
Ontohub
A semantic repository for heterogeneous ontologies

Till Mossakowski, Oliver Kutz, and Mihai Codescu

Institute of Knowledge and Language Engineering
Otto-von-Guericke University of Magdeburg, Germany

Abstract. Ontohub is a repository engine for managing distributed het-
erogeneous ontologies. The distributed nature enables communities to
share and exchange their contributions easily. The heterogeneous nature
makes it possible to integrate ontologies written in various ontology lan-
guages. It supports a wide range of formal logical and ontology languages
building on the OntoIOp.org project and allows for complex inter-theory
(concept) mappings and relationships with formal semantics.
Ontohub aims at satisfying a subset of the requirements for an Open On-
tology Repository (OOR). OOR is a long-term international initiative,
which has not resulted in a complete implementation so far, but estab-
lished requirements and designed an architecture. Furthermore, Onto-
hub is being developed in close connection with the Distributed Ontol-
ogy Language, which is going to be submitted as response to the Object
Management Group’s Ontology, Model and Specification Integration and
Interoperability (OntoIOp) Request For Proposal.

1 Introduction

Ontologies play a central role for enriching data with a conceptual semantics and
hence form an important backbone of the Semantic Web. Now the number of
ontologies that are being built or already in use is steadily growing. This means
that facilities for organizing ontologies into repositories, searching, maintenance
and so on are becoming more important.

Existing ontology search engines and repositories include search engines like
Swoogle, Watson, and Sindice. They concentrate on (full-text and structured)
search and querying. TONES [1] is a repository for OWL [8] ontologies that
provides some metrics, as well as an OWL sublanguage analysis. BioPortal [20]
is a repository that originates in the biomedical domain, but now has instances
for various domains. Beyond browsing and searching, it provides means for com-
menting and aligning ontologies. Besides OWL, also related languages like OBO
[22] are supported. The NeOn Toolkit [2] supports searching, selecting, compar-
ing, transforming, aligning and integrating ontologies. Besides OWL, also F-logic
[11] is supported. Ontohub’s design and architecture are intended to consolidate
the strengths of these various repositories (e.g. support for specific languages,
support for mappings, social semantic web features, etc.) in one uniform frame-
work while at the same time addressing their shortcomings (e.g. lack of formal
semantics).



Namely, Ontohub enjoys the following distinctive features:

– ontologies can be organized in multiple repositories, each with its own man-
agement of editing and ownership rights,

– private repositories are possible,
– version control of ontologies is supported via interfacing the Git version

control system,
– ontologies can be edited both via the browser and locally with any editor

(and in the latter case pushed via Git); Git will synchronize both editing
approaches,

– one and the same URL is used for referencing an ontology, downloading it
(for use with tools), and for user-friendly presentation in the browser (i.e.
Ontohub is fully linked-data compliant)

– modular and distributed ontologies are specially supported,
– ontologies can not only be aligned (as in BioPortal and NeOn), but also be

combined along alignments,
– logical relations between ontologies (interpretation of theories, conservative

extensions etc.) are supported,
– support for a variety of ontology languages, in particular OWL, RDF, Com-

mon Logic [9], first-order logic, and relational database schemes; (in prepa-
ration are: UML, F-logic, distributed description logics, E-connections),

– ontologies can be translated to other ontology languages, and compared with
ontologies in other languages,

– heterogeneous ontologies involving several languages can be built,
– ontology languages and ontology language translations are first-class citizens

and are available as linked data.

Ontohub’s central means for achieving this generality is based on the theoreti-
cal foundations underlying the distributed ontology language (DOL), introduced
in Section 3 below.

Users of Ontohub can upload, browse, search and annotate basic ontologies in
various languages via a web frontend, see https://ontohub.org. Ontohub is open
source under GNU AGPL 3.0 license, the sources are available at the following
URL https://github.com/ontohub/ontohub.

