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Abstract. The notion of module extraction has been studied exten-
sively in the ontology community. The idea is to extract, from a large
ontology, those axioms that are relevant to certain concepts of interest
(formalised as a subsignature). The technical concept used for the defi-
nition of module extraction is that of inseparability, which is related to
indistinguishability known from observational specifications.

Module extraction has been studied mainly for description logics and
the Web Ontology Language OWL. In this work, we generalise previous
definitions and results to an arbitrary inclusive institution. We reveal
a small inaccuracy in the formal definition of inseparability, and show
that some results hold in an arbitrary inclusive institution, while others
require the institution to be weakly union-exact.

This work provides the basis for the treatment of module extraction
within the institution-independent semantics of the distributed ontology,
modeling and specification language (DOL), which is currently under
submission to the Object Management Group (OMG).

1 Introduction

Goguen’s and Burstall’s invention of the concept of institution to formalise the
notion of logical system has stimulated a research programme with the general
idea that modular structuring of complex specifications can be studied largely
independently of the details of the underlying logical system. José Meseguer
has made important contributions to institutions and their translations [1-4, 7,
11-15,19], and to the study of module systems over arbitrary institutions, see
especially [7]. His contributions have been inspiring for our work, and and some of
his papers are among those we cite most frequently. In the present work, we study
modularity over an arbitrary institution using a concept of inseparability, which
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has some resemblance to José’s notion of indistinguishability [22] of protocols,
although context and technical details are very different. This paper is dedicated
to José on the occasion of his 65th birthday — our congratulations and best
wishes, José!

The notion of modularity studied in the specification community is modular-
ity by construction: complex specifications are formed from basic specifications
(which are simply logical theories in some institution) by means of specification-
building operations [7, 20, 21].

In the ontology community, a different notion of modularity has emerged:
while even large ontologies with tens of thousands of axioms are often formalised
as flat logical theories, the notion of ontological module extraction [27] provides
an a posteriori extraction of relevant parts of ontologies. Module extraction has
been studied mainly for description logics, but first attempts for first-order logic
have also been made.

In the present paper, we try to cast module extraction in the institution-
independent framework and compare it with module notions from specification
theory. This work thereby also provides a semantics for certain modularity con-
cepts and constructs in the distributed ontology, modeling and specification lan-
guage DOL [16,17], which is currently under submission as a standard to the
Object Management Group (OMG).

The problem of module extraction can be phrased as follows: given a subset
X of the signature of an ontology, find a (minimal) subset of that ontology that is
“relevant” for the terms in Y. For example, the size of well-established ontologies
such as SNOWMED CT® or GALENS makes it difficult for current tools to
navigate through them on a standard computer. Therefore, in an application
where only a specific subset of the terms in such huge ontologies is used, it is
more practical to reuse only those parts that cover all the knowledge about that
subset of relevant terms.

The key concept of “relevance” may be formalised in different ways. We
will not discuss in any detail here approaches based on syntactic structure of
axioms and hierarchy of concepts [6, 25, 26]. Instead, we will focus on logic-based
modules, for which relevance amounts to entailment (or model) preservation
over a signature Y. That is, given an ontology O, when we say that a module
M (which is a subset of O) “is relevant for” the terms in X', we mean that all
consequences of O that can be expressed over Y are also consequences of M.
Then O is said to be a conservative extension (CE) of M. A stronger property
is that every model of M extends to a model of O— we refer to this as model
conservative extension.

One of the reasons why one might be interested in modularity aspects of an
ontology is for reusing information about relevant terms it captures. Reusing a
module M C O within another ontology O’ is referred to in the literature as
the module importing scenario. In this scenario, the signature X' used to extract
M from O acts as the interface signature between O’ and O in the sense that

® http://ihtsdo.org/snomed-ct/
5 http://www.opengalen.org/



it contains the set of terms that one is interested in reusing and that might be
shared between O’ and O.

Example 1.1. Assume that we have the following OWL-ontology O:

Male = Human ' —Female, Father C Human,
Human C Vhas_child.Human, Father = Male ' 3has_child. T

For readers not familiar with OWL, we provide the translation to first-order logic:

Vz.Male(z) <+ Human(z) A =Female(x),
Vz.Father(x) — Human(x),
Vz.Human(z) — Vy.has_child(z,y) — Human(y)
Va.Father(x) +» Male(z) A Jy.has_child(z, y)

Now further assume that we are interested in the terms in X' = {Male, Human,
Female, has_child}. Then the subset M containing only the grey shaded axioms
is a X-module of O. Indeed, one can show that O has the same X'-consequences
as M. For example, Male M Jhas_child. T C Human follows from O, but also from
M. ad

Ideally, an imported module M should be as small as possible while still guar-
anteeing to capture all the relevant knowledge w.r.t. X. Importing M into O’
would have the same observable effect as importing the entire ontology O, e.g.,
one should get the same answers to a query in both cases.

