Modular and heterogeneous logical theories in DOL

Till Mossakowski joint work with Oliver Kutz, Mihai Codescu, Fabian Neuhaus et al.

Otto-von-Guericke-Universität Magdeburg

Augsburg, Jan 25, 2018

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the experimentation of the exp

Overview

- What is a logic?
- Model theory
- Institutions
- DOL
 - Proofs
- 6 Heterogeneity
 - Application to multi-view consistency in UML
 - Tools
 - Conclusions

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the operation operation

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- 8 Tools
- Onclusions

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the operation operation

Computer science uses logic in many ways

- programming languages
- formal specification and verification
- databases, WWW, artificial intelligence
- ontologies
- algorithms & complexity
- (semi-)automated theorem proving
- metatheory

• . . .

propositional logics $| p, \neg \phi, \phi \land \psi, \phi \lor \psi, \phi \rightarrow \psi, \top, \bot$

propositional logics	$egin{array}{lll} m{ ho}, eg \phi, m{arphi} \wedge m{arphi}, m{arphi} \vee m{arphi}, m{arphi} o m{arphi}, m{arphi}, m{arphi}, m{arphi} \end{array}$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$

propositional logics	$(oldsymbol{ ho}, eg arphi, arphi \wedge arphi, arphi ee arphi, arphi o arphi, arphi o arphi, arphi, arphi$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, i, @i.φ

propositional logics	$(oldsymbol{ ho}, eg arphi, arphi \wedge arphi, arphi \lor arphi, arphi ightarrow arphi, arphi$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$

propositional logics	$(oldsymbol{ ho}, eg arphi, arphi \wedge arphi, arphi \lor arphi, arphi ightarrow arphi, arphi$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$

propositional logics	$oxed{ ho}, eg arphi, arphi \wedge arphi, arphi ee arphi, arphi o arphi, arphi o arphi, arphi o arphi, arphi$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x. \varphi, \forall x. \varphi$

propositional logics	$oldsymbol{ ho}, eg \phi, \phi \wedge \psi, \phi \lor \psi, \phi ightarrow \psi, op, op$
modal logics	$\ldots, \Box arphi, \diamond arphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x. \varphi, \forall x. \varphi$
description logics	$C \sqsubseteq D$ $C ::= A C \sqcup D \neg C \exists R.C \dots$

propositional logics	$(oldsymbol{ ho}, eg \phi, \phi \wedge \psi, \phi \lor \psi, \phi ightarrow \psi, op, oldsymbol{ ho}, oldsymbol{ ho}$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x.\varphi, \forall x.\varphi$
description logics	$C \sqsubseteq D$ $C ::= A C \sqcup D \neg C \exists R.C \dots$
higher-order logics	$\ldots, P t, \exists P.\varphi, \forall P.\varphi, \iota x.\varphi t ::= f t \lambda x.t \ldots$

propositional logics	$egin{array}{cccccccccccccccccccccccccccccccccccc$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x.\varphi, \forall x.\varphi$
description logics	$C \sqsubseteq D$ $C ::= A C \sqcup D \neg C \exists R.C \dots$
higher-order logics	$\ldots, P t, \exists P.\varphi, \forall P.\varphi, \iota x.\varphi t ::= f t \lambda x.t \ldots$
type theories	$\ldots, \forall \alpha. \forall f : \alpha \rightarrow \alpha. \varphi$

propositional logics	$oxed{ ho}, eg arphi, arphi \wedge arphi, arphi ee arphi, arphi o arphi, arphi o arphi, arphi o arphi, arphi$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x.\varphi, \forall x.\varphi$
description logics	$C \sqsubseteq D$ $C ::= A C \sqcup D \neg C \exists R.C \dots$
higher-order logics	$\ldots, P t, \exists P.\varphi, \forall P.\varphi, \iota x.\varphi t ::= f t \lambda x.t \ldots$
type theories	, $\forall \alpha. \forall f: \alpha ightarrow \alpha. \varphi$
Hoare logics	$\{\varphi\}P\{\psi\}$ $P ::= x := t while \varphi do P $

propositional logics	$(oldsymbol{ ho}, eg \phi, oldsymbol{arphi}, \phi \wedge oldsymbol{\psi}, \phi ightarrow oldsymbol{\psi}, \phi ightarrow oldsymbol{\psi}, op, oldsymbol{arphi}, oldsymbol{arphi}$
modal logics	$\ldots, \Box \varphi, \diamond \varphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x.\varphi, \forall x.\varphi$
description logics	$C \sqsubseteq D$ $C ::= A C \sqcup D \neg C \exists R.C \dots$
higher-order logics	$\ldots, P t, \exists P.\varphi, \forall P.\varphi, \iota x.\varphi t ::= f t \lambda x.t \ldots$
type theories	, $\forall \alpha. \forall f: \alpha ightarrow \alpha. \varphi$
Hoare logics	$\{\varphi\}P\{\psi\}$ $P ::= x := t while \varphi do P \dots$
dynamic logics	$[P]\varphi, \langle P \rangle \varphi P ::= a P? PQ P \cup Q P^*$

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the event of the

propositional logics	$oldsymbol{ ho}, eg \phi,\phi\wedge\psi,\phiee\psi,\phi ightarrow\psi, op\psi, op$, $oldsymbol{ op}$,
modal logics	$\ldots, \Box arphi, \diamond arphi$
hybrid logics	, <i>i</i> , @ <i>i</i> .φ
temporal logics	$\ldots, F\varphi, G\varphi, \varphi U \psi$
QBF	$\ldots, \exists p. \phi, \forall p. \phi$
first-order logics	$\ldots, t = u, P(t_1, \ldots, t_n), \exists x. \varphi, \forall x. \varphi$
description logics	$C \sqsubseteq D$ $C ::= A C \sqcup D \neg C \exists R.C \dots$
higher-order logics	$\ldots, P t, \exists P.\varphi, \forall P.\varphi, \iota x.\varphi t ::= f t \lambda x.t \ldots$
type theories	, $\forall \alpha. \forall f: \alpha \rightarrow \alpha. \varphi$
Hoare logics	$\{\varphi\}P\{\psi\}$ $P ::= x := t while \varphi do P \dots$
dynamic logics	$[P] \varphi, \langle P \rangle \varphi P ::= a P? PQ P \cup Q P^*$
linear logic	$ert arphi, ert arphi, arphi arphi, arphi \otimes arphi, arphi \oplus arphi, arphi \& arphi, arphi \& arphi, arphi \& arphi$
•••	

What do these logics have in common?

