
On the Power of Networks
of Evolutionary Processors

Jürgen Dassow
Otto-von-Guericke-Universität Magdeburg

Fakultät für Informatik
PSF 4120, D-39016 Magdeburg, Germany

and

Bianca Truthe∗

Universitat Rovira i Virgili, Facultat de Lletres, GRLMC
Plaça Imperial Tàrraco 1, E-43005 Tarragona, Spain

February 6, 2007

Abstract

We discuss the power of networks of evolutionary processors where only two types of
nodes are allowed. We prove that (up to an intersection with a monoid) every recursively
enumerable language can be generated by a network with one deletion and two insertion
nodes. Networks with an arbitrary number of deletion and substitution nodes only pro-
duce finite languages, and for each finite language one deletion node or one substitution
node is sufficient. Networks with an arbitrary number of insertion and substitution nodes
only generate context-sensitive languages, and (up to an intersection with a monoid) every
context-sensitive language can be generated by a network with one substitution node and
one insertion node.

1 Introduction
Motivated by some models of massively parallel computer architectures (see [10, 9]) networks
of language processors have been introduced in [6] by E. CSUHAJ-VARJÚ and A. SALOMAA.
Such a network can be considered as a graph where the nodes are sets of productions and at any
moment of time a language is associated with a node. In a derivation step any node derives from
its language all possible words as its new language. In a communication step any node sends
those words to other nodes where the outgoing words have to satisfy an output condition given
as a regular language, and any node takes words sent by the other nodes if the words satisfy

∗The research was supported by the Alexander von Humboldt Foundation of the Federal Republic of Germany.

1

an input condition also given by a regular language. The language generated by a network of
language processors consists of all (terminal) words which occur in the languages associated
with a given node.

Inspired by biological processes, J. CASTELLANOS, C. MARTIN-VIDE, V. MITRANA and
J. SEMPERE introduced in [3] a special type of networks of language processors which are
called networks with evolutionary processors because the allowed productions model the point
mutation known from biology. The sets of productions have to be substitutions of one letter by
another letter or insertions of letters or deletion of letters; the nodes are then called substitu-
tion node or insertion node or deletion node, respectively. Results on networks of evolutionary
processors can be found e. g. in [3, 4, 2, 1]. In [4] it was shown that networks of evolution-
ary processors are universal in that sense that they can generate any recursively enumerable
language, and that networks with six nodes are sufficient to get all recursively enumerable lan-
guages. In [1] the latter result has been improved by showing that networks with three nodes
are sufficient. The proof uses one node of each type (and intersection with a monoid).

Therefore it is a natural question to study the power of networks with evolutionary proces-
sors where the nodes have only two types, i. e.,

(i) networks with deletion nodes and substitution nodes (but without insertion nodes),
(ii) networks with insertion nodes and substitution nodes (but without deletion nodes), and

(iii) networks with deletion nodes and insertion nodes (but without substitution nodes).
In this paper we investigate the power of such systems and study the number of nodes sufficient
to generate all languages which can be obtained by networks of the type under consideration.
We prove that networks of type (i) and (iii) produce only finite and context-sensitive languages,
respectively. Every finite, context-sensitive or recursively enumerable language can be gener-
ated by a network of type (i) with one node, by a network of type (ii) with two nodes or by a
network of type (iii) with three nodes, respectively.

2 Definitions
We assume that the reader is familiar with the basic concepts of formal language theory (see
e. g. [12]). We here only recall some notations used in the paper.

By V ∗ we denote the set of all words (strings) over V (including the empty word λ). The
length of a word w is denoted by |w|.

In the proofs we shall often add new letters of an alphabet U to a given alphabet V . In all
these situations we assume that V ∩U = ∅.

A phrase structure grammar is specified as a quadruple G = (N,T,P,S) where N is a set of
nonterminals, T is a set of terminals, P is a finite set of productions which are written as α→ β
with α ∈ (N ∪T)∗ \T ∗ and β ∈ (N ∪T)∗, and S ∈ N is the axiom. The grammar G is called
monotone, if |α| ≤ |β| holds for every rule α→ β of P .

A phrase structure grammar is in Kuroda normal form if all its productions have one of the
following forms:

AB → CD, A→ CD, A→ x, A→ λ where A,B,C,D ∈N, x ∈N ∪T.

A conditional (monotone) grammar is a quadruple G = (N,T,P ′,S) where N , T , and S
are specified as in a phrase structure grammar and P ′ is a finite set of pairs p = (αp → βp,Rp)

2

where αp → βp is a monotone production and Rp is a regular set. The direct derivation w =⇒p v
in a conditional grammar is defined by the following conditions:

w = w1αpw2, v = w1βpw2, and w ∈Rp,

i. e., a rule can only be applied to sentential forms which belong to the regular set associated
with the rule. The language generated by a conditional grammar G is defined as the set of all
words z ∈ T ∗ for which productions p1,p2, . . . ,pr exist such that

S =⇒p1 u1 =⇒p2 u2 =⇒p3 . . . =⇒pr ur = z.

We call a production α→ β a
– substitution if |α|= |β|= 1,
– deletion if |α|= 1 and β = λ.

We introduce insertions as a counterpart of a deletion. We write λ→ a, where a is a letter. The
application of an insertion λ→ a derives from a word w any word w1aw2 with w = w1w2 for
some (possibly empty) words w1 and w2.

We now introduce the basic concept of this paper, the networks of evolutionary processors.

Definition 2.1
(i) A network of evolutionary processors (of size n) is a tuple N = (V,N1,N2, . . . ,Nn,E,j)

where

• V is a finite alphabet,

• for 1≤ i≤ n, Ni = (Mi,Ai, Ii,Oi) where

– Mi is a set of evolution rules of a certain type, i. e., Mi ⊆ {a→ b | a,b ∈ V } or
Mi ⊆ {a→ λ | a ∈ V } or Mi ⊆ {λ→ b | b ∈ V },

– Ai is a finite subset of V ∗,
– Ii and Oi are regular sets over V ,

• E is a subset of {1,2, . . . ,n}×{1,2, . . . ,n}, and

• j is a natural number such that 1≤ j ≤ n.

(ii) A configuration C ofN is an n-tuple C = (C(1),C(2), . . . ,C(n)) if C(i) is a subset of V ∗

for 1≤ i≤ n.
(iii) Let C = (C(1),C(2), . . . ,C(n)) and C ′ = (C ′(1),C ′(2), . . . ,C ′(n)) be two configurations

of N . We say that C derives C ′ in one
– evolution step (written as C =⇒ C ′) if, for 1 ≤ i ≤ n, C ′(i) consists of all words

w ∈ C(i) to which no rule of Mi is applicable and of all words w for which there
are a word v ∈ C(i) and a rule p ∈Mi such that v =⇒p w holds,

– communication step (written as C ` C ′) if, for 1≤ i≤ n,

C ′(i) = (C(i)\Oi)∪
⋃

(k,i)∈E

C(k)∩O(k)∩ I(i).

The computation of N is a sequence of configurations Ct = (Ct(1),Ct(2), . . . ,Ct(n)),
t≥ 0, such that

3

– C0 = (A1,A2, . . . ,An),
– for any t≥ 0, C2t derives C2t+1 in one evolution step: C2t =⇒ C2t+1,
– for any t≥ 0, C2t+1 derives C2t+2 in one communication step: C2t+1 ` C2t+2.

(iv) The language L(N) generated by N is defined as

L(N) =
⋃
t≥0

Ct(j)

where Ct = (Ct(1),Ct(2), . . . ,Ct(n)), t≥ 0 is the computation of N .