Observe that the logical view appears to be theoretically sound and elegant
and guarantees that by reusing only terms from X' one is not able to distinguish
between importing M and importing O into some ontology O’.

This paper contributes the generalization of central notions of ontology mod-
ule extraction to an arbitrary institution. While doing this, we were also able to
correct a small inaccuracy appearing in the definition of inseparability used in
the literature. Our paper is organized as follows: in Sect. 2, we recall institutions
and inclusion systems (the latter leading to a set-theoretic flavour of signatures,
which is generally assumed in the ontology community). Sect. 3 studies conser-
vative extensions and inseparability as a prequisite for module extraction, which
is studied in Sect. 4, together with some robustness properties. Sect. 5 concludes
the paper.

2 Institutions

The large variety of logical languages in use can be captured at an abstract level
using the concept of institutions [8]. This allows us to develop results indepen-
dently of the specific features of a logical system. We use the notions of institution
and logical language interchangeably throughout the rest of the paper.

The main idea is to collect the non-logical symbols of the language in sig-
natures and to assign to each signature the set of sentences that can be formed



using its symbols. Informally, in typical examples, each signature lists the sym-
bols it consists of, together with their kinds. Signature morphisms are mappings
between signatures. We do not assume any details except that signature mor-
phisms can be composed and that there are identity morphisms; this amounts to
a category of signatures. Readers unfamiliar with category theory may replace
this with a partial order; signature morphisms are then just inclusions. See [18]
for details of this simplified foundation.

Institutions also provide a model theory, which introduces semantics for the
language and gives a satisfaction relation between the models and the sentences
of a signature. The main restriction imposed is the satisfaction condition, which
captures the idea that truth is invariant under change of notation (and enlarge-
ment of context) along signature morphisms. This relies on two further compo-
nents of institutions: the translation of sentences along signature morphisms, and
the reduction of models against signature morphisms (generalising the notion of
model reduct known from logic).

Definition 2.1. An institution [8] is a quadruple I = (Sign, Sen, Mod, |=)
consisting of the following:

— a category Sign of signatures and signature morphisms;

— a functor Sen: Sign — Set” giving, for each signature X, the set of sen-
tences Sen (X)), and for each signature morphism o: X — X', the sentence
translation map Sen(o): Sen(X) — Sen(X’), where Sen(c)(p) is often
written as o();

— a functor Mod: Sign® — Cat® giving, for each signature X, the category of
models Mod(X), and for each signature morphism o: X — X', the reduct
functor Mod(c): Mod(X’) — Mod(Y), where Mod(o)(M’) is often writ-
ten as M'|,. Then M'|, is called the o-reduct of M’, while M’ is called a
o-expansion of M'|,; and

— a satisfaction relation =5 C |Mod(X)| x Sen(X) for each X € |Sign]|,

such that for each o: X — X’ in Sign the following satisfaction condition
holds:

() M Eso(e)iff Mo Ex ¢
for each M' € IMod(X")| and ¢ € Sen(X). O

As usual, the satisfaction relation between models and sentences determines a
semantic notion of consequence: for any signature X € [Sign|, a X-sentence
v € Sen(Y) is a (semantic) consequence of a set of X-sentences ¢ C Sen(X),
written @ =5 ¢, if for each model M € [Mod(X)|, M =5 ¢ whenever M =5 &
(i.e., M |Ex o for all ¢ € ). This is an example of how logical notions can be
defined in an arbitrary institution. It is easy to see that semantic consequence
is preserved under translation w.r.t. signature morphisms: given o: X — X' if

7 Set is the category having sets as objects and functions as arrows.
8 Cat is the category of categories and functors. Strictly speaking, Cat is a quasicate-
gory (which is a category that lives in a higher set-theoretic universe).



P =5 ¢ then o(P) Ex+ 0(p). The opposite implication does not hold in general
though.

It is also possible to complement an institution with a proof theory, introduc-
ing a derivability or deductive consequence relation between sentences, formalised
as an entailment system [13]. In particular, this can be done for the institutions
presented below.

Several institution-independent languages for structured theories have been
defined, see e.g. [7,21]. One of them is the distributed ontology, modeling and
specification language DOL [17], which also provides language constructs for
module extraction.

Ezxample 2.2. In the institution Prop of propositional logic, signatures are sets of
propositional variables and signature morphisms are functions. Models are val-
uations into {T, F'} and model reduct is just composition. Sentences are formed
inductively from propositional variables by the usual logical connectives. Sen-
tence translation means replacement of propositional variables along the signa-
ture morphism. Satisfaction is the usual satisfaction of a propositional sentence
under a valuation. O

Example 2.3. OWL signatures consist of sets of atomic classes, individuals, ob-
ject and data properties. OWL signature morphisms map classes to classes, indi-
viduals to individuals, object properties to object properties and data properties
to data properties. For an OWL signature X, sentences include subsumption re-
lations between classes or properties, membership assertions of individuals in
classes and pairs of individuals in properties, and complex role inclusions. Sen-
tence translation along a signature morphism simply replaces non-logical sym-
bols with their image along the morphism. The kinds of symbols are class, indi-
vidual, object property and data property, respectively, and the set of symbols of
a signature is the union of its sets of classes, individuals and properties. Models
are (unsorted) first-order structures that interpret concepts as unary and prop-
erties as binary predicates, and individuals as elements of the universe of the
structure, and satisfaction is the standard satisfaction of description logics. This
gives us an institution for OWL.