- formulas / sentences
- entailment, logical consequence
- models
- soundness, completeness
- conservative extensions
- . . .

Are there definitions and theorems that we can

- introduce once and for all
- and then apply them to many logics?

What is a logic, after all?

Definition (Gentzen, Tarski, Scott)

An entailment relation (ER) (S, \vdash) is a binary relation $\vdash \subseteq \mathscr{P}(S) \times S$ on a set *S* of sentences.

(S, \vdash) is Tarskian, if

- reflexivity: for any $\varphi \in S$, $\{\varphi\} \vdash \varphi$,
- **2** monotonicity: if $\Gamma \vdash \varphi$ and $\Gamma' \supseteq \Gamma$ then $\Gamma' \vdash \varphi$,
- **Solution** transitivity: if $\Gamma \vdash \varphi_i$, for $i \in I$, and $\Gamma \cup \{\varphi_i \mid i \in I\} \vdash \psi$, then $\Gamma \vdash \psi$.

What is a logic, after all?

Definition (Gentzen, Tarski, Scott)

An entailment relation (ER) (S, \vdash) is a binary relation $\vdash \subseteq \mathscr{P}(S) \times S$ on a set *S* of sentences.

(S, \vdash) is Tarskian, if

- reflexivity: for any $\varphi \in S$, $\{\varphi\} \vdash \varphi$,
- **2** monotonicity: if $\Gamma \vdash \varphi$ and $\Gamma' \supseteq \Gamma$ then $\Gamma' \vdash \varphi$,
- **Solution** transitivity: if $\Gamma \vdash \varphi_i$, for $i \in I$, and $\Gamma \cup \{\varphi_i \mid i \in I\} \vdash \psi$, then $\Gamma \vdash \psi$.

Definition

A theory $\Gamma \subseteq S$ is consistent if $\Gamma \not\vdash \varphi$ for some φ .

ER for propositional logic

Example (Propositional logic)

Propositional logic (**PL**) has sentences given by the following grammar

$$\varphi ::= \rho \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \top \mid \bot$$

where *p* denotes propositional variables.

 \vdash is the minimal Tarskian entailment relation satisfying:

$$\begin{array}{ccc} \frac{\Gamma \vdash \varphi, \ \Gamma \vdash \psi}{\Gamma \vdash \varphi \land \psi} & \frac{\Gamma, \varphi \vdash \chi, \ \Gamma, \psi \vdash \chi}{\Gamma, \varphi \lor \psi \vdash \chi} & \frac{\Gamma \vdash \varphi \rightarrow \psi}{\Gamma, \varphi \vdash \psi} \\ \frac{\Gamma \vdash \neg}{\Gamma \vdash \neg} & \frac{1 \vdash \varphi}{\perp \vdash \varphi} & \frac{\Gamma \vdash \neg \varphi}{\Gamma, \varphi \vdash \bot} & \frac{\Gamma \vdash \neg \neg \varphi}{\Gamma \vdash \varphi} \end{array}$$

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concence concencence concencence concence concence concence concence concence

ER for modal logic K

Example (modal logic K)

$$\varphi ::= \rho \mid \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \to \varphi_2 \mid \top \mid \bot \mid \Box \varphi \mid \diamond \varphi$$

 \vdash is the minimal Tarskian entailment relation satisfying the rules for propositional logic plus:

$$\frac{\vdash \varphi}{\Gamma \vdash \Box(\varphi \to \psi) \to (\Box \varphi \to \Box \psi)} \quad \frac{\vdash \varphi}{\vdash \Box \varphi} \quad \frac{\Gamma \vdash \diamond \varphi}{\Gamma \vdash \neg \Box \neg \varphi}$$

Note: with multiple modalities, this is equivalent to the description logic \mathscr{ALC} .

ER for first-order logic (without function symbols)

Example (First-order logic)

$$\begin{array}{ll} t ::= & x \mid c \\ \varphi ::= & P(t_1, \dots, t_n) \mid \exists x. \varphi \mid \forall x. \varphi \mid \\ & \neg \varphi \mid \varphi_1 \land \varphi_2 \mid \varphi_1 \lor \varphi_2 \mid \varphi_1 \rightarrow \varphi_2 \mid \top \mid \bot \end{array}$$

 \vdash is the minimal Tarskian entailment relation satisfying the rules for propositional logic plus:

$$\frac{\Gamma \vdash \varphi(t)}{\Gamma \vdash \exists x. \varphi(x)} \qquad \frac{\Gamma, \varphi(c) \vdash \psi}{\Gamma, \exists x. \varphi(x) \vdash \psi} \text{ (c does not occur in Γ, φ, ψ)} \\ \frac{\Gamma \vdash \forall x. \varphi(x)}{\Gamma \vdash \varphi(t)} \qquad \frac{\Gamma \vdash \varphi(c)}{\Gamma \vdash \forall x. \varphi(x)} \text{ (c does not occur in Γ, φ)}$$

Morphisms of entailment relations

Definition

An entailment relation morphism $\alpha : (S_1, \vdash^1) \longrightarrow (S_2, \vdash^2)$ is a function $\alpha : S_1 \longrightarrow S_2$ such that

$$\Gamma \vdash^1 arphi$$
 implies $lpha(\Gamma) \vdash^2 lpha(arphi)$

If the converse holde, α is conservative. ERs and ER morphisms form a category \mathbb{ER} .