Intuitively a network with evolutionary processors is a graph consisting of some, say n,
nodes N1,N2, . . . ,Nn (called processors) and the set of edges given by E such that there is a
directed edge from Nk to Ni if and only if (k, i) ∈ E. Any processor Ni consists of a set of
evolution rules Mi, a set of words Ai, an input filter Ii and an output filter Oi. We say that Ni

is a substitution node or a deletion node or an insertion node if Mi ⊆ {a → b | a,b ∈ V } or
Mi ⊆ {a → λ | a ∈ V } or Mi ⊆ {λ → b | b ∈ V }, respectively. The input filter Ii and the
output filter Oi control the words which are allowed to enter and to leave the node, respectively.
With any node Ni and any time moment t ≥ 0 we associate a set Ct(i) of words (the words
contained in the node at time t). Initially, Ni contains the words of Ai. In a derivation step
we derive from Ct(i) all words applying rules from the set Mi. In a communication step any
processor Ni sends out all words Ct(i)∩Oi (which pass the output filter) to all processors
to which a directed edge exists (only the words from Ct(i) \Oi remain in the set associated
with Ni) and, moreover, it receives from any processor Nk such that there is an edge from Nk

to Ni all words sent by Nk and passing the input filter Ii of Ni, i. e., the processor Ni gets in
addition all words of (Ct(k)∩Ok)∩Ii. We start with a derivation step and then communication
steps and derivation steps are alternately performed. The language consists of all words which
are in the node Nj (j is chosen in advance) at some moment t, t≥ 0.

3 Networks with only Deletion and Substitution Nodes
In this section we study the power of networks which have only deletion and substitution nodes
but no insertion nodes.

Lemma 3.1 For any network N of evolutionary processors, which has only deletion and sub-
stitution nodes, L(N) is a finite language.

Proof. Let N = (V,N1,N2, . . . ,Nn,E,j) be a network, which has only deletion and substi-
tution nodes. Obviously, any evolution step and any communication step do not increase the
length of a word contained in some Ct(i), 1 ≤ i ≤ n, t ≥ 0. Therefore L(N) contains only
words of length at most

max{|w| | w ∈ Ai, 1≤ i≤ n}.

Hence L(N) is a finite language. 2

On the other hand, every finite language can be generated by a network of evolutionary
processors without insertion nodes.

4

Lemma 3.2
(i) For any finite language L, there is a network N of evolutionary processors which has

exactly one substitution node such that L(N) = L.
(ii) For any finite language L, there is a network N of evolutionary processors which has

exactly one deletion node such that L(N) = L.

Proof. Obviously, the network N = (alph(L)∪{a,b},({a→ b},L,∅,∅),∅,1) generates L and
its only node is a substitution node. Therefore part (i) is shown.
In order to prove part (ii), we change the system by using a→ λ instead of a→ b. 2

Combining the two preceding lemmas we get immediately the following statement.

Corollary 3.3 The family of languages which can be generated by networks of evolutionary
processors which have only deletion and substitution nodes coincides with L(FIN). 2

4 Networks with only Insertion and Substitution Nodes
In this section we study the power of networks which have only insertion and substitution nodes
but no deletion nodes.

Lemma 4.1 For any network N of evolutionary processors which has only insertion and sub-
stitution nodes, L(N) is a context-sensitive language.

Proof. Let N = (V,N1,N2, . . . ,Nn,E,h) be a network which has only insertion and substitu-
tion nodes. For 1≤ i≤ n, we set

V (i) = {x(i) | x ∈ V }.

If w = x1x2 . . .xm, then w(i) = x
(i)
1 x

(i)
2 . . .x

(i)
m . In the grammar given below we shall use w(i) if

the word w is in the node Ni. For 1 ≤ i ≤ n, let Ni = (Mi,Ai, Ii,Oi). Without loss of gener-
ality we assume that N1,N2, . . . ,Nr are substitution nodes and that Nr+1,Nr+2, . . . ,Nn are the
insertion nodes. Moreover, for 1≤ i≤ n, let Ai = (V,Zi, z0i, δi,Fi) and Bi = (V,Z ′

i, z
′
0i, δ

′
i,F

′
i)

be finite deterministic automata with input set V , state sets Zi and Z ′
i, initial states z0i and z′0i,

transition functions δi and δ′i and sets Fi and F ′
i of accepting states, respectively, which accept

the input filter Ii and the output filter Oi, respectively.
We construct the conditional grammar G = (N,V ∪{y},P,S), where

N = V (1)∪V (2)∪·· ·∪V (n)∪{S,Y,A,A′,B,B′,X}
∪{Xi | 1≤ i≤ n}∪{X ′

i | 1≤ i≤ n}∪{Xik | 1≤ i≤ n, 1≤ k ≤ n, (i,k) ∈ E}
∪{(z′, z) | z′ ∈ Z ′

i, z ∈ Zk, 1≤ i≤ n, 1≤ k ≤ n, (i,k) ∈ E}
∪{z | z ∈ Z ′

i, 1≤ i≤ n}

and P is the set of all rules of the following forms

(S →XiAz(i)X, {S}) for z ∈ Ai, 1≤ i≤ n

5

(from the axiom we derive XiA followed by an indexed version of a word z of the initial set Ai

and X; the letter Xi refers to a phase simulating a derivation step according to Mi),

(Ax(i) → x(i)A, {Xi}(V (i))∗{A}(V (i))∗{X}) for x ∈ V, 1≤ i≤ n,

(Aa(i) →Bb(i), {Xi}(V (i))∗{A}(V (i))∗{X}) for a,b ∈ V, a→ b ∈Mi, 1≤ i≤ r,

(A→Bb(i), {Xi}(V (i))∗{A}(V (i))∗{X}) for b ∈ V, λ→ b ∈Mi, r+1≤ i≤ n,

(AX → Y Y, {Xi}(V (i))∗{AX}) for 1≤ i≤ n,

(x(i)B →Bx(i), {Xi}(V (i))∗B(V (i))∗{X}) for x ∈ V, 1≤ i≤ n

(we move the letter A to the right until we apply a rule of Mi which introduces B which is moved
to the left; if no rule is applied we introduce the trap symbol Y which cannot be rewritten),

(XiB →Xik(z′0i, z0k), {XiB}(V (i))∗{X}) for 1≤ i≤ n, 1≤ k ≤ n, (i,k) ∈ E,

(XiB →X ′
iz
′
0i, {XiB}(V (i))∗{X}) for 1≤ i≤ n

(we change to a phase simulating a communication step where a word from node Ni is sent to
node Nk announced by Xik or to a phase simulating that that word does not leave the node Ni

during the communication announced by X ′
i),

((z′, z)x(i) → x(k)(δ′i(z
′,x), δk(z,x)), {Xik}(V (k))∗{(z′, z) | z′ ∈ Z ′

i, z ∈ Zk}(V (i))∗{X})
for z′ ∈ Z ′

i, z ∈ Zk, 1≤ i≤ n,1≤ k ≤ n,(i,k) ∈ E,

((z′, z)X →B′X, {Xik}(V (k))∗{(z′, z) | z′ ∈ Z ′
i, z ∈ Zk}{X})

for z′ ∈ F ′
i , z ∈ Fk, 1≤ i≤ n,1≤ k ≤ n,(i,k) ∈ E,

((z′, z)X → Y Y, {Xik}(V (k))∗{(z′, z) | z′ ∈ Z ′
i, z ∈ Zk}{X})

for (z′, z) /∈ F ′
i ×Fk, 1≤ i≤ n,1≤ k ≤ n,(i,k) ∈ E,

(x(k)B′→B′x(k), {Xik}(V (k))∗{B′}(V (k))∗{X})
for x ∈ V, 1≤ i≤ n,1≤ k ≤ n,(i,k) ∈ E,

(XikB
′→XkA, {XikB

′}(V (k))∗{X}) for 1≤ i≤ n,1≤ k ≤ n,(i,k) ∈ E

(we move (z′, z) from left to right, i. e., we read the word in the node, and simulate the work
of Bi and Ak in the first and second component, respectively; if accepting states of both au-
tomata are reached, the word can pass the output filter Oi and the input filter Ik, and therefore
it goes to the node Nk; this corresponds to the change of any letter x(i) to x(k); the letter B′ is
sent back to the left where a change to a derivation step in Nk is done; if one of the states after
reading the word is not accepting, we generate the trap symbol Y),

(z′x(i) → x(i)δ′i(z
′,x), {X ′

i}(V (i))∗{z′ | z′ ∈ Z ′
i}(V (i))∗{X}) for z′ ∈ Z ′

i, 1≤ i≤ n,

(z′X →B′X, {X ′
i}(V (i))∗{z′ | z′ ∈ Z ′

i}{X}) for z′ /∈ F ′
i , 1≤ i≤ n,

(z′X → Y Y, {X ′
i}(V (i))∗{z′ | z′ ∈ Z ′

i}{X}) for z′ ∈ F ′
i , 1≤ i≤ n,

(x(i)B′→B′x(i), {X ′
i}(V (i))∗{B′}(V (i))∗{X}) for x ∈ V, 1≤ i≤ n,

(X ′
iB

′→XiA, {X ′
iB

′}(V (i))∗{X}) for 1≤ i≤ n

6

(we read the word, again, without a change and go to a derivation step according to Mi if the
word cannot pass the output filter Oi, i. e., if the word is not accepted by Bi),

(XhB → yA′, {XhB}(V (h))∗{X}),
(XihB′→ yA′, {XihB′}(V (h))∗{X}) for 1≤ i≤ n,

(A′x(h) → x(h)A′, {y}(V (h))∗{A′}(V (h))∗{X}) for x ∈ V,

(A′X → yy, {y}(V (h))∗{A′X})
(if one derivation phase or communication phase is finished we transform the word in node Nh,
which collects the elements of the language, to the terminal alphabet).