Strictly speaking, this institution captures OWL 2 DL without restrictions in
the sense of [23]. The reason is that in an institution, sentences can be used
for arbitrary formation of theories. This is related to the presence of union as a
specification-building operation, which is also present in DOL. OWL 2 DL’s spe-
cific restrictions on theory formation can be modelled inside this institution, as
a constraint on ontologies (theories). This constraint is generally not preserved
under unions or extensions. DOL’s multi-logic capability allows the clean dis-
tinction between ordinary OWL 2 DL and OWL 2 DL without restrictions. ad

Example 2.4. Inthe institution FOL™ of many-sorted first-order logic with equal-
ity, signatures are many-sorted first-order signatures, consisting of a set of sort
and sorted operation and predicate symbols. Signature morphisms map sorts,
operation and predicate symbols in a compatible way. Models are many-sorted



first-order structures. Sentences are closed first-order formulae with atomic for-
mulae including equality between terms of the same sort. Sentence translation
means replacement of symbols along the signature morphism. A model reduct
interprets a symbol by first translating it along the signature morphism and then
interpreting it in the model to be reduced. Satisfaction is the usual satisfaction
of a first-order sentence in a first-order structure. ad

A presentation in an institution I = (Sign,Sen,Mod, |=) is a pair P =
(X, ®), where X' € |Sign| is a signature and ¢ C Sen(X) is a set of X-sentences.
X is also denoted as Sig(P), ¢ as Ax(P). We extend the model functor to presen-
tations and write Mod (X, ®) (or sometimes Mod(®) if the signature is clear)
for the full subcategory of Mod(X) that consists of the models of (X, ®), i.e.,
[Mod(5,®)| = {M & [Mod()| | M -5 @},

A presentation morphism o: (X,®) — (X',&') is a signature morphism
o: X — X' such that for all models M’ € [Mod(X',?')|, M’|, € |[Mod(X,P)|.
This defines the category Pres of presentations in I. An easy consequence of
the satisfaction condition is that presentation morphisms preserve semantic con-
sequence:

Proposition 2.5. o: (X,P) — (X', 9) is a presentation morphism iff for all
Y-sentences @, if @ =5 ¢ then &' =5 o(p). O

BEach presentation (X, ®) generates a theory (X, cl=(®)), where cl(®) =
{¢ € Sen(X) | ¢ Ex ¢} is the closure of ¢ under semantic consequence. The
category Th of theories in I is the full subcategory of Pres with objects (X, @)
such that @ is closed under semantic consequence. The closure under semantic
consequence extends to the functor cl_: Pres — Th, which together with the
inclusion Th < Pres establishes the equivalence between Pres and Th.

A presentation morphism o: (X, P) — (X', 9') is model-conservative if for
each model M € |[Mod(X,®)| there is a model M’ € [Mod(X’,®’)| that is a o-
expansion of M, i.e., M'|, = M. A presentation morphism o: (X, ®) — (X', &)
is consequence-conservative if for all X-sentences ¢ € Sen(X), & =5 ¢ whenever
@' =5 o(p) (the opposite implication always holds).

Proposition 2.6. If a presentation morphism is model-conservative then it is
consequence-conservative as well. a

The opposite implication does not hold in general: model-conservativity is a
strictly stronger notion than consequence-conservativity. However, in some log-
ics, the two notions may coincide:

Ezample 2.7. In the institution Prop of propositional logic (see Example 2.2), a
presentation morphism is model-conservative iff it is consequence-conservative.
Consider a presentation morphism o: (V,®) — (V/,®') in Prop. Assume that o is
not model-conservative, and let m: V' — {T, F'} be such that m |= ¢ and m has
no o-expansion to a model of ¢'. For each propositional variable p € V, let ¢y,
be p if m(p) =T and —p if m(p) = F. Counsider ¥’ = &' U {o(om,) | p € V}.
Since there is no model m’: V' — {T, F'} such that m’' = @ and m/|, = m, ¥’



has no model, and so false is a semantic consequence of ¥’. By compactness of
propositional logic, for some finite set of variables p1, ..., p, € V, the implication
(Pmp )N - Ao (Ym p, ) = false is a consequence of ¢’'. However, the implication
Ompr N oo N Pmp, = false is not a consequence of @, and hence o is not
consequence-conservative. O