Observation:

If we have a conservative ER morphism and a theorem prover for \vdash^2 , we can borrow it for \vdash^1 .

For propositional and first-order logic, there are many automated theorem provers, but not for modal logic.

Translating modal logic K into first-order logic

Example

A conservative ER morphism Modal \rightarrow FOL is defined by

$$\begin{aligned} &\alpha_x(\rho) = \rho(x) \\ &\alpha_x(\Box \varphi) = \forall y. R(x, y) \to \alpha_y(\varphi) \\ &\alpha_x(\diamond \varphi) = \exists y. R(x, y) \land \alpha_y(\varphi) \\ &\alpha_x(\neg \varphi) = \neg \alpha_x(\varphi) \\ &\cdots \\ &\alpha(\varphi) = \forall x. \alpha_x(\varphi) \end{aligned}$$

Proof of ER property: induction over proofs. Proof of conservativity property is more complicated \Rightarrow use model theory.

Overview

What is a logic?

- 2 Model theory
- Institutions
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- 8 Tools
- Onclusions

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the operation operation

Adding model theory

Definition (Goguen, Burstall)

A satisfaction system $(S, \mathcal{M}, \models)$ consists of

- a set of *S* of sentences,
- \bullet a category ${\mathscr M}$ of models and model homomorphisms, and
- a binary relation $\models \subseteq |\mathcal{M}| \times S$, the satisfaction relation.

Definition (Logical consequence)

 $\Gamma \models \varphi$ iff for all $M \in \mathcal{M}$, $M \models \Gamma$ implies $M \models \varphi$.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of occorrection occorrection occorrection occorrection

Logics

Definition (Logic)

A logic $(S, \vdash, \mathcal{M}, \models)$ consists of

- an entailment relation (S, \vdash) , and
- a satisfaction system $(S, \mathcal{M}, \models)$,

such that soundness holds:

 $\Gamma \vdash \varphi$ implies $\Gamma \models \varphi$

A logic is complete, if

 $\Gamma \models \varphi \text{ implies } \Gamma \vdash \varphi$

Satisfaction system for propositional logic

Example (Propositional logic)

sentences as above

models maps from propositional variables to {*true*, *false*}

model homomorphisms $M_1 \rightarrow M_2$ iff $(M_1(p) = true \text{ implies } M_2(p) = true)$ satisfaction $M \models \varphi$ iff $M(\varphi) = true$ according to standard truth tables

Proposition

Propositional logic is sound and complete.

Satisfaction system for modal logic K

Example (modal logic K)

- sentences as above
- a model M consists of
 - a non-empty set W of worlds,
 - a binary accessibility relation $R \subseteq W \times W$,
 - a map maps from propositional variables and worlds to {*true*, *false*}
- satisfaction
 - $M, w \models p$ iff M(p, w) = true
 - $M, w \models \Box \varphi$ iff for all $v \in W$ with R(w, v), $M, v \models \varphi$
 - $M, w \models \diamond \varphi$ iff for somd $v \in W$ with $R(w, v), M, v \models \varphi$
 - $M, w \models \neg \phi$ iff $M, w \not\models \phi$ etc.
 - $M \models \varphi$ iff for all $w \in W$, $M, w \models \varphi$

Satisfaction system for modal logic K (cont'd)

Proposition

modal logic K is sound and complete.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the optimization to mu

Satisfaction system for first-order logic

Example (First-order logic)

- sentences as above
- models: a first-order M model consist of
 - a non-empty set |M| called universe,
 - an element $M_c \in |M|$ for each constant c,
 - an *n*-ary relation *M*_{*P*} on |*M*| for each *n*-ary predicate symbol *P*
- satisfaction
 - $M, v \models P(t_1, \ldots, t_n)$ iff $(v^{\#}(t_1), \ldots, v^{\#}(t_n)) \in M_P$
 - *M*, *v* ⊨ ∀*x*.*φ* iff for all ξ differing from *v* at most for *x*, *M*, ξ ⊨ *φ*
 - *M*, *v* ⊨ ∃*x*.*φ* iff forsome ξ differing from *v* at most for *x*,
 M, ξ ⊨ φ
 - $M, v \models \neg \phi$ iff $M, v \not\models \phi$ etc.
 - $M \models \varphi$ iff for all v, $M, v \models \varphi$

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the technologies

 co
 co

Satisfaction system for first-order logic (cont'd)

Proposition

First-order logic is sound and complete.

Morphisms of satisfaction systems

Definition (Goguen, Burstall)

A satisfaction system morphism $(\alpha,\beta): (S_1, \mathscr{M}_1, \models_1) \longrightarrow (S_2, \mathscr{M}_2, \models_2)$ consists of

- a sentence translation function $\alpha \colon S_1 \longrightarrow S_2$, and
- a model reduction functor $\beta : \mathscr{M}_2 \longrightarrow \mathscr{M}_1$, such that $M_2 \models_2 \alpha(\varphi_1) \text{ iff } \beta(M_2) \models_1 \varphi_1$

(satisfaction condition).

This gives us a category Sat of satisfaction systems and satisfaction system morphisms.

Translating modal logic K into first-order logic

Example

A satisfaction system morphism Modal \rightarrow FOL is defined by

- sentence translation as above
- a first-order model is reduced to a modal model by
 - taking the universe as set of worlds
 - taking the interpretation of the binary predicate *R* as accessibility relation
 - taking the interpretation of the unary predicate *p* as interpretation of the propositional variable *p*

Proposition

The satisfaction condition holds. Proof: induction over formulas.
 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the optimization to mu

Semantic proof of conservative ER morphism property

Theorem (Cerioli, Meseguer)

Let $(S_1, \vdash_1, \mathcal{M}_1, \models_1)$ and $(S_2, \vdash_2, \mathcal{M}_2, \models_2)$ be two sound and complete logics and a satisfaction system morphism

$$(\alpha,\beta)$$
: $(S_1,\mathscr{M}_1,\models_1) \longrightarrow (S_2,\mathscr{M}_2,\models_2)$

be given.