By the explanations given to the rules it is easy to see that L(G) = {y}L(N){yy}. Since
conditional monotone grammars only generate context-sensitive languages (see [8], page 122),
L(G) is context-sensitive. By the closure of the family of context-sensitive languages under
derivatives, L(N) is context-sensitive, too. 2

Lemma 4.2 For any context-sensitive language L, there are a set T and a network N of evolu-
tionary processors with exactly one insertion node and exactly one substitution node such that
L = L(N)∩T ∗.

Proof. Let L be a context-sensitive language and G = (N,T,P,S) be a grammar in Kuroda
normal form with L(G) = L. Let R1,R2, . . . ,R7 be the following sets:

R1 = {A→ p0, p0 → x | p = A→ x ∈ P, A ∈N, x ∈ T } ,

R2 = {A→ p1 | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈N } ,

R3 = {B → p2 | p = AB → CD ∈ P, A,B,C,D ∈N } ,

R4 = {p1 → p3 | p ∈ P } ,

R5 = {p2 → p4 | p ∈ P } ,

R6 = {p3 → C | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈N } ,

R7 = {p4 →D | p = A→ CD ∈ P or p = AB → CD ∈ P, A,B,C,D ∈N } .

We construct a network of evolutionary processors

N = (V,(M1,{S } , I1,O1),(M2,∅, I2,V
∗),{(1,2),(2,1)} ,1)

with

V = N ∪T ∪{p0,p1,p2,p3,p4 | p ∈ P } ,

M1 = R1∪R2∪R3∪R4∪R5∪R6∪R7,

I1 = (N ∪T)∗ {p1p2 | p = A→ CD ∈ P }(N ∪T)∗,
O1 = V ∗ \ ((N ∪T)∗Ō(N ∪T)∗),

where

Ō = {λ}∪{p1 | p = AB → CD ∈ P }
∪{p1p2 | p = AB → CD ∈ P }
∪{p3p2 | p = A→ CD ∈ P or p = AB → CD ∈ P }
∪{p3p4 | p = A→ CD ∈ P or p = AB → CD ∈ P }
∪{Cp4 | p = A→ CD ∈ P or p = AB → CD ∈ P } ,

7

and

M2 = {λ→ p2 | p = A→ CD ∈ P } ,

I2 = (N ∪T)∗ {p1 | p = A→ CD ∈ P }(N ∪T)∗.

First, we show that any application of a rule of the grammar G can be simulated by the net-
work N . In the sequel, A, B, C, D are non-terminals, x is a terminal and w1w2 ∈ (N ∪T)∗.
Case 1. Application of the rule p = A→ x ∈ P to a word w1Aw2.

This is achieved by the rules A→ p0 ∈ R1 and then p0 → x ∈ R1. After each of these two
evolution steps, the word does not leave the node.

Case 2. Application of the rule p = AB → CD ∈ P to a word w1ABw2.
The word w1ABw2 is changed to w1p1Bw2 (by an appropriate rule of R2) which cannot
pass the output filter, so it remains in the first node. It is then changed to w1p1p2w2 (by R3),
and further, without leaving the first node, changed to w1p3p2w2 (by R4), to w1p3p4w2 (by
R5), to w1Cp4w2 (by R6) and finally to w1CDw2 (by R7). This word is not communicated
in the next step, since it cannot pass the output filter. Hence the application of the rule
p = AB → CD ∈ P to a word w1ABw2 can be simulated in six evolution steps (the six
corresponding communication steps have no effect).

Case 3. Application of the rule p = A→ CD ∈ P to a word w1Aw2.
The word w1Aw2 is changed to w1p1w2 (by an appropriate rule of R2). This word passes
the output filter of the first node and the input filter of the second one. There, the symbol p2
is inserted behind p1 and the obtained word w1p1p2w2 is communicated back to the first
node. There, the word is changed to w1p3p2w2 (by R4) and further as in the Case 2 to
the words w1p3p4w2 (by R5), w1Cp4w2 (by R6) and w1CDw2 (by R7). This word is not
communicated in the next step, since it cannot pass the output filter. Hence the application
of the rule p = A→ CD ∈ P to a word w1Aw2 can be simulated in six evolution steps and
two effective communication steps (the other four have no effect).
Since the start symbol S also belongs to the language of the network, any derivation step

in the grammar G can be simulated by evolution and communication steps in the network N .
Hence, we have the inclusion L(G)⊆ L(N)∩T ∗. We show now L(N)∩T ∗ ⊆ L(G).

Let F (G) be the set of all sentential forms generated by the grammar G. We show that
L(N)∩ (N ∪T)∗ ⊆ F (G). Then L(N)∩T ∗ ⊆ L(G) follows immediately.

The start symbol S belongs to both sets L(N)∩ (N ∪T)∗ and F (G). We now consider a
word w = w1Aw2 of the set L(N)∩ (N ∪T)∗ with A ∈N . The word is in the first node and it
is not communicated, so we start with an evolution step.
Case 1. Application of a rule A→ p0 ∈R1.

This yields the word w1p0w2 in the first node. Due to the output filter, it remains there.
Thereafter, the rule p0 → x ∈ R1 has to be applied or we loose the word. Hence, these two
evolution steps represent the derivation w1Aw2 =⇒ w1xw2 in G.

Case 2. Application of a rule A→ p2 ∈R3.
This leads to the word w1p2w2 in the first node, which is then sent out. Since the second
node does not accept it, the word is lost.

Case 3. Application of a rule A→ p1 ∈R2.
There are two possibilities for the rule p that belongs to p1.

8

Case 3.1. p = A→CD. In this case, the word w1p1w2 is sent out and caught by the second
node. The second node inserts a q2. If q2 is not p2 or if it is p2 but not inserted immedi-
ately behind p1, then the obtained word is not w1p1p2w2. It is sent back but not accepted
by the first node and therefore lost. If p2 is inserted at the correct position, then the word
w1p1p2w2 enters the first node. We set w′

2 = w2 and continue with the word w1p1p2w
′
2

to the next evolution step.
Case 3.2. p = AB → CD. In this case, the word w1p1w2 remains in the first node. If

the word after the next evolution step is not w1p1p2w
′
2 with w2 = Bw′

2, then it is sent
out, because applying any other rule of R1∪R2∪R3∪R4 (rules of R5, R6 and R7 are
not applicable) yields a word which passes the output filter. Since it cannot pass the
input filter of the other node, the word gets lost. So, the word is only kept alive, if it is
w1p1p2w

′
2 with w2 = Bw′

2. This word cannot leave the first node, so we continue with
w1p1p2w

′
2 in the first node to the next evolution step.

In both subcases, the only word that can be obtained in the first node after two evolution
steps and two communication steps starting from the word w = w1Aw2 is w1p1p2w

′
2. We

continue with an evolution step. Applying a rule of R1, R2, R3 or R5 leads to a word which
leaves the first node and disappears. Rules of R6 and R7 are not applicable. By the only
successful rule p1 → p3 ∈R4, we obtain the word w1p3p2w

′
2 which is kept in the first node.