2 Ontohub: a linked-data compliant repository engine

Ontohub is not a repository, but a semantic repository engine. This means that
Ontohub ontologies are organized into repositories. See Fig. 1 for an overview
of the currently available repositories. Some of them, e.g. Bioportal or COL-
ORE, are mirrors of repositories hosted elsewhere (as indicated with the mirror
items), while the others are native Ontohub repositories. The organisation into
repositories has several advantages:

– Firstly, repositories provide a certain structuring of ontologies, let it be the-
matically or organisational. Access rights can be given to users or teams of
users per repository. Typically, read access is given to everyone, and write

2



Fig. 1. Overview of Ontohub repositories

access only to a restricted set of users and teams. However, also completely
open world-writeable repositories are possible, as well as private repositories
visible only to a restricted set of users and teams. Since creation of repos-
itories is done easily with a few clicks, this supports a policy of many but
small repositories (which of course does not preclude the existence of very
large repositories). Note that also structuring within repositories is possible,
since each repository is a complete file system tree.

– Secondly, repositories are git repositories. Git is a popular decentralised ver-
sion control system. With any git client, the user can clone a repository to
her local hard disk, edit it with any editor, and push the changes back to
Ontohub. Alternatively, the web frontend can be used directly to edit on-
tologies; pushing will then be done automatically in the background. Parallel
edits of the same file are synchronized and merged via git; handling of merge
conflicts can be done with git merge tools.

– Thirdly, ontologies can be searched globally in Ontohub, or in specific repos-
itories. Additionally, user-supplied metadata like categories, formality levels
and purposes can be used for searching.

3



Ontohub is linked-data compliant. This means that ontologies are refer-
enced by a unique URL of the form https://ontohub.org/name-of-repository/

path-within-repository. Depending on the MIME type of the request, under
this URL, the raw ontology file will be available, but also a HTML version for
display in a browser, an XML and a JSON version for processing with tools.

3 The Distributed Ontology Language (DOL) – Overview

Fig. 2. ontohub.org portal: overview of logics

The modularity mechanisms
of Ontohub are based on those
of the Distributed Ontology
Language (DOL). DOL aims
at providing a unified frame-
work for (1) ontologies for-
malized in heterogeneous log-
ics, (2) modular ontologies,
(3) links between ontologies,
and (4) annotation of ontolo-
gies.

An ontology in the Dis-
tributed Ontology Language
(DOL) consists of modules
formalized in basic ontol-
ogy languages, such as OWL
(based on description logic)
or Common Logic (based on
first-order logic with some

second-order features). These modules are serialized in the existing syntaxes
of these languages in order to facilitate reuse of existing ontologies. DOL adds
a meta-level on top, which allows for expressing heterogeneous ontologies and
links between ontologies.1 Such links include (heterogeneous) imports and align-
ments, conservative extensions (important for the study of ontology modules),
and theory interpretations (important for reusing proofs). Thus, DOL gives on-
tology interoperability a formal grounding and makes heterogeneous ontologies
and services based on them amenable to automated verification. The basic syn-
tax and semantics of DOL can be found in [18, 17], and the general theory of
heterogeneous specifications for ontologies in [12]. DOL uses internationalized
resource identifiers (IRIs) for all its entities in order to foster linked data com-
pliance.

1 The languages that we call “basic” ontology languages here are usually limited to
one logic and do not provide meta-theoretical constructs.

4



3.1 Case study: ontology alignment in Ontohub

The foundational ontology (FO) repository Repository of Ontologies for MULti-
ple USes (ROMULUS)2 contains alignments between a number of foundational
ontologies, expressing semantic relations between the aligned entities. We se-
lect three such ontologies, containing spatial and temporal concepts: DOLCE3,
GFO4 and BFO5, and present alignments between them using DOL syntax:

%prefix(

gfo: <http://www.onto-med.de/ontologies/>

dolce: <http://www.loa-cnr.it/ontologies/>

bfo: <http://www.ifomis.org/bfo/>

)%

logic OWL

alignment DolceLite2BFO :

dolce:DOLCE-Lite.owl

to

bfo:1.1 =

endurant = IndependentContinuant,

physical-endurant = MaterialEntity,

physical-object = Object, perdurant = Occurrent,

process = Process, quality = Quality,

spatio-temporal-region = SpatiotemporalRegion,

temporal-region = TemporalRegion, space-region = SpatialRegion

alignment DolceLite2GFO :