The signatures of the standard institutions presented above come naturally
equipped with a notion of subsignature, hence signature inclusion, and a well-
defined way of forming a union of signatures. These concepts can be captured in
a categorical setting using inclusion systems [5,9]. However, we will work with
a slightly different version of this notion:

Definition 2.8. An inclusive category is a category with a broad subcategory®
which is a partially ordered class with a least element (denoted 0)), non-empty
products (denoted N) and finite coproducts (denoted U), such that for each pair
of objects A, B, the following is a pushout in the category:

AN BcC > A

L

B——= AUB

O

For any objects A and B of an inclusive category, we write A C B if there is
an inclusion from A to B; the unique such inclusion will then be denoted by
tacp: A — B, or simply A — B.

A functor between two inclusive categories is inclusive if it takes inclusions
in the source category to inclusions in the target category.

Definition 2.9. An institution I = (Sign, Sen, Mod, |=) is inclusive'® if

— Sign is an inclusive category,

11

— Sen is inclusive and preserves intersections,” and

— each model category is inclusive, and reduct functors are inclusive.'?

Moreover, we asume that reducts w.r.t. signature inclusions are surjective on
objects. O

9 That is, with the same objects as the original category.

19 Even though we use the same term as in [9], since the overall idea is the same, on
one hand, some of our assumptions here are weaker than in [9], and on the other
hand, we require a bit more structure on the category of signatures.

"1 That is, for any family of signatures S C |Sign|, Sen(S) = Nxes Sen(X).

12 That is, we have a model functor Mod: Sign®® — ICat, where ICat is the
(quasi)category of inclusive categories and inclusive functors.



The empty object in the category of signatures will be referred to as the empty
signature (indeed, in typical signature categories it is empty) and will be written
as Xjp.

Since in any inclusive institution the category of signatures has arbitrary
intersections, for any set of sentences @ C |Jy¢|gign Sen(L), there exists the
least signature Sig(®) such that & C Sen(Sig(P)).

The assumption that reducts are surjective on models is rather mild and
ensures that semantic consequence is not only preserved but also reflected under
signature extension. Then, given @ C Sen(X) and ¢ € Sen(X) (or, equivalently,
Sig(®) USig(yp) C X)), we have that @ |=x ¢ if and only if @ |=siga)usig(e)
©. In particular, this justifies use of the notation ¢ = ¢ without any explicit
reference to the signature over which sentences and consequence between them
are considered. Moreover, @ |= ¢ if and only if |[Mod(X,®)| C |[Mod(X, {¢})|
for every signature X' D Sig(®) U Sig(y).

The institutions Prop, OWL and FOL™ sketched above in Examples 2.2, 2.3
and 2.4 can be equipped with the obvious inclusion system on their signatures
and models, and then become inclusive institutions.

In inclusive institutions, if Xy C Y5 via an inclusion ¢: Xy < X5 and M €
Mod(Xs), we write M|y, for M|,. Note that Sen(¢): Sen(X;) — Sen(Xs) is
the usual set-theoretic inclusion, hence its application may be omitted.

For some results, we need an amalgamation property on models. An inclusive
institution 7 is called (weakly) union-exact if all intersection-union signature
pushouts in Sign are (weakly) amalgamable. More specifically, the latter means
that for any pushout

21 N 22 I 21

L

224>21U22

in Sign, any pair (M, M) € Mod(X;) x Mod(Xs) that is compatible in the
sense that M; and M; reduce to the same (X'} N Xy)-model can be amalgamated
to a unique (or weakly amalgamated to a not necessarily unique) (X U X5)-
model: there exists a (unique) M € Mod(X; U X3) that reduces to My and Mo,
respectively.

The institutions Prop, OWL and FOL™ sketched above are all union-exact.

3 Conservative Extensions and Inseparability

An ontology is typically presented as a collection of concepts/objects, rela-
tions, properties and axioms — thus a presentation of a theory in some suit-
able logic, with OWL being a typical example. The goal of this paper is to
study some concepts used in the research on ontologies and their modularisa-
tion independently of the logic in use. We make this precise by presenting these
concepts in the context of an arbitrary (but fixed for now) inclusive institution
I = (Sign, Sen, Mod, |=). The presentation below is based on the general con-
cepts and facts conerning inclusive institutions, as spelled out in Sect. 2. To



stay in tune with the literature and concerns of the domain we consider, we will
adjust the terminology and notation appropriately.

An ontology O in a logic given as the institution [ is just a set of sentences
O C Uze\Sigm Sen(X) in I. As explained in Sect. 2, for each ontology O we have
its signature Sig(Q), which is the least signature over which all the sentences in
O may be considered.

Note that if we want an ontology to be always considered over a larger signa-
ture with some extra symbols without changing its intended meaning, we need
to add trivially true sentences that involve the additional symbols. In many typ-
ical institutions such sentences always exists (for instance, p V —p in Prop, etc.);
if this is not the case, we may want to expand our institution by some trivial
sentences to “declare” that some extra symbols are to be considered.