The next evolution step uses the rule p2 → p4 ∈ R5 because the rules of R1, R2, R3 and R6
lead to loosing the word and R4 and R7 are not applicable. This yields the word w1p3p4w

′
2

which is also kept in the first node. In the next evolution step, the rules of R1, R2, R3 and
R7 make the word disappear and R4 and R5 are not possible. Hence, the only next word is
w1Cp4w

′
2 after applying the rule p3 → C ∈ R6. It remains in the first node. Now the rules

of R4, R5 and R6 are not applicable; by rules of R1, R2 and R3 the word will be lost. The
only possible rule p4 →D ∈ R7 yields the word w1CDw′

2 which is not sent out in the next
communication step.
Hence, in this case, the derivation w1Aw2 =⇒ w1CDw′

2 (which in G is obtained by the
initially chosen rule p) is simulated.

Other rules are not applicable to the word w.
By the case distinction above, we have shown that every word z ∈ L(N)∩ (N ∪T)∗ that is

derived by the network N from a word w ∈ L(N)∩ (N ∪T)∗ is also derived by the grammar G
from the word w and, hence, belongs to the set F (G).

From the inclusion L(N)∩ (N ∪T)∗ ⊆ F (G), the required inclusion L(N)∩T ∗ ⊆ L(G)
follows. Together with the first part of the proof, we have L(G) = L(N)∩T ∗ = L. 2

Corollary 4.3 For any context-sensitive language L, there is a network N of evolutionary pro-
cessors with three nodes which are insertion nodes and substitution nodes such that L = L(N).

Proof. Let L be a context-sensitive language. Then we construct as in the proof of Lemma 4.2
a network N = (V,N1,N2,E,1) with one insertion node and one substitution node such that
L = L(N)∩T ∗ and from N the network

N ′ = (V,N1,N2,N3,E∪{(1,3)},3) with N3 = (∅,∅,T ∗,∅).

It is obvious from the proof of Theorem 4.2 that N3 collects exactly the words from L(N)∩T ∗.
Thus L(N ′) = L. 2

9

By Lemma 4.1 and Corollary 4.3 we get immediately the following statement.

Corollary 4.4 The family of languages which can be generated by networks of evolutionary
processors which have only insertion and substitution nodes coincides with L(CS). 2

5 Networks with only Deletion and Insertion Nodes
In this section we discuss networks which have only insertion and deletion nodes. In the pa-
per [11], the authors have also studied systems where only insertion and deletion are allowed.
However, in contrast to our definition it is possible to delete and insert words of arbitrary length
(the authors show that words of length at most three are sufficient); we can delete and insert only
letters. On the other hand, we can use filters which is not possible in [11]. We shall prove that
networks with deletion and insertion nodes can generate any recursively enumerable language.
This means that partition of the rules to nodes and the use of regular filters has the same power
as deletion and insertion of words of arbitrary length.

Lemma 5.1 For any recursively enumerable language L, there are a set T and a network N
of evolutionary processors with exactly two insertion nodes and exactly one deletion node such
that L = L(N)∩T ∗.

Proof. Let L be a recursively enumerable language and G = (N,T,P,S) be a grammar in
Kuroda normal form with L(G) = L. In the sequel, A, B, C, D, X , Y , Z designate non-
terminals, x a terminal, p, r rules of P ; q /∈ N ∪T is a new symbol, and p1, p2, p3, p4, p5 are
new symbols for every rule p ∈ P (and only those rules). We define now sets that will be used
for defining the filters (to make them more readable). Let

αp1q = {p1q | ∃A : p = A→ λ} ,

αp1x = {p1x | ∃A : p = A→ x} ,

αp1CD = {p1CD | ∃A : p = A→ CD or ∃A,B : p = AB → CD } ,

β1 = αp1q ∪αp1x∪αp1CD,

αAp5 = {Ap5 | p = A→ λ} ,

αAp4 = {Ap4 | ∃x : p = A→ x or ∃C,D : p = A→ CD } ,

αABp4 = {AqnBp4 | n≥ 0 and ∃C,D : p = AB → CD } ,

β2 = αAp5 ∪αAp4 ∪αABp4 ,

αAqp5 = {Aqp5 | p = A→ λ} ,

αAp2p4 = {Ap2p4 | ∃x : p = A→ x or ∃C,D : p = A→ CD } ,

αABp2p4 = {AqnBp2p4 | n≥ 0 and ∃C,D : p = AB → CD } ,

β3 = αAqp5 ∪αAp2p4 ∪αABp2p4 ,

10

αAq = {Aq | A→ λ ∈ P } ,

αAp2 = {Ap2 | ∃x : p = A→ x or ∃C,D : p = A→ CD } ,

αABp2 = {AqnBp2 | n≥ 0 and ∃C,D : p = AB → CD } ,

αAp2p3 = {Ap2p3 | ∃C,D : p = A→ CD } ,

β4 = αAq ∪αAp2 ∪αABp2 ,

β′4 = β4∪αAp2p3

αp1Aq = {p1Aq | p = A→ λ} ,

αp1Ap2 = {p1Ap2 | ∃x : p = A→ x} ,

αp1ABp2 = {p1AqnBp2 | n≥ 0 and ∃C,D : p = AB → CD } ,

αp1Ap2p3 = {p1Ap2p3 | ∃C,D : p = A→ CD } ,

β5 = αp1Aq ∪αp1Ap2 ∪αp1ABp2 ∪αp1Ap2p3 ,

αp1xp2 = {p1xp2 | ∃A : p = A→ x} ,

αp1CBp2 = {p1CqnBp2 | n≥ 0 and ∃A,D : p = AB → CD } ,

αp1Cp2p3 = {p1Cp2p3 | ∃A,D : p = A→ CD } ,

αp1CDp2 = {p1CDqnp2 | n≥ 0 and ∃A,B : p = AB → CD

or n = 0 and ∃A : p = A→ CD },
β6 = αp1xp2 ∪αp1CBp2 ∪αp1Cp2p3 ∪αp1CDp2 ,

αAp1qBr4 = {Aqnp1qq
mBr4 | n,m≥ 0 and ∃X : p = X → λ

and ∃C,D : r = AB → CD },
αp1Cr4D = {p1Cr4D | (∃A : p = A→ CD or ∃A,B : p = AB → CD)

and (∃x : r = C → x or ∃X,Y : r = C →XY)},
αZp1Cr4D = {Zqnp1Cr4D | n≥ 0 and (∃A : p = A→ CD or ∃A,B : p = AB → CD)

and ∃X,Y : r = ZC →XY },
αp1CDr4 = {p1CDr4 | (∃p = A→ CD or ∃A,B : p = AB → CD) and

(∃x : r = D → x or ∃X,Y : (r = D →XY or r = CD →XY))},
αp1CDXr4 = {p1CDqnXr4 | n≥ 0 and (∃A : p = A→ CD or ∃A,B : p = AB → CD)

and ∃X,Y : r = DX → Y Z },
αp1Cr5D = {p1Cr5D | (∃A : p = A→ CD or ∃A,B : p = AB → CD)

and r = C → λ },
αp1CDr5 = {p1CDr5 | (∃A : p = A→ CD or ∃A,B : p = AB → CD)

and r = D → λ},
β7=αAp1qBr4 ∪αp1Cr4D ∪αZp1Cr4D ∪αp1CDr4 ∪αp1CDXr4 ∪αp1Cr5D ∪αp1CDr5 ,

11

αp1p2 = {p1p2 | ∃A,x : p = A→ x} ,

αp1Bp2 = {p1q
nBp2 | n≥ 0 and ∃A,C,D : p = AB → CD } ,

αp1Cp2 = {p1Cqnp2 | n≥ 0 and ∃A,B,D : p = AB → CD

or n = 0 and ∃A,D : p = A→ CD },
αp1p2p3 = {p1p2p3 | ∃A,C,D : p = A→ CD } ,

β8 = αp1p2 ∪αp1Bp2 ∪αp1Cp2 ∪αp1p2p3 ,

Tq = (T ∪{q})∗,
W = (N ∪T ∪{q})∗.