dolce:DOLCE-Lite.owl to gfo:gfo.owl =

particular = Individual, endurant = Presential,

physical-object = Material_object, amount-of-matter = Amount_of_substrate,

perdurant = Occurrent, quality = Property,

time-interval = Chronoid, generic-dependent < necessary_for,

part < abstract_has_part, part-of < abstract_part_of,

proper-part < has_proper_part, proper-part-of < proper_part_of,

generic-location < occupies, generic-location-of < occupied_by

alignment BFO2GFO :

bfo:1.1 to gfo:gfo.owl =

Entity = Entity, Object = Material_object,

ObjectBoundary = Material_boundary, Role < Role ,

Occurrent = Occurrent, Process = Process, Quality = Property

SpatialRegion = Spatial_region, TemporalRegion = Temporal_region

We can then combine the ontologies while taking into account the semantic
dependencies given by the alignments using DOL combinations:
2 See http://www.thezfiles.co.za/ROMULUS/home.html
3 See http://www.loa.istc.cnr.it/DOLCE.html
4 See http://www.onto-med.de/ontologies/gfo/
5 See http://www.ifomis.org/bfo/

5



ontology Space =

combine BFO2GFO, DolceLite2GFO, DolceLite2BFO

Fig. 3. Combination of ontologies along alignments.

Fig. 3 shows the graph of links between ontologies created by Ontohub as a
result of analysis of the Space ontology, which appears in the center of the graph.
Around it and linking to it there are the aligned ontologies together with the
diagrams resulting from the analysis of the alignments.6

4 The Distributed Ontology Language (DOL) –
Foundations

4.1 Logics

The large variety of logics in use can be captured at an abstract level using the
concept of logic syntax, which we introduce below. This allows us to develop
results independently of the particularities of a logical system. The main idea is
to collect the non-logical symbols of the language in signatures and to assign to
each signature the set of sentences that can be formed with its symbols. For each
6 Details on the construction of these diagrams can be found in [?].

6



signature, we provide means for extracting the symbols it consists of, together
with their kind. Signature morphisms are mappings between signatures. We do
not assume any details except that signature morphisms can be composed and
there are identity morphisms; this amounts to a category of signatures. Readers
unfamiliar with category theory may replace this with a partial order (signa-
ture morphisms are then just inclusions). See [17] for details of this simplified
foundation.

Definition 1. A logic syntax L = (Sign,Sen,Symbols,Kinds,Sym,kind)
consists of

– a category Sign of signatures and signature morphisms;
– a sentence functor7 Sen : Sign → Set assigning to each signature the set

of its sentences and to each signature morphism σ : Σ → Σ′ a sentence
translation function Sen(σ) : Sen(Σ)→ Sen(Σ′);

– a set Symbols of symbols and a set Kinds of symbol kinds together with a
function kind : Symbols→ Kinds giving the kind of each symbol;

– a functor Sym : Sign→ Set assigning to each signature Σ a set of symbols
Sym(Σ) ⊆ Symbols.

A logic syntax can be complemented with a model theory, which introduces
semantics for the language and gives a satisfaction relation between the mod-
els and the sentences of a signature. The result is a so-called institution [5].
Similarly, we can complement a logic syntax with a proof theory, introducing
a derivability relation between sentences, thus obtaining an entailment system
[15]. In particular, this can be done for all logics in use in Ontohub.

Example 1. OWL signatures consist of sets of atomic classes, individuals and
properties. OWL signature morphisms map classes to classes, individuals to in-
dividuals, and properties to properties. For an OWL signature Σ, sentences are
subsumption relations between classes, membership assertions of individuals on
classes and pairs of individuals in properties. Sentence translation along a sig-
nature morphism is simply replacement of non-logical symbols with their image
along the morphism. The kinds of symbols are class, individual, object property
and data property, respectively, and the set of symbols of a signature is the union
of its sets of classes, individuals and properties.

In this framework, an ontology O over a logic syntax L is a pair (Σ,E)
where Σ is a signature and E is a set of Σ-sentences. Given an ontology O,
we denote by Sig(O) the signature of the ontology. An ontology morphism σ :
(Σ1, E1)→ (Σ2, E2) is a signature morphism σ : Σ1 → Σ2 such that σ(E1) is a
logical consequence of E2. Several notions of translations between logics can be
introduced. In the case of logic syntaxes, the simplest variant of translation from
L1 to L2 maps L1-signatures to L2-signatures along a functor Φ and Σ-sentences
in L1 to Φ(Σ)-sentences in L2, for each L1-signature Σ, in a compatible way
with the sentence translations along morphisms. The complexity of translation
7 If running between partial orders, a functor is just a mapping.

