4 by S3 → A4 and T4 → A4 by S4 → A4.

The idea behind the PC 3RL-system given in [7] for the non-returning mode can be
realized as a PC 3RL-system for the returning mode. A system is given here, the reader
may convince himself of its working and correctness:

Γ8 = (N, { a, b, c, d } , {Q1, Q2, Q3 } , (P1, S1), (P2, S2), (P3, S3))

with

N = {S1, S2, S3, S
′
1, S

′
2, S

′
3, A, B,C,D,C ′, C ′′, X},

P1 = {S1 → S′
1, S

′
1 → A,A → aA, S1 → Q2, S1 → X, X → X, X → Q2, B → Q3, D → d},

P2 = {S2 → S′
2, S

′
2 → cC, C → cC, S2 → Q1},

P3 = {S3 → S′
3, S

′
3 → S′

3, S
′
3 → Q2, C → C ′, C ′ → C ′′, C ′′ → D,D → dD}. �

3 Summary

The present paper gives parallel communicating grammar systems (PC grammar sys-
tems) that generate the languages K1 = { anbncn | n ≥ 1 }, K2 = { anbmcndm | m,n ≥ 1 }
and K3 =

{
ww

∣∣ w ∈ { a, b }+ }
, but need less or/and less powerful components than

systems published so far. Especially for the language K2, the systems could be improved
considerably.

References

[1] A. Chiţu. PC Grammar Systems Versus Some Non-Context-Free Constructions from
Natural and Artificial Languages. In New Trends in Formal Languages, LNCS 1218,
Springer, 1997, pp. 278–287.

[2] E. Csuhaj-Varjú, J. Dassow, J. Kelemen, G. Păun. Grammar Systems: A Grammatical
Approach to Distribution and Cooperation, Gordon and Breach Sci. Publ., 1994.

[3] J. Dassow, G. Păun. Regulated Rewriting in Formal Language Theory , Springer, 1989.

[4] J. Dassow, G. Păun, G. Rozenberg. Grammar systems. In Handbook of Formal Lan-
guages, Springer, 1997, pp. 155–213.

[5] J. Dassow, B. Truthe, Gy. Vaszil. Einige parallel kommunizierende Grammatiksysteme
zum Erzeugen spezieller nicht-kontextfreier Sprachen, Preprint, 2006.

[6] S. Dumitrescu, G. Păun. On the Power of Parallel Communicating Grammar Sys-
tems with Right-Linear Components. RAIRO Informatique Théorique et Applica-
tions/Theoretical Informatics and Applications 31 (1997) 4, pp. 331–354.

[7] M. A. Grando, V. Mitrana. A Possible Connection Between Two Theories: Gram-
mar Systems and Concurrent Programming. In Proceedings of Grammar Systems
Week 2004, MTA SZTAKI, Budapest, 2004, pp. 200–211.

249