Now, we construct a network of evolutionary processors

N = (V,(M1,{S } , I1,O1),(M2,∅, I2,O2),(M3,∅, I3,O3),{(1,2),(2,1),(2,3),(3,2)} ,1)

with

V = N ∪T ∪{q}∪
⋃

p=A→λ∈P

{p1,p5 }∪
⋃

p=A→x∈P

{p1,p2,p4 }

∪
⋃

p=A→CD∈P

{p1,p2,p3,p4 }∪
⋃

p=AB→CD∈P

{p1,p2,p4 } ,

M1 = {λ→ q}∪{λ→ pi | 1≤ i≤ 5 and pi ∈ V } ,

M2 = {A→ λ | A ∈N }∪{pi → λ | 1≤ i≤ 5 and pi ∈ V }∪{q → λ} ,

M3 = {λ→ A | A ∈N }∪{λ→ x | x ∈ T } ,

O1 = V ∗ \ (Wβ′4W),
O2 = V ∗ \ (Tq {p1 | p ∈ P and p1 ∈ V }Tq),
O3 = V ∗,

I1 = W (β1∪β2∪β4)W ∪T ∗,

I2 = W (β3∪β5∪β6∪β7)W ∪Wβ1Wβ2W ∪Wβ2Wβ1W,

I3 = Wβ8W.

An element of V is called a non-terminal if it belongs to N , a terminal if it belongs to T and a
marker otherwise.

First, we show that any application of a rule of the grammar G can be simulated by the
network N . At the beginning, the start symbol S is to be found in the first node. Regarding S,
there are three possibilities for a rule p ∈ P .
Case 1. p = S → λ.

In the first node, q is inserted behind S, the word does not leave the node, p1 is inserted
before S and then the word is communicated to the second node. There, S is removed. The
word is now p1q and does not leave the node. Still in the second node, first q and then p1 are
deleted. In the next communication step, the empty word λ is transferred to the first node.
The derivation S =⇒ λ in G has been simulated in the network N .

12

Case 2. p = S → x.
In the first node, p2 is inserted behind S, the word does not leave, p1 is inserted before S
and then the word is communicated to the second node. There, S is removed. The word is
now p1p2 and is communicated to the third node. There, x is inserted between p1 and p2.
The word p1xp2 goes back to the second node, where first p2 and then p1 are removed. The
obtained word x is sent to the first node. The derivation S =⇒ x in G has been simulated in
the network N .

Case 3. p = S → CD.
In the first node, first p2, then p3 and finally p1 are inserted to obtain the word p1Sp2p3.
The order of the insertions is important; otherwise the word would not remain in the first
node. The word p1Sp2p3 is communicated to the second node, where S will be deleted.
The word p1p2p3 is then sent to the third node. There, C is inserted between p1 and p2.
After transferring the word p1Cp2p3 back to the second node, p3 is deleted. Then, the
word p1Cp2 is sent to the third node again, where D is inserted behind C. The word p1CDp2
is communicated to the second node, where p2 will be deleted. After that, the word p1CD
moves to the first node. The derivation S =⇒ CD in the grammar G has been simulated in
the network N such that in the end the word p1CD with p = S → CD is to be found in the
first node and the next derivation step is a rewriting step.

We describe now how the further derivations can be simulated. Let w be the word of the first
node containing a non-terminal and a marker r1 (from the previous simulation), but no other
markers.
Case 4. p = A→ λ and w = w1Aw2.

The first node inserts p5 behind A and the word w1Ap5w2 is transferred to the second node.
There r1 is deleted and the word is sent back to the first node. This node inserts q between A
and p5 and sends the word to the second node. This node deletes p5 and sends the word back.
The first node inserts p1 before A. The word now contains p1Aq as a subword and enters
the second node. This node deletes A. The network has now simulated the application of p.
If there is a non-terminal left, the word is send back to the first node. If this A was the last
non-terminal, the second node deletes all qs and finally p1. The terminal word t is sent to
the first node. The network has simulated the derivation S =⇒∗ t.

Case 5. p = A→ x and w = w1Aw2.
The first node inserts p4 behind A and the word w1Ap4w2 is transferred to the second node.
There r1 is deleted and the word is sent back to the first node. This node inserts p2 between A
and p4 and sends the word to the second node. This node deletes p4 and sends the word back.
The first node inserts p1 before A. The word now contains p1Ap2 as a subword and enters
the second node, where A is deleted. The word then goes to the third node, where x is
inserted between p1 and p2. Then, the word moves to the second node, which deletes p2.
The network has now simulated the application of p. If there is a non-terminal left, the word
is send back to the first node. Otherwise, the second node deletes all qs and finally p1. The
terminal word t is sent to the first node. The network has simulated the derivation S =⇒∗ t.

Case 6. p = A→ CD and w = w1Aw2.
As in the second case, the first node inserts p4 behind A. The word w1Ap4w2 is transferred
to the second node. There, r1 is deleted and the word is sent back to the first node. This node
inserts p2 between A and p4 and sends the word to the second node. This node deletes p4 and
sends the word back. The first node inserts p3 behind p2 and, because the word does not leave

13

the node, also p1 before A. The word now contains p1Ap2p3 as a subword and enters the
second node, where A is deleted. The word then goes to the third node, where C is inserted
between p1 and p2. Then, the word moves to the second node, which deletes p3. The word
is communicated to the third node, where D is inserted between C and p2. Thereafter, the
word moves to the second node, which deletes p2 and sends the word to the first node. The
network has now simulated the application of p.

Case 7. p = AB→CD and w = w1Aqnw3q
mBw2 with m,n≥ 0 and w3 ∈{λ}∪{ r1 | r ∈ P }.

As in the second case, the first node inserts p4 behind B. The word is transferred to the
second node. There, r1 is deleted and the word is sent back to the first node. This node
inserts p2 between B and p4 and sends the word to the second node. This node deletes
p4 and sends the word back. The first node inserts p1 before A. The word now contains
p1Aqn+mp2 as a subword and enters the second node, where A is deleted. The word then
goes to the third node, where C is inserted behind p1. Then, the word moves to the second
node, which deletes B. The word is communicated to the third node, where D is inserted
behind C. Thereafter, the word moves to the second node, which deletes p2 and sends the
word to the first node. The network has now simulated the application of p.

The cases described above are repeated until the obtained word in the first node contains only
one non-terminal A and the rule to be applied is of the Case 4 or 5. Then, the simulation of the
derivation finishes with a terminal word in the first component.

Hence, any derivation S =⇒∗ w with w ∈ T ∗ in the grammar G can be simulated by the
network N . Thus, we have the inclusion L(G)⊆ L(N)∩T ∗.

We now prove the inclusion L(N)∩T ∗ ⊆ L(G).
We start with the word S (axiom) in the first node and trace each of its derivations in the

network. The pure word of a word w is the word which is obtained by removing all markers
from the word w. Let us consider the following situations for the general case, in which the
‘observed’ word can be found such that the next step is a rewriting step. The first component
gives a ‘description’ (a set where the word belongs to) and the second component states the
number of the node where the word resides:

σ1 = ({S } ,1), σ2 = (Wαp1CDW,1),
σ3 = (WNWαp1xW ∪Wαp1xWNW,1), σ4 = (WNWαp1qW ∪Wαp1qWNW,1),
σ5 = (WαAp4W,1), σ6 = (WαABp4W,1),
σ7 = (WαAp5W,1), σ8 = (WαAp2W,1),
σ9 = (WαABp2W,1), σ10 = (WαAqW,1),
σ11 = (Tq {p1 | p ∈ P }Tq,2), σ12 = (T ∗,1).

The following graph shows the connections between these situations (Figure 1). A directed
edge from a situation σi to a situation σj means that a word which is in situation σi can be
transformed by the (general) network into a word which is in situation σj , such that during the
transformation no situation σ1, . . . ,σ12 is met.

We investigate each situation σi and show that
– a situation σj is directly reachable in finitely many rewriting and communication steps if

and only if there is an edge from σi to σj in the graph of Figure 1, and
– the corresponding pure word is a sentential form of the grammar G which contains a

non-terminal if i≤ 10 and is terminal if i≥ 11.

14

ONMLHIJKσ2 oo //gg

''OOOOOOOOOOOOOOOOO__

��?
??