7



Fig. 4. The part of the LoLa ontology concerning mappings

increases when a model theory or a proof theory is added to the logic syntax.
Fig. 4 shows the inferred class hierarchy below the class Mapping of the LoLa
ontology (see Sect. 4.3 below), as computed within protégé. Mappings are
split along the following dichotomies:
– translation versus projection: a translation embeds or encodes a logic into

another one, while a projection is a forgetful operation (e.g. the projec-
tion from first-order logic to propositional logic forgets predicates with arity
greater than zero). Technically, the distinction is that between institution
comorphisms and morphisms [6].

– plain mapping versus simple theoroidal mapping [6]: while a plain mapping
needs to map signatures to signatures, a simple theoroidal mapping maps
signatures to theories. The latter therefore allows for using “infrastructure
axioms”: e.g. when mapping OWL to Common Logic, it is convenient to rely
on a first-order axiomatization of a transitivity predicate for properties etc.
Mappings can also be classified according to their accuracy, see [16] for de-

tails. Sublogics are the most accurate mappings: they are just syntactic subsets.
Embeddings come close to sublogics, like injective functions come close to sub-
sets. A mapping can be faithful in the sense that logical consequence (or logical
deduction) is preserved and reflected, that is, inference systems and engines for
the target logic can be reused for the source logic (along the mapping). (Weak)
exactness is a technical property that guarantees this faithfulness even in the
presences of ontology structuring operations [3].

4.2 A Graph of Logic Translations
Fig. 5 is a revised and extended version of the graph of logics and translations
introduced in [16]. New nodes include UML class diagrams, OWL-Full (i.e. OWL

8



with an RDF semantics instead of description logic semantics), and Common
Logic without second-order features (CL−). We have defined the translations
between all of these logics in earlier publications [18, 16]. The definitions of the
DOL-conformance of some central standard ontology languages and translations
among them will be given as annexes to the standard, whereas the majority will
be maintained in an open registry (cf. Sec. 4.3).

CL

HOL

Prop

SROIQ
(OWL 2 DL)

FOL=

FOLms=

OBOOWL

EL++
(OWL 2 EL)

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

DDLOWL

ECoOWL

ECoFOL

F-logic

bRDF

RDF

RDFS

OWL-Full

EER

subinstitute

theoroidal subinstitute

simultaneously exact and 
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic 

OBO 1.4

CASL

UML-CD

CL-

Schema.org

Fig. 5. The logic translation graph for DOL-conforming languages

4.3 A Registry for Ontology Languages and Mappings

The OntoIOp standard is not limited to a fixed set of ontology languages. It
will be possible to use any (future) logic or mapping (in the sense of Sect. 4)
with DOL. This led to the idea of setting up a registry to which the community
can contribute descriptions of any logics and mappings. Moreover, logics can
support ontology languages (e.g. SROIQ(D) [8] supports OWL), which can in
turn have different serializations. All these notions are part of the LoLa ontology.
LoLa turns Ontohub itself into part of the Semantic Web: it is mostly written
in RDF (the data part) and OWL (the concepts), but also contains first-order
parts. We use RDF and OWL reasoners in order to derive new facts in LoLa. A
full description and discussion of the LoLa ontology can be found in [13].

Fig. 6 shows the top-level classes of LoLa’s OWL module, axiomatising log-
ics, languages, and mappings to the extent possible in OWL. Object-level classes
(that is, classes providing the vocabulary for expressing distributed ontologies)
comprise ontologies, their constituents (namely entities, such as classes and ob-
ject properties, and sentences, such as class subsumptions), as well as links
between ontologies. Mappings are modelled by a hierarchy of properties cor-

9



Fig. 6. Top-level classes in the OWL ontology

responding to the different types of edges in Fig. 5; see also Fig. 4. The full LoLa
ontology is available at http://purl.net/dol/1.0/rdf#.