If β is surjectivive, then α is a conservative ER morphism

$$\alpha \colon (S_1, \vdash_1) \longrightarrow (S_2, \vdash_2).$$

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- 8 Tools
- Onclusions
We have been imprecise at various places.

We have been imprecise at various places.

Strictly speaking, we need to index over signatures. Signatures are vocabularies of non-logical (=user-defined) symbols.

We have been imprecise at various places.

Strictly speaking, we need to index over signatures. Signatures are vocabularies of non-logical (=user-defined) symbols. Entailment:

- set Sig of signatures, and
- family of ERs $(Sen(\Sigma), \vdash_{\Sigma})_{\Sigma \in Sig}$

We have been imprecise at various places.

Strictly speaking, we need to index over signatures. Signatures are vocabularies of non-logical (=user-defined) symbols. Entailment:

- set Sig of signatures, and
- family of ERs $(Sen(\Sigma), \vdash_{\Sigma})_{\Sigma \in Sig}$

Satisfaction:

- set Sig of signatures, and
- family of satisfaction systems $(\text{Sen}(\Sigma), \text{Mod}(\Sigma), \models_{\Sigma})_{\Sigma \in \text{Sig}}$

However, this is not the whole story!

Within this framework, we can study

- abstract logical connectives
- Iogic translations
- Iogic combination
- consistency strength, expressiveness

• . . .

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concerned to mu

However, this is not the whole story!

Within this framework, we can study

- abstract logical connectives
- logic translations
- Iogic combination
- consistency strength, expressiveness

• . . .

However, we cannot study

- refinements, conservative extensions
- modular logical theories
- abstract quantifiers
- Craig interpolation, Robinson consistency, Beth definability
- elementary diagrams

Ο..

Indexing over signature morphisms

Definition (Fiadeiro, Meseguer)

An entailment system is a functor $I: \text{Sig} \longrightarrow \mathbb{ER}$, where Sig is the category of signatures.

This gives us

- a graph Sig of signatures and signature morphisms,
- for each signature Σ , an identity morphism $id_{\Sigma} \colon \Sigma \longrightarrow \Sigma$,
- a composition operation \circ on signature morphisms,
- for each $\Sigma \in \text{Sig}$, an ER $(\text{Sen}(\Sigma), \vdash_{\Sigma})$,
- for each signature morphism σ₁: Σ₁ → Σ₂ ∈ Sig, an ER morphism *I*(σ): (Sen(Σ₁),⊢_{Σ1}) → (Sen(Σ₂),⊢_{Σ2}), by abuse of notation also denoted by σ.

Sample entailment systems

Example (Entailment system for propositional logic)

signatures sets of propositional variables ERs $(Sen(\Sigma), \vdash_{\Sigma})$ as before, but built over Σ ER morphisms $\sigma(\varphi)$ replaces symbols in φ along σ . We have $\Gamma \vdash_{\Sigma_1} \varphi$ implies $\sigma(\Gamma) \vdash_{\Sigma_2} \sigma(\varphi)$

Further examples: modal logic, first-order logic, and many more.

Indexing over signature morphisms (cont'd)

Definition (Goguen, Burstall)

An institution is a functor $I: \operatorname{Sig} \longrightarrow \mathbb{S}at$.

This gives us

- a graph Sig of signatures and signature morphisms, (...)
- for each Σ ∈ Sig, a satisfaction system (Sen(Σ), Mod(Σ), ⊨_Σ),

for each signature morphism σ₁: Σ₁ → Σ₂ ∈ Sig, a satisfaction system morphism
 l(σ): (Sen(Σ₁), Mod(Σ₁), ⊨_{Σ1}) → (Sen(Σ₂), Mod(Σ₂), ⊨_{Σ2}), by abuse of notation also denoted by (σ, _|_σ).

Sample institutions

Example (Institutions for propositional logic)

signatures sets of propositional variables Sat. systems $(\text{Sen}(\Sigma), \text{Mod}(\Sigma), \models_{\Sigma})$ as before, but built over Σ Sat. syst. morphisms • $\sigma(\varphi)$ replaces symbols in φ along σ • $M|_{\sigma}$ interprets p as $M|_{\sigma}(p) := M_{\sigma(p)}$ We have $M_2|_{\sigma} \models_{\Sigma_1} \varphi_1 \text{ iff } M_2 \models_{\Sigma_2} \sigma(\varphi_1)$

Further examples:

modal logic, first-order logic, and many more.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concerce concer

Indexing over signature morphisms (cont'd)

Definition (Meseguer)

A logic is an institution equipped with an entailment system, agreeing on signatures and sentences.

Abstraction via institutions

Institution independent notions and theorems, languages, calculi, and software tools

Semantics, calculi and proof tools of particular institutions

Overview

- What is a logic?
- 2 Model theory
- Institutions
- DOL
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- 8 Tools
- Onclusions

Distributed Ontology, Model and Specification Language

DOL

- DOL has been adopted as an OMG-Standard (under my leadership)
- combines modularity, interoperability and language heterogeneity
- continuous formal semantics, based on institutions
 - Ontologies, models and specifications are logical theories
- cooperation of different communities:
 - Ontologies, UML, specification

T. Mossakowski, C. Lange, O. Kutz (2012). Three Semantics for the Core of the Distributed Ontology Language, FOIS 2012. Best paper award

Structured ontologies, models, specifications (OMS) over an arbitrary institution

mathematical notation			type of OMS	DOL notation
0	::=	$\langle \Sigma, \Gamma \rangle$	basic OMS	logic specific
		$O_1 \cup O_2$	union	O_1 and O_2
		$\sigma(O)$	translation	${\cal O}$ with σ
		$O _{\sigma}$	hiding	${\cal O}$ hide σ