??
??

??WW

��/
//

//
//

//
//

//
//

//FF

zz %%ONMLHIJKσ5 oo //
�� ONMLHIJKσ8

wwooooooooooooooooo

��

��

//ONMLHIJKσ1

G

F������������
ed��

@

A????
??

??
??

??

bcOO

ONMLHIJKσ3
��

??���������
oo //

__

��?
??

??
??

??11
ONMLHIJKσ6 oo //ff ONMLHIJKσ9

�� ONMLHIJKσ1111
oo //ONMLHIJKGFED@ABCσ12

ONMLHIJKσ4

��

GG����������������� ��

??���������
oo //&& ONMLHIJKσ7 oo //

�� ONMLHIJKσ10

OO

&&

YY

ee

HH

Figure 1: Situation graph

It turns out, that no terminal word occurs in the first node of the network outside the situa-
tion σ12. After proving that every terminal word which is generated by the network N is also a
word of the grammar G, we have immediately the desired inclusion L(N)∩T ∗ ⊆ L(G).
Case 1. We start with the axiom S in the first node (situation σ1). If one of the symbols p1, p3,

p4 or p5 is inserted, then the word leaves the network. This also happens, if q is inserted
behind S but without the rule S → λ being in the set P or if q is inserted before S. If a
symbol p2 is inserted behind S but the rule p does not have S on its left hand side or if p2 is
inserted before S, the word disappears as well. The two remaining cases are:
Case 1.1. The symbol p2 for a rule p that has S on its left hand side is inserted behind S.

Then the word does not leave the node, and we have now the situation σ8.
Case 1.2. The symbol q is inserted behind S and the rule S → λ exists in the rule set P .

Then the word does not leave the node, and we have now the situation σ10.
In both subcases, the pure word is still S, hence a sentential form with a non-terminal of the
grammar G.

Case 2. The word in the first node has the form w1p1CDw2 where w1,w2 ∈W and p ∈ P has
the word CD on its right hand side. If a symbol q, r1 or r3 is inserted, then the word leaves
the network. This also happens, if a symbol r2 6= p2 is inserted or p2, p4 or p5 but not at a
‘feasible’ position.
Case 2.1. If p2 is inserted and the word is accepted by the second node, then there are two

possibilities:
Case 2.1.1. p = A → CD. Then the word in the second node contains p1CDp2 as a

subword. The only possibilities without loosing the word are now
– to delete the previously inserted p2 – then we reach σ2 again –, or
– to delete p1 – if A = D, we reach σ8, otherwise we loose the word –, or
– to delete D – then the word enters the third node, where only D can be inserted

again in order not to loose the word and we obtain the same word in the second
node as in the beginning of this subcase.

Case 2.1.2. p = AB → CD. Then the word in the second node contains p1CDqnp2
as a subword. As it will turn out, this word can only be achieved by starting with

15

the word w1AqnBp2w2 in the first node, hence situation σ9. The only possibilities
without loosing the word are now

– to delete the previously inserted p2 – then we reach σ2 again –, or
– to delete D – then the word enters the third node, where D or B can be inserted

(with D we have the same situation as before), with B inserted, the word goes
to the second node which can delete B again (then we return to the same situa-
tion) or if C = A it deletes p1 and we reach situation σ9 or it deletes C, then the
word is communicated to the third node that inserts C again (same as before)
or A and sends the word to the second node, it deletes A again (same as before)
or p1 such we reach the situation σ9 –, or

– to delete C if B = D (and n = 0) – then the word goes to the third node which
inserts C again (as before) or A and sends the word to the second node, that
deletes A again (as before) or p1 such that we reach the situation σ9 –, or

– to delete p1 if AB = CD and n = 0 – then we have the situation σ9.
If we reach the situation σ2, the word has not changed; if we reach σ9, then the word
is w1AqnBp2w2. This word had been already in the network (in σ9), otherwise the
word w1p1CDw2 (in the beginning of Case 2) could not have occurred. The word
w1AqnBp2w2 contains a non-terminal and has the same sentential form status is it
already had.

Case 2.2. If the first node inserts r4 and the second node accepts the word, then the second
node deletes r4 again and we return to situation σ2 or it deletes p1 and we reach the
situation σ5 or σ6 or the second node deletes another symbol and the word vanishes. If
we reach the situation σ5 or σ6, the pure word has not changed and hence is a sentential
form with a non-terminal.

Case 2.3. If the first node inserts r5 and the second node accepts the word, then the second
node deletes r5 again and we return to situation σ2 or it deletes p1 and we reach the
situation σ7 with the same pure word or the second node deletes another symbol and the
word leaves the network.

Case 3. The word in the first node has the form w1p1xw2 where w1,w2 ∈W containing a non-
terminal and p ∈ P is a rule A → x. If a symbol q, r1, r2 6= p2 or r3 is inserted or p2 or a
symbol r4 or r5 is inserted at a ‘wrong’ position, then the word leaves the network.
Case 3.1. If p2 is inserted, then the word is accepted by the second node only, if it is

w1p1xp2w2. The second node has to delete p2 again or the word would disappear. So,
we have situation σ3 with the same word.

Case 3.2. If the first node inserts r4 and the second node accepts the word, then the second
node deletes r4 again and we return to situation σ3 or it deletes p1 and we reach the
situation σ5 or σ6 or the second node deletes another symbol, but then the word is lost. If
we reach the situation σ5 or σ6, the pure word has not changed and hence it is a sentential
form with a non-terminal.

Case 3.3. If the first node inserts r5 and the second node accepts the word, then the second
node deletes r5 again and we return to situation σ3 or it deletes p1 and we reach the
situation σ7 with the same pure word or the second node deletes another symbol and the
word leaves the network.

16

Case 4. The word in the first node has the form w1p1qw2 where w1,w2 ∈W containing a non-
terminal and p ∈ P is a rule A → λ. If a symbol q, r1, r2 or r3 is inserted or a symbol r4
or r5 is inserted at an unacceptable position, then the word leaves the network.
Case 4.1. If the first node inserts r4 and the second node accepts the word, then the second

node deletes r4 again and we return to situation σ4 or it deletes p1 and we reach the
situation σ5 or σ6 or the second node deletes another symbol, but then the word is lost. If
we reach the situation σ5 or σ6, the pure word has not changed and hence it is a sentential
form with a non-terminal.

Case 4.2. If the first node inserts r5 and the second node accepts the word, then the second
node deletes r5 again and we return to situation σ4 or it deletes p1 and we reach the
situation σ7 with the same pure word or the second node deletes another symbol and the
word leaves the network.

Case 5. The word in the first node has the form w1Ap4w2 with w1,w2 ∈W and p ∈ P being a
rule A→ x or A→CD. If a symbol q, r2 6= p2, r3, r4 or r5 is inserted, then the word leaves
the network.
Case 5.1. If r1 is inserted and the word is accepted by the second node, then the second

node must delete r1 or p4, otherwise we loose the word. If r1 is deleted, we have the
situation σ5 again; if p4 is deleted, we have one of the situations σ2, σ3 or σ4 with the
same pure word.

Case 5.2. If p2 is inserted but not between A and p4, the word is lost, otherwise it enters the
second node. If there p2 is deleted, we return to the situation σ5 without having changed
the pure word. If the second node deletes p4, we reach the situation σ8 with the same
pure word. If the second node deletes another symbol, we loose the word.

Case 6. The word in the first node has the form w1AqnBp4w2 where w1,w2 ∈W and p ∈ P is
a rule AB → CD. If a symbol q, r2 6= p2, r3, r4 or r5 is inserted, then the word disappears.
Case 6.1. If r1 is inserted and the word is accepted by the second node, then the second

node must delete r1 or p4, otherwise we loose the word. If r1 is deleted, we have the
situation σ6 again; if p4 is deleted, we have one of the situations σ2, σ3 or σ4 with the
same pure word.

Case 6.2. If p2 is inserted but not between B and p4, the word is lost, otherwise it enters the
second node. If there p2 is deleted, we return to the situation σ6 without having changed
the pure word. If the second node deletes p4, we reach the situation σ9 with the same
pure word. If the second node deletes another symbol, we loose the word.