Ontology inclusions give a starting notion to study relationships between
ontologies. If @ C O’ then we say that O’ is an extension of O. As in Sect. 2,
conservativity of such an extension may be defined in two variants: based on
models and based on semantic consequence (deduction), respectively. However,
we are often interested in further nuances, where conservativity is considered up
to an indicated signature of current interest.

Consider ontologies O C O’ and a signature X € |Sign]|.

1. O is a model X-conservative extension (X-mCE) of O if for every (Sig(O)U
X)-model Z of O there exists a (Sig(Q’) U X)-model I’ of O’ such that
Iy =T1|5.

2. O is a consequence X-conservative extension (X-cCE) of O if for every
XY-sentence a, we have O' = a iff O | «a.

Proposition 2.6 essentially applies here as well, so that the notion of model X-
conservative extension is strictly stronger than that of consequence X-conserva-
tive extension, and it clearly does not depend on the expressiveness of the insti-
tution. Thus if O’ is a X-mCE of O then O’ is a X-cCE of O as well, while the
converse does not hold. However, for propositional logic, the two concepts are
equivalent, see Example 2.7.

We have parameterised above both concepts of conservative extension by a
specific signature to indicate the focus of current interest. Further concepts will
be developed in a similar fashion, taking the signature of interest into account.
As this signature may vary here rather arbitrarily, we will need to adjust any
ontology to cover it explicitly, turning the ontology into a presentation in I: for
an ontology O and a signature X, we define O1X = (Sig(O) U X', Ax(O)).

Now, when a signature of interest is indicated, the notion of ontology exten-
sion may be refined as follows. Again, this comes in two flavours: one based on
models, the other on sentences (consequence).

Given ontologies O and O and a signature X

1. @ is a model X-extension of O if for all models Z' € |Mod(O'1Y)| there is
7 € |Mod(0O1Y)| such that Z'| 5, = 7| .
2. O’ is a consequence XY-extension of O if for all YX-sentences o, we have

OMY Eaif OMY E a.



Clearly, if O C O’ then O’ is a model X-extension of O, for any signature 3.
Moreover, essentially by Prop. 2.5, if @’ is a model Y-extension of O then it is
a consequence Y-extension of O as well.

The model Y-extension condition may be rewritten as follows:

{Z'|s | 7' € Mod(O"12)[} C{Z|x | Z € [Mod(O1X)[}
One may feel tempted to simplify this and instead write
T 1T EO}C{IIs | T F O}

However, this formally makes little sense unless we assume X C Sig(O’) N Sig(O).
This would be a strong assumption concerning the signature of interest (even if
O C O'), especially when we come to discussing robustness properties below. If
this condition does not hold, it is not entirely clear what Z|x should mean. One
possible interpretation might be “remove all model components whose names do
not occur in X” (consider reducts to X' N Sig(O’) and X N Sig(O), respectively).
But even then, the two definitions depart: consider (in OWL) O’ = {C C C1},
O ={C’' C C'}, and ¥ = {C,C’"}. Then according to our definition, O’ is
a model Y-extension of O, but this would not be the case if the apparently
simplified condition was used.™® In fact, the simpler condition cannot be met in
a non-trivial way unless X' N Sig(O’) = X N Sig(O), another strong assumption
we rather avoid.

One may now want to define a module in an ontology O to be another on-
tology M such that M C O and the inclusion is conservative (either in the
model-based sense, or in the consequence-based sense). However, we want this
concept to work for an arbitrary signature of interest. The appropriate require-
ment is formulated in terms of inseparability. One intuition is that inseparability
is a proper generalisation of conservative extension to a more symmetric situa-
tion.

Let Oy and Oy be ontologies and X' a signature. Then O and Oy are model
X -inseparable, written O =5 O, if

{Zls | T € [Mod(O11X)[} = {Z]|x | T € [Mod(O21 )|}
Note that in the literature, a simpler condition is commonly used:
{ZIs |1 TEO} ={Tls | T 02}

However, this “simplification” is dubious — all the comments concerning the
definition of model X-extension above apply here as well.

Clearly, O; and Oy are model Y-inseparable iff O; is a model XY-extension
of Oy and O is a model Y-extension of O1. Moreover if O; C Oy and X C

13 This remains true even if Z varies over models of arbitrary signatures, which seems
to be a widespread understanding in the ontology modularity community. Note that
7 [ O still entails that Z interprets at least the symbols occurring in O.

10



Sig(O1) then Oy and Oy are model X-inseparable iff Os is a model X-conservative
extension of O;.

Model X-inseparability provides a very strong form of equivalence between
ontologies considered from the perspective given by X: O; =% O, guarantees
that O; can be replaced by Oy in any application that refers only to symbols
from Y. Moreover, since this notion does not depend on the expressibility of the
underlying institution, we may arbitrarily strengthen the logic without affecting
this equivalence.