Note: O_1 then $\langle \Sigma, \Gamma \rangle$ is similar to O_1 and $\langle \Sigma, \Gamma \rangle$ (but Σ can be signature fragment)

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the optimization to mu

... and their semantics

Definition (Signature and model class of an OMS)

 $\begin{array}{l} Sig(\langle \Sigma, \Gamma \rangle) = \Sigma\\ \mathrm{Mod}(\langle \Sigma, \Gamma \rangle) = \{ M \in \mathrm{Mod}(\Sigma) \mid M \models \Gamma \} \end{array}$

$$Sig(O_1 \cup O_2) = Sig(O_1) = Sig(O_2)$$

 $Mod(O_1 \cup O_2) = Mod(O_1) \cap Mod(O_2)$

$$Sig(\sigma \colon \Sigma_1 \longrightarrow \Sigma_2(O)) = \Sigma_2$$

 $Mod(\sigma(O)) = \{M \in Mod(\Sigma_2) \mid M|_{\sigma} \in Mod(O)\}$

$$\begin{array}{l} Sig(O|_{\sigma \colon \Sigma_1 \longrightarrow \Sigma_2}) = \Sigma_1\\ \operatorname{Mod}(O|_{\sigma \colon \Sigma_1 \longrightarrow \Sigma_2}) = \{M|_{\sigma} \mid M \in \operatorname{Mod}(O)\} \end{array}$$

Unions

O1 and O2: union of two stand-alone OMS

- Signatures (and axioms) are united
- model classes are intersected
- difference to extensions: there, O₂ needs to be basic

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concence conce

Translations

A translation O with σ renames O along σ

- σ is a signature morphism
- in practice, σ is a symbol map, from which one can compute a signature morphism

```
ontology BankOntology =
   Class: Bank Class: Account ... end
ontology RiverOntology =
   Class: River Class: Bank ... end
ontology Combined =
   BankOntology with Bank |-> FinancialBank
   and
   RiverOntology with Bank |-> RiverBank
        %% necessary disambiguation when uniting OMS
```

Hiding (preparation)

logic CASL.FOL= %right_assoc(__::__)% spec PartialOrder = sort Elem; pred __leq__ : Elem * Elem forall x,y,z:Elem . x leg x %(refl)% . x leq y /\ y leq x => x = y (antisym). x leq y /\ y leq z => x leq z %(trans)% spec TotalOrder = PartialOrder then forall x,y:Elem . x leq y // y leq x // x=y %(trichotomy)% **spec** List = **sort** Elem free type List ::= [] | ___::__(Elem; List) pred ___elem__ : Elem * List forall x,y:Elem; L,L1,L2:List . not x elem [] . x elem (y :: L) <=> x=y \/ x elem L

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concence conce

Hiding (cont'd)

```
spec AbstractSort =
 TotalOrder and List
then %def
  preds is_ordered : List;
        permutation : List * List
 op sorter : List->List
  forall x,y:Elem; L,L1,L2:List
  . is_ordered([])
  . is_ordered(x::[])
  . is_ordered(x::y::L) <=> x leq y /\ is_ordered(y::L)
  . permutation(L1,L2) <=>
            (forall x:Elem . x elem L1 <=> x elem L2)
  . is_ordered(sorter(L))
  . permutation(L,sorter(L))
hide is_ordered, permutation
end
```

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concence conce

Logical notions for OMS

Definition (Logical consequence for OMS)

$$O \models \varphi$$
 iff $M \models \varphi$ for all $M \in Mod(O)$

Definition (OMS refinement)

 $O \longrightarrow O'$ iff $Mod(O') \subseteq Mod(O)$

Intended Consequences in Propositional Logic

- logic Propositional
- spec JohnMary =

 - . sunny /\ weekend => john_tennis %(when_tennis)%
 - . john_tennis => mary_shopping %(when_shopping)%
 - . saturday %(it_is_saturday)%
 - . sunny %(it_is_sunny)%
 - . mary_shopping %(mary_goes_shopping)% %implied

end

Full specification at https://ontohub.org/esslli-2016/Propositional/ leisure_structured.dol

A Countermodel

- logic Propositional
- spec Countermodel =

 - . sunny
 - . not weekend
 - . not john_tennis
 - . not mary_shopping
 - . saturday

end

This OMS has exactly one model, and hence can be seen as a syntactic description of this model.

Repaired OMS

logic Propositional

spec JohnMary =

- . sunny /\ weekend => john_tennis %(when_tennis)%
- . john_tennis => mary_shopping %(when_shopping)%
 . saturday %(it_is_saturday)%
- . sunny %(it_is_sunny)%
- . saturday => weekend %(sat_weekend)%
- . mary_shopping %(mary_goes_shopping)% %implied
 end

Intended Consequences in FOL

```
logic CASL.FOL=
spec BooleanAlgebra =
  sort Flem
  ops 0.1 : Elem:
       __ cap __ : Elem * Elem -> Elem, assoc, comm, unit 1;
       __ cup __ : Elem * Elem -> Elem, assoc, comm, unit 0;
  forall x,y,z:Elem
  . x cap (x cup y) = x %(absorption_def1)%
  . x cup (x cap y) = x %(absorption_def2)%
  . x cap 0 = 0
                     %(zeroAndCap)%
  x \, cup \, 1 = 1
                               %(oneAndCup)%
  x \operatorname{cap}(v \operatorname{cup} z) = (x \operatorname{cap} v) \operatorname{cup}(x \operatorname{cap} z)
                                 %(distr1_BooleanAlgebra)%
  x \operatorname{cup}(y \operatorname{cap} z) = (x \operatorname{cup} y) \operatorname{cap}(x \operatorname{cup} z)
                                 %(distr2_BooleanAlgebra)%
  . exists x' : Elem . x cup x' = 1 /\ x cap x' = 0
                                 %(inverse_BooleanAlgebra)%
  x = x
                                 %(idem_cup)% %implied
                                 %(idem_cap)% %implied
  x cap x = x
end
```

https://ontohub.org/esslli-2016/FOL/OrderTheory_structured.dol

Structuring Using Extensions

logic Propositional **spec** JohnMary_TBox = %% general rules props sunny, weekend, john_tennis, mary_shopping, saturday %% declaration of signature . sunny /\ weekend => john_tennis %(when_tennis)% john_tennis => mary_shopping %(when_shopping)% . saturday => weekend %(sat_weekend)% end spec JohnMary_ABox = %% specific facts JohnMary_TBox then