Case 7. The word in the first node has the form w1Ap5w2 with w1,w2 ∈W and p = A→ λ∈P .
If a symbol r2, r3, r4 or r5 is inserted, then the word disappears.
Case 7.1. If r1 is inserted and the word is accepted by the second node, then the second node

must delete r1 or p5, otherwise the word is lost. If r1 is deleted, we have the situation σ7;
if p5 is deleted, we have one of the situations σ2, σ3 or σ4 with the same pure word.

Case 7.2. If q is inserted but not between A and p5, the word is lost, otherwise it enters the
second node. If there the q between A and p5 is deleted, we return to the situation σ7 with
the same pure word. If the second node deletes p5, we reach the situation σ10 with the
unchanged pure word. If the second node deletes another symbol, the word disappears.

Case 8. The word in the first node has the form w1Ap2w2 with w1,w2 ∈W and p ∈ P being a
rule A→ x or A→ CD. If a symbol r1 6= p1, r2, r3 6= p3, r4 6= p4 or r5 is inserted, then the
word leaves the network.

17

Case 8.1. If q is inserted between A and p2, we loose the word, if it is inserted somewhere
else, then the word remains in the node and we stay in the situation σ8 with the same
pure word.

Case 8.2. If p1 is inserted, then there are two possibilities not to loose the word:
Case 8.2.1. p = A→CA and the word contains p1CAp2 as a subword. Then the second

node deletes p1 again and we return to the situation σ8 or it deletes p2 and we obtain
the situation σ2 with the same pure word or the second node deletes the A between C
and p2, then the word moves to the third node, where this A has to be inserted again
or the word is lost. If the second node deletes another symbol, the word leaves the
network.

Case 8.2.2. p = A → x and the word contains p1Ap2 as a subword. Then the second
node deletes the A between p1 and p2 (otherwise the word disappears). The third
node inserts the A again (the we are in the same situation as before) or x at the
same position (or the word vanishes). If x is inserted between p1 and p2, then the
word moves to the second node. If there p1 or a non-terminal is deleted, the word
disappears. So, the second node has to delete p2. If no non-terminal is left, we have
reached the situation σ11, otherwise we have the situation σ3. Since we assume that
the pure word we started with is a sentential form of the grammar G, the pure word
now in situation σ11 or σ3 is a sentential form, too, because the transition in this
subcase can be regarded as a simulation of the application of the rule A → x in the
grammar G.

Case 8.3. Let the first node insert p3. Then the rule p has the form A→CD, because for the
form r = A→ x, there is no symbol r3 in the alphabet V . If p3 is inserted behind p2, the
word stays in the first node, otherwise it leaves the network. If now qs are inserted, the
word is not lost, as long as the subword Ap2p3 is not affected. The only other possibility
to insert a symbol and to keep the word is to insert p1 before A. Then, the word enters the
second node. If this node deletes p1 again, we return to the situation as before. If A 6= C,
then the only other way not to loose the word is to delete the A between p1 and p2. Then
the word moves to the third node. This node inserts A again between p1 and p2 (same
as before) or it inserts C between p1 and p2. If another insertion takes place, we loose
the word. Then, the second node receives the word containing p1Cp2p3 as a subword. If
we have A = C, then we can skip the last two rewriting and two communication steps
(deleting A and inserting C), because p1Ap2p3 and p1Cp2p3 are not distinguishable. The
second node deletes the C of this subword (if A 6= C then we get a situation we already
had, otherwise the word moves to the third node which has to insert C at the same
position again in order not to loose the word) or it deletes p3 or the word disappears.
If p3 is deleted, then the word is communicated to the third node. The only possibility
not to loose the word is to insert D between C and p2. Then the word moves to the
second node. There this D can be deleted to return to the previous situation. If p2 is
deleted, we reach the situation σ2. If p1 is deleted, then the third node does not accept
the word and the first node does it only if D = A; then we reach the situation σ8 again.
Since we assume that we started with the pure word being a sentential form, the pure
word in the new situation is a sentential form, too, because the transition in this subcase
can be seen as a simulation of the application of the rule A→ CD in the grammar G.

Case 8.4. If p4 is inserted but not behind p2, the word vanishes. If it is inserted behind p2,

18

the word moves to the second node. This node must delete p2 or p4; otherwise we would
loose the word. If p4 is deleted, we are again in the situation σ8; if p2 is deleted, we
reach the situation σ5; in both cases, the pure word is not changed.

Case 9. The word in the first node has the form w1AqnBp2w2 with w1,w2 ∈ W , n ≥ 0 and
p ∈ P being a rule AB → CD. If a q is inserted between B and p2 or a symbol r1 6= p1, r2,
r3, r4 6= p4 or r5 is inserted, then the word leaves the network. This also happens, if p1 is
inserted but not before A or p4 is inserted but not behind p2.
Case 9.1. As long as qs are inserted but not between B and p2, the word remains in the node

and neither the pure word nor the situation are changed.
Case 9.2. Suppose p1 is inserted before A. The word enters the second node. If p1 is deleted

there, we return to the situation σ9 without changing the pure word. If p2 is deleted, the
word is not lost if p = AB → AB and n = 0 where we reach the situation σ2 with the
same pure word. If a q or a non-terminal outside the subword p1AqnBp2 is deleted, the
word is lost.
Case 9.2.1. If the A of the subword is deleted, the word enters the third node. If neither A

or C is inserted behind p1, the word disappears. If A is inserted, we return to the
situation we just had. If C is inserted, the word moves to the second node. If there
this C is deleted, we return to the previous situation. If a q or a non-terminal outside
the subword p1CqnBp2 is deleted, the word disappears. If p1 is deleted, then the
word is not accepted by the third node and it is accepted by the first node only in the
case that C = A; then we have the situation σ9 again with the same pure word. If p2 is
deleted, the word does not pass the input filter of the third node and it is accepted by
the first node only if D = B and n = 0; then we have reached the situation σ2 and have
‘applied’ the rule p = AB→CB to the pure word which is assumed to be a sentential
form of the grammar G, hence we have obtained another sentential form. If the
second node deletes B from the subword p1CqnBp2, the word enters the third node.
If there this B is inserted again, we return. Otherwise, the only possibility to keep
the word is to insert D behind C. Then the word w1p1CDqnp2w2 is communicated
to the second node. If the D inserted last is deleted, we return. This is also the case,
if the node deletes C and C = D. If the node deletes C and C 6= D or it deletes
a q, p1 or a non-terminal outside the subword p1CDqnp2, then the word disappears.
If p2 is deleted, the word enters the first node and we reach the situation σ2. We
have ‘applied’ the rule p = AB → CD ∈ P to the pure word in the beginning of the
Case 9. Hence, if this word was a sentential form, we end up with another sentential
form in the situation σ2.

Case 9.2.2. If the B of the subword p1AqnBp2 is deleted, the word enters the third node,
if A = C or vanishes otherwise. If the third node inserts B again, we return. The
only other possibility to keep the word is to insert D behind A. Then, the word
w1p1ADqnp2w2 is communicated to the second node. If the D is deleted or the A
is deleted and A = D, we return to the previous situation. If the node deletes A
and A 6= D or it deletes a q, p1 or a non-terminal outside the subword p1ADqnp2,
then the word disappears. If p2 is deleted, the word enters the first node and we obtain
the situation σ2, having simulated the application of the rule p = AB → AD ∈ P to
the pure word in the beginning of the Case 9 which is assumed to be a sentential
form. Hence, we have another sentential form in the situation σ2.

19

Case 9.3. Suppose p4 is inserted behind p2. The word w1AqnBp2p4w2 enters the second
node. There, p2 or p4 has to be deleted in order to keep the word in the network. If p4 is
deleted, we return to the situation σ9; if p2 is deleted, we reach the situation σ6; in both
cases without changing the pure word.

Case 10. The word in the first node has the form w1Aqw2 with w1,w2 ∈ W and A → λ ∈ P .
If a symbol p3 or p4 is inserted, we loose the word. Otherwise, we have the following
possibilities:

Case 10.1. If the first node inserts a q, the pure word is not changed and we stay in the
situation σ10.