5 Heterogeneous DOL ontologies

Many (domain) ontologies are written in DLs such as SROIQ and its profiles.
These logics are characterised by having a rather fine-tuned expressivity, ex-
hibiting (still) decidable satisfiability problems, whilst being amenable to highly
optimised implementations.

However, expressivity beyond standard DLs is required for many founda-
tional ontologies (as well as bio-medical ontologies), including Dolce, BFO8

and GFO. Moreover, for practical purposes, these foundational ontologies also
come in different versions ranging in expressivity, typically between OWL (e.g.
Dolce Light, BFO-OWL) and first-order (Dolce, GFO) or even second-order
logic (BFO-Isabelle).

The relation between such different versions, OWL and first-order, may be
recorded in various ways. In some cases it is primarily discussed in the research
literature, see the mereo-topological ontology of Keet [10] for an example, or
it is described in the OWL ontology within a comment, however not carrying
formal semantics. In the latter case, the comment might only contain an informal
explanation of how the OWL approximation was obtained (Dolce Light would
be an example), but it might also describe a fully formal, axiomatised first-order
extension of the OWL ontology. We here briefly describe this last scenario taking
the example of BFO-OWL, and show how this information can be faithfully
re-written into a heterogeneous DOL ontology with formal semantics.

Consider the object property ‘temporalPartOf’ found in BFO-OWL. The
OWL axiomatisation states this to be a transitive subproperty of ‘occurent-
PartOf’, and the inverse of ‘hasTemporalPart’.9 This property is however anno-
tated in a rich way, containing example usages, a richer first-order axiomatisation
of this property with pointers to the corresponding axioms in the first-order ver-
sion, as well as natural language rephrases of these axioms. The DOL ontology
below captures the logical part of this annotation as follows: the specification
‘BFO-OWL’ first lists the entire OWL axiomatisation of the ontology. In a second
8 See http://www.ifomis.org/bfo/
9 Indeed, ‘parthood’ being typically understood as an anti-symmetric relation in mere-
ology is the canonical example of a relation that cannot be adequately formalised in
OWL, and a corresponding comment can be found in many bio-medical ontologies.

10



step, the specification ‘BFOWithAssociatedAxioms’ imports BFO-OWL along
a translation to Common Logic, and subsequently extends the resulting first-
order version of BFO-OWL with the first-order axioms previously only listed as
comments. As a result, we obtain a two-level specification of BFO, the original
OWL part (being supported by OWL reasoners) and the full first-order part
in CLIF Common Logic syntax (amenable to first-order theorem proving and
non-conservatively extending the OWL consequences).

logic OWL

ontology BFO-OWL =

. . .
ObjectProperty: temporalPartOf Transitive

SubPropertyOf: occurentPartOf

InverseOf: hasTemporalPart

. . .
end

logic CommonLogic

ontology BFOWithAssociatedAxioms =

BFO-OWL with OWL2CommonLogic then

. . .
(forall (x y) (if (properTemporalPartOf x y)

(exists (z) (and (properTemporalPartOf z y)

(not (exists (w)

(and (temporalPartOf w x) (temporalPartOf w z)

)))))))

(iff (properTemporalPartOf a b) (and (temporalPartOf a b) (not (= a b))))

(iff (temporalPartOf a b) (and (occurrentPartOf a b)

(exists (t) (and (TemporalRegion t) (occupiesSpatioTemporalRegion a t)))

(forall (c t1) (if (and (Occurrent c) (occupiesSpatioTemporalRegion c t1)

(occurrentPartOf t1 r))

(iff (occurrentPartOf c a) (occurrentPartOf c b))))))

. . .

Note, however, that the extension to a first-order version is not always as
straightforward as in the example just described. The first-order axioms found in
the annotation of the property ‘occurentPartOf’ contain both a binary relation
‘occurentPartOf’ as well as a ternary, temporalised relation ‘occurentPartOf’
(this is allowed in the Wild West syntax of CLIF). Whilst this also can be easily
turned into a two-level DOL specification, what is typically missing is bridging
axioms formalising the formal relationship between the temporalised and non-
temporalised version of the relation. However, adding such bridging axioms and
establishing formal interpretations between OWL and first-order versions of an
ontology is precisely a feature and the strength of the DOL language.