Weaker versions of inseparability relations can be defined. To begin with, as
usual, we consider a deductive variant: O and Oy are consequence X'-inseparable,
written O =3, Oy, if for all X-sentences ¢

O, )=<Piffo2 ):SO

Let us recall here again that the semantic consequences might be taken over
any signatures that encompass all symbols used either in the ontology or in the
sentences considered.

Given a signature Y/, in many contexts we are not interested in preservation
of all XY-sentences, but it is sufficient to consider only sentences of some specific
form that express the properties we really care about. This extra twist may be
captured by considering a set of X-sentences A C Sen(X), and weakening conse-
quence X-inseparability as follows: O; and Oy are A-consequence X -inseparable,
written O E/E‘ Os, if for all X-sentences ¢ € A

O1Feiff Oy F ¢

For instance, in OWL, one relevant choice of the set A is to consider all sub-
sumptions between atomic concepts.

It is easy to see now that indeed, the above three equivalences are gradually

coarser:
Proposition 3.1. For any signature X and set of X-sentences A C Sen(X),
we have = C =5, C Eg. O
In particular, this means that if two ontologies are model X-inseparable then
they are X-inseparable by any set of sentences, even if we strengthen the logic
in use. Whatever sentences we add to our institution, no matter how strong
they would be, two ontologies that are model Y-inseparable will have the same
consequences among them.

We mentioned above that one may want to consider various signatures 3/,
changing the focus of interest through which ontologies are considered. In partic-
ular, this means that to use A-consequence X-inseparability, we have to provide
the set of sentences over each such signature Y. What one wants then is an
inclusive functor A: Sign — Set with A(X) C Sen(XY) for all signatures X.
This implies that for X/ C X, A(X') C A(XY), capturing the intuition that the
sentences to be preserved cannot be disregarded when signature is enlarged. For
any signature X, slightly abusing the notation, we write =4, for Eg(z).

Given the above arrangements, the inseparability relations defined are pre-
served when the signature considered is narrowed:

11



Proposition 3.2. Given any signatures X' C X, we have =r C =%, =% C
=%, and E/Zl - E/le. a

For a given institution, an inseparability relation is a family S = <E‘;> Se|Sign|
of equivalence relations on the family of presentations. The informal intuition we
want to capture is that for any two ontologies 07 and Oy, O =5, O3 means that
07 and Oj are indistinguishable w.r.t. X, i.e., they represent the same knowledge
of interest about the topics expressible in the signature X'. Any specific definition
of the inseparability relation determines the exact meaning of the terms “indis-
tinguishable” and “the knowledge of interest”. However, since “the knowledge of
interest” relevant for a signature should not be disregarded when the signature
is enlarged, it is desirable that the inseparability relations are monotone in the
following sense:

Definition 3.3 ([10]). An inseparability relation S = (=%.) sc|sign| S mono-
tone if

1. for any signatures X' C X, E‘g - E“;, (the inseparability relation gets finer

when the signature gets larger), and
2. if O € Oy C O3 and O, E‘g O3 then O E;% Oy and O E‘; O3 (the
intuition here is: since larger ontologies capture more of “the knowledge of
interest”, we also require that any ontology squeezed between an ontology and
its inseparable extension is inseparable from both of them).
O

The inseparability relations defined above ((='%) o¢|sign|, (=%) ze|sign|, and
<z§>26|5ign|) are typical examples we will use in the following. It is easy to
show that all are monotone.

Monotonicity can be reformulated as robustness under signature restrictions.
We now recall further robustness properties from the literature [27,10].

Definition 3.4. An inseparability relation S = (E‘§>2€|Sign| 18

— robust under signature extensions if for all ontologies O1 and Os and all
signatures X, X" with X' N (Sig(O1) USig(03)) C X

01 =5 Oy implies O1 =5 Oq

— robust under replacement if for all ontologies O, O and Oy and all signa-
tures X with Sig(O) C X, we have

01 =5 Oy implies O1 U0 =5 O, U0

— robust under joins if for all ontologies O1 and Os and all signatures X with
Sig(O01) NSig(Os) C X, we have fori=1,2

Oy =5 Oy implies O; =5, O1 U Oy
We have the following result on robustness:
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Theorem 3.5. Model inseparability is robust under replacement. In a union-
exact inclusive institution, model inseparability is also robust under signature
extensions and joins.

Proof. Robustness under replacement: Consider ontologies O, O and Oy and
a signature X such that Sig(O) C X and O; =% O,. We need to show that
01 U0 =% Oy U O, which amounts to showing

{Zlz | 7 € Mod((0, VO )|} = {Z]5 | T € [Mod((O2 UO)TX)|}

By symmetry, it suffices to prove one inclusion. Let Z € |[Mod((O; U O)1X)].
Define 7' = Zlsig(0,)us- By O1 =% Oa, we know that Z'|x has an expansion
to an Oz1X-model Z”. But since Z = O and Sig(O) C X, also Z” |= O. Hence
7" € Mod((0O2 U 0)1X)|, and obviously Z|x = Z|%.