Case 10.2. The first node inserts p1. If the word afterwards contains a subword p1Aq where
p = A→ λ ∈ P , then the word enters the second node (note that the word is not neces-
sarily w1p1Aqw2), if not, then the word disappears. In order to keep the word ‘alive’, the
second node has to delete p1 or the A next to it on its right hand side. If p1 is deleted, we
have not changed the pure word and return to the situation σ10.

Case 10.2.1. If A is deleted but there is another non-terminal left, then the word moves to
the first node. The situation is σ4 and the pure word is the result of applying the rule
p = A→ λ ∈ P to the pure word in the beginning of the Case 10.

Case 10.2.2. If the deleted A was the last non-terminal in the word, then the word remains
in the second node and we reached the situation σ11. The pure word has been derived
from the pure word in the beginning of the Case 10 by the rule p = A → λ ∈ P .
Hence, it is a sentential form of the grammar G, if the pure word before was a sen-
tential form, too.

Case 10.3. If the first node inserts p2, then either the word leaves the network or it remains in
the first node. If it stays there, we have the situation σ8 or σ9 with the same pure word.

Case 10.4. Let the first node insert p5. If the word afterwards contains a subword Aqp5
with p = A → λ ∈ P , then the word enters the second node (note that the word is not
necessarily w1Aqp5w2), otherwise it disappears. If the second node does not delete the q
between A and p5 or p5, the word leaves the network. If it deletes p5, we return to the
situation σ10 with the same pure word. If it deletes the q between A and p5, we reach the
situation σ7 with the same pure word.

Case 11. The word in the second node has the form w1p1w2 with w1,w2 ∈ Tq and p ∈ P . As
long as the second node deletes qs, the word stays in the node and the situation does not
change (neither does the pure word). If p1 is deleted while there is still a q left, the word
disappears. If there is no q left, when p1 is deleted, then the word only consists of terminal
symbols. This terminal word is send to the first node. Hence, we have reached situation σ12.

Case 12. The word in the first node is terminal. If this node inserts a symbol p1 for a rule
p = A→ x left to a letter x, the word is accepted by the second node, which leads us to the
situation σ11. In all other cases, the word leaves the network.
Since we start with a sentential form of the grammar G in the situation σ1 and we obtain in

every situation a sentential form from another sentential form, the terminal word in the situa-
tion σ12 is a word of the language L(G) generated by G. Other terminal words are not produced.

Since every terminal word which is generated by the network N is also a sentential form
(hence a word) of the grammar G, the inclusion L(N)∩T ∗ ⊆ L(G) holds. Together with the
first part, we have proved the claim L(N)∩T ∗ = L(G). 2

20

Corollary 5.2 There is a network N of evolutionary processors with two insertion nodes and
one deletion node such that L(N) is a non-recursive language.

Proof. Since the family of recursive languages is closed under intersection with sets T ∗,
where T is an alphabet, the network constructed in the proof of Lemma 5.1 for a non-recursive
language L generates a non-recursive language. 2

Corollary 5.3 For any recursively enumerable language L there is a networkN of evolutionary
processors with four nodes which are insertion nodes and deletion nodes such that L = L(N).

Proof. The proof can be given analogously to that of Corollary 4.3. 2

Obviously, any language generated by a network of evolutionary processors with only in-
sertion and deletion nodes is recursively enumerable since arbitrary networks of evolutionary
processors only generate recursively enumerable languages. Thus we get the following state-
ment by Lemma 5.1.

Corollary 5.4 The family of networks of evolutionary processors which have only insertion and
deletion nodes coincides with the family of recursively enumerable languages. 2

6 Conclusion
In the paper we have determined the power of networks of evolutionary processors if only two
different types of nodes are used in the network. We have shown that
– up to an intersection with a monoid every recursively enumerable language can be generated

by a network with one deletion and two insertion nodes,
– networks with an arbitrary number of deletion and substitution nodes only produce finite lan-

guages, and for each finite language one deletion node or one substitution node is sufficient,
and

– networks with an arbitrary number of insertion and substitution nodes only generate context-
sensitive languages, and (up to an intersection with a monoid) every context-sensitive lan-
guage can be generated by a network with one substitution node and one insertion node.

The latter two results are optimal with respect to the minimal number of necessary nodes,
whereas it is an open problem whether or not one deletion and one insertion node are suffi-
cient to generate all recursively enumerable languages.

If one considers networks with all three types of nodes, it is known that it is not necessary to
allow all graphs. One can obtain all recursively enumerable languages if one restricts to special
graphs e. g. to those which are known as useful structures in technology as grids or rings (see
[7], [5]). Obviously, the restriction to complete graphs does not restrict the power in the case of
networks with nodes of two types, either, because the graph given in the proof of Lemma 4.2
is complete and we can extend the network of Lemma 5.1 to a language equivalent network
with a complete underlying graph (adding the edge (1,3) enforces the output filter of the first
processor to be changed to O1 = V ∗ \ (W (β′4∪β8)W); for adding the edge (3,1), no changes
are necessary). These graphs can be extended further to complete graphs according to those
given in the proofs of the Corollaries 4.3 and 5.2. Due to the input and output filters of the new
nodes, the new edges have no influence to the language generated.

21

Moreover, the graphs in the proofs of the Corollaries 4.3 and 5.2 are stars (if we ignore the
directions) which proves that the restriction to stars does not decrease the power. The same
situation holds with respect to backbones. A general investigation of special graphs remains as
a task.

Analogously, one also gets all recursively enumerable languages from networks with all
three types of nodes, if one restricts the form of the regular sets e. g. to random context sets,
where one requires the presence and/or absence of some letters in the word (see [5]). The lan-
guages we used in our proofs are more complicated since they require absence and/or presence
of some subwords. We leave as an open problem the power of networks with two types of nodes
and random context regular sets.

References
[1] A. ALHAZOV, C. MARTIN-VIDE and YU. ROGOZHIN, On the number of nodes in uni-

versal networks of evolutionary processors. Acta Inf. 43 (2006) 331–339.

[2] J. CASTELLANOS, P. LEUPOLD and V. MITRANA, On the size complexity of hybrid
networks of evolutionary processors. Theor. Comput. Sci. 330 (2005) 205–220.

[3] J. CASTELLANOS, C. MARTIN-VIDE, V. MITRANA and J. SEMPERE, Solving NP-
complete problems with networks of evolutionary processors. In: Proc. IWANN, Lecture
Notes in Computer Science 2084, Springer-Verlag, Berlin, 2001, 621–628.

[4] J. CASTELLANOS, C. MARTIN-VIDE, V. MITRANA and J. SEMPERE, Networks of evo-
lutionary processors. Acta Informatica 38 (2003) 517–529.

[5] E. CSUHAJ-VARJÚ, C. MARTIN-VIDE and V. MITRANA, Hybrid networks of evolution-
ary processors are computationally complete. Acta Informatica 41 (2005) 257–272.

[6] E. CSUHAJ-VARJÚ and A. SALOMAA, Networks of parallel language processors. In: New
Trends in formal Language Theory (Eds. GH. PĂUN and A. SALOMAA), Lecture Notes in
Computer Science 1218, Springer-Verlag, Berlin, 1997, 299–318.

[7] J. DASSOW, On special networks of parallel language processors. Romanian Journal of
Information Science and Technology 1 (1998) 331–341.

[8] J. DASSOW and GH. PĂUN, Regulated Rewriting in Formal Language Theory. Springer-
Verlag, Berlin, 1989.

[9] S. E. FAHLMANN, G. E. HINTON and T. J. SEIJNOWSKI, Massively parallel architectures
for AI: NETL, THISTLE and Boltzmann machines. In: Proc. AAAI National Conf. on AI,
William Kaufman, Los Altos, 1983, 109–113.

[10] W. D. HILLIS, The Connection Machine. MIT Press, Cambridge, 1985.

[11] M. MARGENSTERN, GH. PĂUN, YU. ROGOZHIN and S. VERLAN, Context-free
insertion-deletion systems. Theor. Comput. Sci. 330 (2005) 339–348.

22

[12] G. ROZENBERG and A. SALOMAA, Handbook of Formal Languages. Springer-Verlag,
Berlin, 1997.

23