11



6 Architecture of Ontohub

The Ontohub front-end providing the web interface is implemented in Ruby on
Rails. Efficient indexing and searching is done via an interface to Apache Lucene
– currently Tomcat/Solr, in the future elasticsearch. The database backend is
PostgreSQL, but in principle any database supported by Rails (e.g. MySQL,
SQLite) could be used. The parsing and inference backend is the Heterogeneous
Tool Set (Hets [19], available at http://hets.eu). Hets supports a large number
of basic ontology languages and logics, and is capable of describing the structural
outline of an ontology from the perspective of DOL, which is not committed to
one particular logic (see Sect. 3).

A simplified version of the Ontohub database schema is shown in Fig. 7.
On the left, one has logics and logic mappings (with source and target logic)
— each ontology has a logic. Users, teams, permissions and keys (which are
ssh keys regulating the git access to Ontohub) follow, and lead to repositories.
Each ontology belongs to a repository, while a repository may comprise many
ontologies. This many-to-one relationship is illustrated with circles and arrows at
the tips of the link. Ontologies can have different versions, and each version has
been created by a specific user and is tied to commits in the git version control
system. On the right hand side, you see the different ontology metadata, like
categories, formality levels, tools, tasks etc. On the right at the bottom, there
are the basic ingredients of ontologies: sentences and symbols. The middle of the
bottom shows links between ontologies with their versions. Each link provides a
mapping of the symbols in the respective ontologies.

Fig. 7. Subset of the Ontohub database schema

In the long run, the architecture of Ontohub will follow that of the Open
Ontology Repository (OOR) initiative. This initiative aims at “promot[ing] the
global use and sharing of ontologies by (i) establishing a hosted registry-repository;
(ii) enabling and facilitating open, federated, collaborative ontology repositories,
and (iii) establishing best practices for expressing interoperable ontology and
taxonomy work in registry-repositories, where an ontology repository is a facil-
ity where ontologies and related information artifacts can be stored, retrieved
and managed” [21]. OOR aims at supporting multiple ontology languages, in-
cluding OWL and Common Logic. OOR is a long-term initiative, which has not

12



Fig. 8. Architecture of the Open Ontology Repository (OOR)

resulted in a complete implementation so far10, but established requirements
and designed an architecture, see Fig. 8.11

The key feature of the OOR architecture is the decoupling into decentralised
services, which are ontologically described (thus arriving at Semantic Web ser-
vices). With Ontohub, we are moving towards this architecture, while keeping a
running and usable system. Fig. 9 depicts the new Ontohub architecture, which
will be realized as a set of decoupled RESTful services12, while Ontohub is still
at the center of the architecture.

A federation API allows the data exchange with among Ontohub and also
BioPortal instances. We therefore have generalised the OWL-based BioPortal
API to arbitrary ontology languages, e.g. by abstracting classes and object prop-
erties to symbols of various kinds. Parsing and static analysis is a service of its
own, returning the symbols and sentences of an ontology in XML format. Hets
can do this for a large variety of ontology languages, while the OWL API does
scale better for very large OWL ontologies. That is, some enhanced services may
be provided for a restricted set of ontology languages. This is also the case for
presentation: while Ontohub has a language-independent presentation, WebPro-
tégé provides an enhanced presentation for OWL ontologies. We plan to add
enhanced presentation layers for other languages as well (e.g. following the Sig-
ma/SUMO environment for first-order logic). We have already integrated OOPS!
[?] as an ontology evaluation service (for OWL only), and from the OOPS! API,
we have derived a generalised API for use with other evaluation services.

Local inference is done by encapsulating standard batch-processing reasoners
(Pellet, Fact, SPASS, Vampire etc.) into a RESTful API, as well as through
10 The main implementation used by OOR is BioPortal, which however does not follow

the OOR principles very much.
11 See http://tinyurl.com/OOR-Requirement and http://tinyurl.com/OOR-Candidate3,

respectively
12 See http://tinyurl.com/onto-arch for detailed API specifications, however not linked

to the LoLa ontology yet. OOR already provides an ontologically enriched API.