- . saturday %(it_is_saturday)%
- . sunny %(it_is_sunny)%
- . mary_shopping %(mary_goes_shopping)% %**implied**

end

Implied Extensions in Prop

logic Propositional spec JohnMary_variant = props sunny, weekend, john_tennis, mary_shopping, saturday %% declaration of signature sunny /\ weekend => john_tennis %(when_tennis)% john_tennis => mary_shopping %(when_shopping)% . saturdav => weekend $%(sat_weekend)$ % then . saturday %(it_is_saturday)% %(it_is_sunny)% . sunny then %implies %(mary_goes_shopping)% . mary_shopping

end

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concension co

Theory Morphisms

Definition

A theory morphism $\sigma : (\Sigma_1, \Gamma_1) \to (\Sigma_2, \Gamma_2)$ is a signature morphism $\sigma : \Sigma_1 \to \Sigma_2$ such that

for $M \in Mod(\Sigma_2, \Gamma_2)$, we have $M|_{\sigma} \in Mod(\Sigma_1, \Gamma_1)$

Extensions are theory morphisms:

 (Σ,Γ) then $(\Delta_{\Sigma},\Delta_{\Gamma})$

leads to the theory morphism

$$(\Sigma,\Gamma) \xrightarrow{\iota} (\Sigma \cup \Delta_{\Sigma}, \iota(\Gamma) \cup \Delta_{\Gamma})$$

Proof: $M \models \iota(\Gamma) \cup \Delta_{\Gamma}$ implies $M|_{\iota} \models \Gamma$ by the satisfaction condition.

Interpretations (views, refinements)

- interpretation *name* : O_1 to $O_2 = \sigma$
- σ is a signature morphism (if omitted, assumed to be identity)
- expresses that σ is a theory morphism $\mathcal{O}_1 o \mathcal{O}_2$
- logic CASL.FOL=
 spec RichBooleanAlgebra =
 DealeanAlgebra
 - BooleanAlgebra
- then %def
 - pred ___ <= ___ : Elem * Elem;</pre>
 - forall x,y:Elem

```
. x <= y <=> x cap y = x %(leq_def)%
```

end

```
interpretation order_in_BA :
```

PartialOrder to RichBooleanAlgebra

end

Sorting (cont'd)

Formal design specification for sorting:

```
spec InsertSort = List then
 ops insert : Elem*List -> List;
     insert sort : List->List
 vars x,y:Elem; L:List
  . insert(x, []) = x::[]
  x = x:= x:= x
  . not x leq y => insert(x,y::L) = y::insert(x,L)
  . insert_sort([]) = []
  . insert_sort(x::L) = insert(x,insert_sort(L))
hide insert
```

end

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the operation operation

Correctness

Is insert sort correct w.r.t. the sorting specification?

interpretation correctness_int :
 AbstractSort to InsertSort
end

refinement correctness_ref =
 AbstractSort refined to InsertSort
end

Two notational variants with the same semantics.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concerce concer

Criterion for Theory Morphisms

Theorem

A signature morphism $\sigma:\Sigma_1\to\Sigma_2$ is a theory morphism $\sigma:(\Sigma_1,\Gamma_1)\to(\Sigma_2,\Gamma_2)$ iff

$$\Gamma_2 \models_{\Sigma_2} \sigma(\Gamma_1)$$

Proof.

By the satisfaction condition.

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs
- 6 Heterogeneity
- 7 Application to multi-view consistency in UML
- 8 Tools
- Onclusions

Proof calculus for entailment (Borzyszkowski)

$$(CR) \frac{\{O \vdash \varphi_i\}_{i \in I} \{\varphi_i\}_{i \in I} \vdash \varphi}{O \vdash \varphi} \quad (basic) \frac{\varphi \in \Gamma}{\langle \Sigma, \Gamma \rangle \vdash \varphi}$$
$$(sum1) \frac{O_1 \vdash \varphi}{O_1 \cup O_2 \vdash \varphi} \qquad (sum2) \frac{O_1 \vdash \varphi}{O_1 \cup O_2 \vdash \varphi}$$
$$(trans) \frac{O \vdash \varphi}{\sigma(O) \vdash \sigma(\varphi)} \qquad (derive) \frac{O \vdash \sigma(\varphi)}{O_{|\sigma} \vdash \varphi}$$

Soundness means: $O \vdash \varphi$ implies $O \models \varphi$ Completeness means: $O \models \varphi$ implies $O \vdash \varphi$

Proof calculus for refinement (Borzyszkowski)

$$\begin{array}{ll} (\textit{Basic}) & \frac{O \vdash \Gamma}{\langle \Sigma, \Gamma \rangle \rightsquigarrow O} & (\textit{Sum}) & \frac{O_1 \rightsquigarrow O & O_2 \rightsquigarrow O}{O_1 \cup O_2 \rightsquigarrow O} \\ (\textit{Trans}) & \frac{O \rightsquigarrow O'|_{\sigma}}{\sigma(O) \rightsquigarrow O'} \\ (\textit{Derive}) & \frac{O \rightsquigarrow O''}{O|_{\sigma} \rightsquigarrow O'} & \text{if } \sigma \colon O' \longrightarrow O'' \\ & \text{is a conservative extension} \end{array}$$

Soundness means: $O_1 \rightsquigarrow O_2$ implies $O_1 \rightsquigarrow O_2$ Completeness means: $O_1 \rightsquigarrow O_2$ implies $O_1 \rightsquigarrow O_2$

Craig-Robinson interpolation

Definition

A commutative square admits Craig-Robinson interpolation, if for all finite $\Psi_1 \subseteq \text{Sen}(\Sigma_1), \Psi_2, \Gamma_2 \subseteq \text{Sen}(\Sigma_2)$, if (0), then there exists a finite $\Psi \subseteq \text{Sen}(\Sigma)$ with (1) and (2).