Robustness under signature extensions: Let O; and Oy be ontologies X, %’
be signatures with X’ N (Sig(O1) USig(O3)) C X. Assume O =7 Oy. We need
to show that O; =% O, which amounts to showing

{Z]> | T € Mod(O11£")]} = {Z]5 | T € [Mod(0:15")[}

By symmetry, it suffices to prove one inclusion. Let 7] € Mod(O;1X"). Since
01 =% Os, I|x has an expansion to an O11X-model Z. From ¥ C ¥’ and
X' N Sig(O2) C X we get X' N Sig(O21X) = X. Since also X' U Sig(021XY) =
Sig(O21X") the following diagram

2 0)— 015

((J J

) Ot X

is an intersection-union-pushout in Pres. Hence, by weak union-exactness, we
can amalgamate 77|y and Zy to Zj € Mod(O21X"), which gives us the desired
expansion of 77| 5.

Robustness under joins: Consider ontologies O; and Oy and a signature X
such that Sig(O; N O2) C X and O =% Oz. Then we need to show O =%
01 U O3 and Oy =% 01 U Oz. We only prove the former; the latter follows by
symmetry. We need to show

{Zl2 | T € [Mod(0:11Y)[} = {Z]x [ Z € [Mod((O01 U O2)1X)|}

The inclusion from right to left is obvious. For the converse inclusion, let Z; €
[Mod(011X)|. Since O1 =% O, I1]x has an expansion 7; € [Mod(O21X)|.
From Sig(O1NO3) C X we get Sig(O11X) NSig(Ox1Y) = X. Moreover, we have
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Sig(O11X) USig(0x1Y) = (01 U O2)1X. This implies that

(Ol U OQ)TZ

/

Orx 01X

e

is an intersection-union-pushout in Pres. Hence, by weak union-exactness, we
can amalgamate Z; and Zy to Z” € Mod((O; U O3)1X), which gives us the
desired expansion of Z; | 5. a

4 Module Notions

Equipped with the concepts introduced in the previous sections, we are now
ready to introduce the notion of an ontology module. In fact, following the liter-
ature, we will put forward a number of concepts, and will study their properties
and their mutual relationships. As in Sect. 3, we work in the framework of a
logical system formalised as an inclusive institution I = (Sign, Sen, Mod, =)
(Sect. 2).

The notions of a module we present below may be parameterised by an
arbitrary inseparability relation S = (=% Ye|Sign|-

Definition 4.1 ([10]). Let O be an ontology, M C O and X a signature. We
call M

— a (plain) X-module of O induced by S if M =$. O;
— a self-contained X-module of O induced by S if M EguSig(M) O;
— a depleting X-module of O induced by S if O\ M E§u51g(M) 0. O

Example 1.1 shows a plain ontology module. The intuition is that the module
M already contains all the relevant information from O if attention is restricted
to the concepts (symbols) in signature Y. Note however that the module in
Example 1.1 is not depleting: this follows from the fact that O\ M has still some
non-trivial consequences relevant w.r.t. X, e.g., O \ M |= Male M 3has_child. T C
Human.

The main advantage of depleting over plain modules is that minimal depleting
modules exist, see Thm. 4.6 below. Therefore, DOL uses the minimal depleting
module as semantics of the module extraction operator. It is unclear how one
could give a definite semantics to this operator in terms of plain modules, because
there may be multiple pairwise incomparable minimal plain modules.

The intuition of depleting modules is as follows: In addition to the properties
of plain X-modules, for a depleting X-module M of O, the difference O\ M has
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no knowledge about X' U Sig(M). This means that the difference of O and its
module M does not entail any axioms over X U Sig(M) other than tautologies.

A different formulation of this observation involves the notion of safety. We
say that O is safe for X if, for every ontology O’ with Sig(O) NSig(Q’) C X, we
have that O U @’ is a model Y-conservative extension of O’. Alternatively, this
notion can be formulated in terms of inseparability: an ontology O is safe for a
signature X' if and only if O =%

Now if M is a depleting X-module, then O\ M is safe for Sig(M) and so the
module can be maintained separately outside of O without the risk of unintended
interaction with the rest of @. Also note that checking depleting X modules is
exactly the same problem as deciding X-inseparability from the empty ontology.

In the rest of this paper we will focus on modules induced by model in-
separability (=) oe|sign|, leaving similar developments for other inseparability
relations introduced in Sect. 3 for future study. We therefore drop all qualifica-
tions “induced by S” in the terminology below.