13



Fig. 9. Ontohub in a network of web services
Hets (which has been interfaced with 15 different reasoners). The integration
of interactive provers bears many challenges; a first step is the integration of
Isabelle via the web interface Clide [14] developed by colleagues in Bremen,
which is currently equipped with an API for this purpose. Distributed inference
is done via Hets. For example, if an interpretation between two ontologies shall
be proved, Hets computes what this means in terms of local inferences, and
propagates suitable proof obligations to individual ontologies.

Finally, the persistence layer is based on Git (via git-svn, also Subversion
repositories can be used). Git provides version control and branching of versions.
We have equipped Git with a web interface13, such that ontology versions can
be directly edited and committed. Moreover, users can also use a Git repository
on their local machine, and commits will be immediately available in Ontohub.

7 Conclusion and Future Work

Ontohub will be the basis of several coordinated efforts: we intend to set up
an instance SpacePortal.org for ontologies in the spatial domain, and Concept-
Portal.org for concept blending (see http://www.coinvent-project.eu). We also
will use federation with BioPortal to integrate biomedical ontologies into Onto-
hub. Then, with BioPortal’s rich collection of alignments, Ontohub’s ontology
combination feature can be systematically used and evaluated. The FOIS 2014
ontology competition has used Ontohub as platform for uploading ontologies
used in submissions, see https://ontohub.org/fois-ontology-competition. On-
tologies used in FOIS papers often need expressiveness beyond OWL; here, the
multi-logic nature of Ontohub is essential.

Ontohub plays a double role: it is a repository for ontologies and for on-
tology languages, their underlying logics, and their translations. Currently, the
13 See https://github.com/eugenk/bringit

14



logics supported by Ontohub are those supported by a corresponding Haskell
implementation in the Hets. In the future, we plan to use a logical framework
for the purely declarative specification of both logics and translations [4], easing
the integration of new logics into Ontohub and simultaneously providing a for-
mal reference and a machine-processable description, thus deepening the role of
Ontohub not only being about the Semantic Web, but also part of it.

Acknowledgements

The development of Ontohub and DOL is supported by the German Research
Foundation (DFG), Project I1-[OntoSpace] of the SFB/TR 8 “Spatial Cogni-
tion”. The project COINVENT acknowledges the financial support of the Future
and Emerging Technologies (FET) programme within the Seventh Framework
Programme for Research of the European Commission, under FET-Open Grant
number: 611553.

The authors would moreover like to thank the OntoIOp working group for
their valuable input, particularly Michael Grüninger, Maria Keet, Christoph
Lange, Fabian Neuhaus and Peter Yim. We also thank the OOR community and
the Ontology Summit 2013 Hackathon participants, especially Ken Baclawski,
María Poveda Villalon and Peter Yim. Last but not least, we thank Hardik
Balar, Ingo Becker, Christian Clausen, Daniel Couto Vale, Sascha Graef, Timo
Kohorst, Julian Kornberger, Eugen Kuksa, Christian Maeder, Henning Müller,
Tim Reddehase and Sören Schulze for doing the implementation work.

References

1. The Tones repository. http://www.inf.unibz.it/tones.
2. The NeOn Ontology Engineering Toolkit, 2008. http://www.neon-project.org/.
3. Tomasz Borzyszkowski. Logical systems for structured specifications. Theoretical

Computer Science, 286:197–245, 2002.
4. M. Codescu, T. Mossakowski, and O. Kutz. A categorical approach to ontology

alignment. In Proc. of the 9th International Workshop on Ontology Matching (OM-
2014). CEUR-WS, 2014. To appear.

5. Mihai Codescu, Fulya Horozal, Michael Kohlhase, Till Mossakowski, and Florian
Rabe. Project abstract: Logic atlas and integrator (LATIN). In James H. Dav-
enport, William M. Farmer, Josef Urban, and Florian Rabe, editors, Intelligent
Computer Mathematics 18th Symposium, Calculemus 2011, and 10th International
Conference, MKM 2011, Bertinoro, Italy, July 18-23, 2011. Proceedings, volume
6824 of Lecture Notes in Computer Science, pages 289–291. Springer-Verlag Berlin
Heidelberg, 2011.

6. J. Goguen and G. Rosu. Institution morphisms. Formal aspects of computing,
13:274–307, 2002.

7. J. A. Goguen and R. M. Burstall. Institutions: Abstract model theory for speci-
fication and programming. Journal of the Association for Computing Machinery,
39:95–146, 1992. Predecessor in: LNCS 164, 221–256, 1984.