If has Craig-Robinson interpolation if all signature pushouts admit Craig-Robinson interpolation.
Soundness and Completeness

Theorem (Borzyszkowski, Tarlecki, Diaconescu)

Under the assumptions that

- the institution admits Craig-Robinson interpolation,
- the institution is weakly semi-exact, and
- the entailment system is complete,

the calculus for structured entailment and refinement is sound and complete.

For refinement, we need an oracle for conservative extensions. Weak semi-exactness = Mod maps pushouts to weak pullbacks
 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the operation operation

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs

6 Heterogeneity

- Application to multi-view consistency in UML
- 8 Tools
- Onclusions

Heterogeneous OMS

Definition

A heterogeneous logical environment (\mathcal{HLE}) is diagram of institutions, morphisms and comorphisms.

Institution morphisms (projections)

Institution morphisms

Institution comorphisms (encodings) Institution comorphisms

Some \mathcal{HLE} for ontologies

Some \mathscr{HLE} for UML and Java

Heterogeneous structuring operations

heterogeneous translation: For any \mathscr{I} -OMS O, $\rho(O)$ is a OMS with:

 $Sig[
ho(O)] := \Phi(Sig[O])$

$$Mod[
ho(O)] := eta_{Sig[O]}^{-1}(Mod[O])$$

heterogeneous hiding: For any \mathscr{I}' -OMS O' and signature Σ with $Sig[O'] = \Phi(\Sigma), O'|_{\rho}^{\Sigma}$ is a OMS with:

 $egin{array}{lll} Sig[O'|^{\Sigma}_{
ho}] &:= \Sigma \ Mod[O'|^{\Sigma}_{
ho}] &:= eta_{\Sigma}(Mod[O']) \end{array}$

A heterogeneous proof calculus

$$\begin{array}{l} (\textit{het-trans}) \ \displaystyle \frac{O \vdash \varphi}{\rho(O) \vdash \alpha(\varphi)} \\ (\textit{borrowing}) \ \displaystyle \frac{\rho(O) \vdash \alpha(\varphi)}{O \vdash \varphi} \\ (\textit{Het-snf}) \ \displaystyle \frac{O' \vdash \sigma(\alpha(\varphi))}{O \vdash \varphi} \end{array}$$

$$(\textit{het-derive}) \; \frac{\textit{O} \vdash \alpha(\phi)}{\textit{O}|_{\rho}^{\Sigma} \vdash \phi}$$

if ρ is model-expansive

if
$$\textit{hsnf}(\mathcal{O}) = (\mathcal{O}'|_{\sigma})|_{
ho}^{\Sigma}$$

A heterogeneous proof calculus for refinement

$$\begin{array}{l} (\textit{Het-Trans}) \; \frac{O \leadsto O'|_{\rho}^{\Sigma}}{\rho(O) \leadsto O'} \\ (\textit{Het-Derive}) \; \frac{O \leadsto O''}{O|_{\rho}^{\Sigma} \leadsto O'} \quad \ \ \begin{array}{l} \mathbf{i} \\ \mathbf{i} \\ \mathbf{i} \end{array}$$

if $\rho: O' \longrightarrow O''$ is a conservative extension

Conservativity of $\rho = (\Phi, \alpha, \beta)$: $O' \longrightarrow O''$ means that for each model $M' \in Mod(SP')$, there is a model $M'' \in Mod(SP'')$ with $\beta(M'') = M'$.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concension concensio concensi concension concension concension concension concension c

Heterogeneous completeness

Theorem

For a heterogeneous logical environment

 $\mathscr{HLE}: \mathscr{G} \longrightarrow \operatorname{co}\mathscr{INS}$ (with some of the institutions having entailment systems), the proof calculi for heterogeneous OMSs are sound for \mathscr{IHLE}/\equiv . If

- *HLE* is quasi-exact,
- all institution comorphisms in HLE are weakly exact,
- there is a set L of institutions in HLE that come with complete entailment systems,
- O all institutions in \mathscr{L} are quasi-semi-exact,
- from each institution in HLE, there is some model-expansive comorphism in HLE going into some institution in L,

the proof calculus for entailments between heterogeneous OMSs and sentences is complete over $\mathscr{IHL}^{\mathscr{HLE}}$.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the experimentation of the exp

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- 8) Tools
- Onclusions

Is a family of UML models consistent?

(d) Protocol state machine

(e) State machine

Is a family of UML models consistent?