Modules induced by model inseparability are essentially based on model con-
servative extensions:

Proposition 4.2. For any ontology O, M C O and signature X, M is a 3-
module of O if and only if O is a model X -conservative extension of M. ad

We say that a subontology M C O covers all the knowledge that O has
about X if O is a consequence X-conservative extension of M, that is, if for
every sentence a € Sen(X), we have that O |= « if and only if M = a.

A “plain” Y-module M of O covers all knowledge that O has about X. In
fact, this claim holds also when any extension of the institution I with arbitrarily
strong sentences (but the same signatures and models) is allowed.

The notion of self-contained module is stronger than the plain X-module
notion in that it requires the module to preserve entailments that can be for-
mulated in the interface signature plus the signature of the module. That is, it
covers all the knowledge that O has about X' U Sig(M). Formally, monotonicity
of the model inseparability relations, see Prop. 3.2, easily implies:

Proposition 4.3. If M is a self-contained X-module of O, then M is a (plain)
X -module of O as well. a

Since = enjoys robustness under replacement (Thm. 3.5), we get as in [10]:

Proposition 4.4. If M is a depleting X-module of O, then it is a self-contained
X -module. ad

Comparison of the various module notions can be carried out examining prop-
erties relevant for ontology reuse. The robustness properties for inseparability
(see Def. 3.4) can be transferred to modules as follows:

Robustness under signature restrictions. This property means that a module of
an ontology w.r.t. a signature X is also a module of this ontology w.r.t. any
subsignature of Y. This property is important because it means that we do not
need to import a different module when we restrict the set of terms that we are
interested in.
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Robustness under signature extensions. This means that a module of an ontology
O w.r.t. a signature X is also a module of @ w.r.t. any X' O X as long as
X' NSig(0) C X. This means that we do not need to import a different module
when extending the set of relevant terms with terms not from O.

Robustness under replacement. This property means that if M is a module of O
w.r.t. X, then the result of importing M into another ontology O’ is a module
of the result of importing O into @’'. Formally, for any ontology O’, if M is a
Y-module of O, then O’ UM is a X-module of O’ UO. (The precise restrictions
to signatures that are needed to ensure this property can vary.) This is called
module coverage in the literature: importing a module does not affect its property
of being a module.

Robustness under joins. It seems that this property of inseparability relations
cannot be usefully transferred to ontology modules. However, together with ro-
bustness under replacement, it implies that it is not necessary to import two
indistinguishable versions of the same ontology. This shows that it is still useful
to have the property.

We have summarized the relevant properties of the modules of each kind in
Table 1, which follow from the properties of inseparability relations stated in
Sect. 3:

Theorem 4.5. The module notions appearing as column heads in Table 1 have
the properties appearing as row head, if marked with a v or some additional
assumptions that are needed. If marked with a X , there is a counterexample
showing that that the property does not hold. It is assumed that all module notions
are based on model inseparability.

Indeed, the condition needed for robustness under replacement is very limited for
plain modules, since the importing ontology O’ must have a signature contained
in the signature of interest 2. This seems to be unrealistic in practice. The other
module notions have a more liberal condition: Sig(O’) N Sig(O) C X' U Sig(M),
which means that the importing ontology O’ may overlap with the imported
ontology O only w.r.t. the signature of interest plus that of the module. This is
more realistic.

Given an ontology O and a signature of interest X, the crucial task is to
determine a module M of O w.r.t. X. Clearly, such a module always exists: the
entire ontology O is one example. However, what we are really interested in is
small modules of O w.r.t. 2. The following theorem establishes existence of such
modules (see Thm. 72 in [10]), and so is a starting point for various methods of
module extraction.

Theorem 4.6. Let O be an ontology and X be a signature. Then there is a
unique minimal depleting X -module of O. a
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Module Notions

Properties
plain self-contained depleting
inseparability o= M O =80sigimy M [O\N M =5 gigamy 0
mCE (cCE) v v v
self-contained X v v
depleting X X v
robustness under v v v

signature restrictions

X' NSig(0) C X | X' NnSig(O) C ¥ | X' NSig(0)C X
plus weak plus weak plus weak
union-exactness | union-exactness union-exactness

robustness under
signature extensions

Sig(O0") N Sig(O) | Sig(O") N Sig(O)

O e | SEOIET TS Usigm) | € U SsigM)

replacement

Table 1. Properties of X-modules

5 Conclusions

We have generalised the basic notions of ontology module extraction to an ar-
bitrary institution. They can now be applied to logics other than OWL, most
notably first-order logic, but also modal logics and more exotic logics. For some
nice properties of modules, union-exactness of the institution is needed. While
many institutions enjoy this property, some do not, e.g. CASL [24].

We have entirely neglected questions of decidability or efficient computabil-
ity of modules. While Thm. 4.6 provides a general method for computing the
minimum depleting module, it is based on an oracle for inseparability. Future
work should hence study computationally interesting approaches to module ex-
traction, like different versions of locality, and generalize these to an arbitrary
institution as well.
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