8. Ian Horrocks, Oliver Kutz, and Ulrike Sattler. The Even More Irresistible SROIQ.
In Proc. of the 10th Int. Conf. on Principles of Knowledge Representation and
Reasoning (KR2006), pages 57–67. AAAI Press, June 2006.

15



9. Information technology – Common Logic (CL): a framework for a family of logic-
based languages, 2007. ISO/IEC 24707:2007.

10. C Maria Keet and Alessandro Artale. Representing and reasoning over a taxonomy
of part–whole relations. Applied Ontology, 3(1):91–110, 2008.

11. Michael Kifer and Georg Lausen. F-logic: a higher-order language for reasoning
about objects, inheritance, and scheme. In ACM SIGMOD Record, volume 18,
pages 134–146. ACM, 1989.

12. O. Kutz, T. Mossakowski, and D. Lücke. Carnap, Goguen, and the Hyperontolo-
gies: Logical Pluralism and Heterogeneous Structuring in Ontology Design. Logica
Universalis, 4(2), 2010. Special issue on ‘Is Logic Universal?’.

13. Christoph Lange, Till Mossakowski, and Oliver Kutz. LoLa: A Modular Ontology
of Logics, Languages, and Translations. In Thomas Schneider and Dirk Walther,
editors, Workshop on modular ontologies, volume 875 of CEUR-WS online proceed-
ings, 2012.

14. Christoph Lüth and Martin Ring. A web interface for Isabelle: The next generation.
In Intelligent Computer Mathematics, pages 326–329. Springer Berlin Heidelberg,
2013.

15. José Meseguer. General logics. In H. J. Ebbinghaus, editor, Logic Colloquium ’87,
pages 275–329. North Holland, 1989.

16. Till Mossakowski and Oliver Kutz. The Onto-Logical Translation Graph. In Oliver
Kutz and Thomas Schneider, editors, Modular Ontologies, number 230 in Frontiers
in Artificial Intelligence and Applications, pages 94–109. IOS Press, September
2011.

17. Till Mossakowski, Oliver Kutz, and Christoph Lange. Semantics of the distributed
ontology language: Institutes and institutions. In Narciso Martí-Oliet and Miguel
Palomino, editors, Recent Trends in Algebraic Development Techniques, 21th In-
ternational Workshop, WADT 2012, volume 7841 of Lecture Notes in Computer
Science, pages 212–230. Springer, 2013.

18. Till Mossakowski, Christoph Lange, and Oliver Kutz. Three Semantics for the Core
of the Distributed Ontology Language. In Maureen Donnelly and Giancarlo Guiz-
zardi, editors, 7th International Conference on Formal Ontology in Information
Systems (FOIS), volume 239 of Frontiers in Artificial Intelligence and Applica-
tions, pages 337–352. IOS Press, 2012. FOIS Best Paper Award.

19. Till Mossakowski, Christian Maeder, and Klaus Lüttich. The Heterogeneous Tool
Set. In Orna Grumberg and Michael Huth, editors, TACAS 2007, volume 4424
of Lecture Notes in Computer Science, pages 519–522. Springer-Verlag Heidelberg,
2007.

20. Natalya F Noy, Nigam H Shah, Patricia L Whetzel, Benjamin Dai, Michael
Dorf, Nicholas Griffith, Clement Jonquet, Daniel L Rubin, Margaret-Anne Storey,
Christopher G Chute, et al. Bioportal: ontologies and integrated data resources at
the click of a mouse. Nucleic acids research, 37(suppl 2):W170–W173, 2009.

21. Open Ontology Repository (OOR), 2012.
22. María Poveda-Villalón, Mari Carmen Suárez-Figueroa, and Asunción Gómez-

Pérez. Validating Ontologies with OOPS! In Knowledge Engineering and Knowl-
edge Management, pages 267–281. Springer, 2012.

23. Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard, William Bug,
Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia Ireland, Christopher J
Mungall, et al. The OBO Foundry: coordinated evolution of ontologies to support
biomedical data integration. Nature biotechnology, 25(11):1251–1255, 2007.

16