(d) Protocol state machine

(e) State machine

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concension co

UML multi-view consistency through DOL networks: sequence diagrams and class diagrams

model ATM2Bank_Scenario_cd =
 ATM2Bank_Scenario hide along sd2cd %% institution morphism
end

refinement r0 =
 sig { ATM2Bank_Scenario_cd } refined to User_Interface
end

refinement r1 =

{ User_Interface reveal sig { ATM2Bank_Scenario_cd } }
refined to ATM2Bank_Scenario_cd

end

Semantics of refined to: Theory morphism

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concension co

State machines

```
model ATM stm =
 User Interface with translation cd2stm
then
 ATM Behaviour
end
model Bank stm =
 User Interface with translation cd2stm
then
  Bank Behaviour
end
```

Semantics of **with translation** cd2stm: Translation along institution comorphism

Composite Structure Diagram

model System =

ATM_stm with translation stm2cmp with cid |-> atm and

Bank_stm with translation stm2cmp with cid |-> bank
then

cmp

end

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concension co

State machines vs. sequence diagram

%% the sequence diagram can be realised by

- %% the two state machines
- %% as combined by the composite structure diagram

refinement r2 =

ATM_Bank_Interaction refined to

```
{ System hide along cmp2sd }
```

end

A network of OMS and mappings

```
%% multi-view consistency
network N = %consistent
User_Interface, ATM_stm, Bank_stm, System,
ATM_Bank_Interaction, r0, r1, r2
end
```

Realisation of a network = family of realisations, one for each node, that is compatible along the edges

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concension concensi concension concensi concension concensi concension conc

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- Tools
- Conclusions

Tool support: Heterogeneous Tool Set (Hets)

- available at http://hets.eu
- speaks DOL, propositional logic, OWL, CASL, Common Logic, QBF, modal logic, UML, MOF, QVT, and other languages
- analysis of native documents and DOL documents
- computation of colimits (combinations of networks)
- management of proof obligations
- interfaces to theorem provers, model checkers, model finders

Architecture of the heterogeneous tool set Hets

Tool support: Ontohub web portal and repository

Ontohub is a web-based repository engine for distributed heterogeneous (multi-language) OMS web-based prototype available at ontohub.org multi-logic speaks the same languages as Hets multiple repositories ontologies can be organized in multiple repositories, each with its own management of editing and ownership rights, Git interface version control of ontologies is supported via interfacing the Git version control system. linked-data compliant one and the same URL is used for referencing an ontology, downloading it (for use with tools), and for user-friendly presentation in the browser.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of concension concensi concension concensi concension concensi concension conc

Overview

- What is a logic?
- 2 Model theory
- Institutions
- 4 DOL
- 5 Proofs
- 6 Heterogeneity
- Application to multi-view consistency in UML
- 8 Tools
 - Conclusions

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concension concensi concension concensi concension concensi concension conc

Conclusions

- DOL is a meta language for (formal) ontologies, specifications and models (OMS)
- DOL covers many aspects of modularity of and relations among OMS ("OMS-in-the large")
- DOL is standardized at OMG
- institutions form the semantic basis of DOL
- you can help with joining the DOL discussion
 - see dol-omg.org
- open research problem: proof calculus and tool support for all of DOL

Overview of DOL: Toolkit in Summary

OMS (ontologies, models, specifications)

- basic OMS, written as-is (flattenable)
- references to named OMS (by URL)
- extensions, unions, translations (flattenable)
- reductions, minimization, maximization (elusive)
- approximations, module extractions, filterings (flattenable)
- combinations of networks (flattenable)
- OMS mappings (between OMS)
 - interpretations, refinements, alignments, ...
- OMS networks (based on OMS and mappings)
- OMS libraries (based on OMS, mappings, networks)
 - OMS definitions (giving a name to an OMS)
 - definitions of interpretations, refinements, alignments
 - definitions of networks, entailments, equivalences, ...

What is a logic? Model theory Institutions DOL Proofs Heterogeneity Application to multi-view of concerce concer

DOL Resources

- http://omg.org/spec/DOL Official OMG page for DOL
- http://dol-omg.org Central page for DOL
- http://hets.eu Analysis and Proof Tool Hets, speaking DOL
- http://ontohub.org Ontohub web platform, speaking DOL
- http://ontohub.org/dol-examples DOL examples
- http://ontoiop.org Initial standardization initiative
- https://ontohub.org/esslli-2016 ESSLLI repository of DOL examples

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the openance of

OMS in DOL

```
OMS ::= \langle I, \Sigma, \Gamma \rangle %% basic OMS in institution I
         OMS then \langle I, \Sigma, \Gamma \rangle % extension of OMS
         OMS and OMS %% intersection of realisation classes
         OMS with \sigma \ll \sigma: signature morphism
         OMS with translation \rho \% \rho: institution comorphism
         OMS hide \Sigma | OMS reveal \Sigma
         OMS hide along \mu \% \mu: institution morphism
         OMS remove \Sigma | OMS extract \Sigma
         OMS forget \Sigma | OMS keep \Sigma
         OMS keep /
         OMS reject \Sigma | OMS select \Sigma
        free { OMS } %% initial semantics
         minimize { OMS } %% McCarthy's circumscription
         logic l : { OMS }
         combine Network %% colimit of diagram
```

Institutional model theory

In an arbitrary institution (possibly with some extra infrastructure), one can study:

- abstract quantifiers
- elementary diagrams
- elementary embeddings
- ultraproducts, Łos' theorem
- saturated models
- varieties, Birkhoff axiomatizability
- Craig interpolation, Robinson consistency, Beth definability
- Gödel's completeness theorem

R. Diaconescu. *Institution-independent Model Theory*. Birkhäuser Basel, 2008.

 What is a logic?
 Model theory
 Institutions
 DOL
 Proofs
 Heterogeneity
 Application to multi-view of the optimization to mu

Main references

- J. Goguen and R. Burstall. Institutions: abstract model theory for specification and programming. J.ACM 39, 1992.
- Till Mossakowski, Mihai Codescu, Fabian Neuhaus and Oliver Kutz. The Distributed Ontology, Modeling and Specification Language – DOL. In: A. Koslow and A. Buchsbaum, editors, The Road to Universal Logic, pages 489-520. Birkhäuser, 2015.
- Alexander Knapp and Till Mossakowski. Multi-view Consistency in UML. A Survey. In: R. Heckel and G. Taentzer, editors, Formal Methods for Software Systems, volume 10800, series Lecture Notes in Computer Science, pages 1-25. Springer Verlag, 2018.