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Abstract

Formal specification of software systems has become more and more important, especially in safety-
critical areas where one cannot take the risk of malfunction. Casl, the Common Algebraic Spec-
ification Language, is a standard for axiomatic specification of conventional software; and several
extensions of Casl deal with temporal, reactive, higher-order etc. aspects. That is, we are faced
with a multitude of specification languages and underlying logics.

In this work, we argue that for the specification of large software systems, heterogeneous multi-
logic specifications are needed, since complex problems have different aspects that are best specified
in different logics. A combination of all the used logics would become too complex in many cases.
Moreover, using heterogeneous specifications, different approaches being developed at different sites
can be related, i.e. there is a formal interoperability among languages and tools. In many cases,
specialized languages and tools often have their strengths in particular aspects. Using heterogeneous
specification, these strengths can be combined with comparably small effort.

The specification language Casl is an expressive specification language. At the level of basic
specifications, it provides first-order logic with induction, powerful datatype constructs, subsorting
and partial functions. Casl also provides constructs for structuring specifications-in-the-large. Sev-
eral extensions of Casl (concurrent, modal-temporal, coalgebraic and higher-order) are formalized
as so-called institutions, which means that Casl’s structuring constructs can also be used for these
extensions.

We extend Casl’s powerful logic-independent structuring constructs to heterogeneous specifi-
cation, obtaining the specification language Heterogeneous Casl (HetCasl). HetCasl allows
mixing specifications written in different logics (using translations between the logics). It extends
Casl only at the level of structuring constructs, by adding constructs for choosing the logic and
translating specifications among logics. HetCasl is needed when combining specifications written
in Casl with specifications written in its sublanguages and extensions. HetCasl also allows the
integration of logics that are completely different from the Casl logic.

Heterogeneous specification in HetCasl is based on an arbitrary but fixed graph of logics (for-
malized as institutions) and logic translations (formalized as various kinds of institution morphisms).
We provide an initial logic graph covering a range of different specification paradigms, and then study
heterogeneous specification in general.

In order to obtain a semantic foundation for heterogeneous specification, we extend Diaconescu’s
morphism-based Grothendieck institutions to the case of comorphisms. This is not just a dualization,
because we obtain more general results, especially concerning amalgamation properties. We also
introduce a proof calculus for structured heterogeneous specifications and study its soundness and
completeness (where amalgamation properties play a rôle for obtaining the latter).

Last but not least, we show how this theory can be brought into practice. The Heterogeneous
Tool Set (Hets). Hets provides an abstract interface for logics and provides a parser, static analysis
and proof engine for heterogeneous Casl— based on corresponding tools for the logics involved in
the given logic graph.
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Chapter 1

Introduction and Motivation

“Specification of a complex program necessarily involves presentation, often separate
presentation, of many aspects of its behaviour; practically useful methodologies must
support this. A successful example here is UML, where a good dozen of various kinds
of diagrams are used. Diagrams of each kind present a different program view, and in
fact (leaving aside any doubts about the formal underpinnings) offer a formalism to deal
with one particular kind of program properties. None of these individual views captures
all the aspects of the program in question, and only considering them together may lead
to an adequate overall view.” [Tar04]

“. . . it is at present extremely difficult to integrate in a rigorous way different formal
descriptions, and to reason across such descriptions. This situation is very unsatisfactory,
and presents one of the biggest obstacles to the use for formal methods in software
engineering because, given the complexity of large software systems, it is a fact of life that
no single perspective, no single formalization of level of abstraction suffices to represent
a system and reason about its behaviour.” [Mes98b]

“There is no λ-calculus of concurrency.” [Abr03]

“As can be seen, a plethora of formalisms for the verification of programs, and, in
particular, for the verification of concurrent programs has been proposed. Up to now,
their relationship is almost clear and for many different formalisms we already know
if translations between them exist and how to translate them efficiently. . . . the most
important classical formalisms, namely µ-calculus, ω-automata, temporal logics, and
predicate logic are considered and their relationship is outlined in detail. . . . there are
good reasons to consider all the mentioned formalisms, and to use whichever one best
suits the problem.” [Sch04] (italics in the original)

Formal specification of software and hardware systems has become more and more important,
especially in safety-critical areas where one cannot take the risk of malfunction. There has been
a proliferation of logics covering the different aspects of such systems: datatypes, temporal and
reactive behaviour, higher-order functions etc. That is, we are faced with a multitude of specification
languages and underlying logics.

Abramsky [Abr03] has posed the question: Will there be a single unified theory of computer
science, as there was in physics? Even in physics (with a much more well-defined object of research)
the attempts to take the theories of the four forces to and combine them into a Grand unified theory
has not been successful so far. The situation in computer science is much more scattered. This has
been called the “next 700” syndrome [Lan66, Pau90]. In the area of formal specification, we have

• logics for specification of datatypes,

• process calculi and logics for the description of concurrent and reactive behaviour,
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• logics for specifying security requirements and policies,

• logics for spatial reasoning,

• description logics for knowledge bases in artifical intelligence and for the semantic web,

• logics capturing the control of name spaces and administrative domains (e.g. the ambient
calculus), etc.

Indeed, at present, it is not imaginable that a combination of all these (and other) logics would be
feasible or even desirable — even if it existed, the combined formalism would lack manageability, if
not become inconsistent. Often, even if a combined logic exists, for efficiency reasons, it is desirable
to single out sublogics and study translations between these (cf. e.g. [Sch04]).

This means that for the specification of large software systems, heterogeneous multi-logic spec-
ifications are needed, since complex problems have different aspects that are best specified in dif-
ferent logics. Moreover, heterogeneous specifications additionally have the benefit that different
approaches being developed at different sites can be related, i.e. there is a formal interoperabil-
ity among languages and tools. In many cases, specialized languages and tools often have their
strengths in particular aspects. Using heterogeneous specification, these strengths can be combined
with comparably small effort.

In the literature, several approaches to heterogeneous specification have been developed [BCL96,
CBL99, Dia02, Mos02b, Tar00, AC94, Dia98, Bor99, Dia02, Dia]. The most prominent approach is
CafeOBJ with its cube of eight logics and twelve projections (formalized as institution morphisms)
among them [DF96], having a semantics based on the notion of Grothendieck institution [Dia02].
However, not only projections between logics, but also logic encodings (formalized as so called
comorphisms) are relevant to heterogeneous specification [Tar00, Mos02b]. Moreover, besides these
model theoretic approaches, also the need of integrating different proof calculi via “bridges” has
been stressed [CBL99]. The goal of the present work is to extend the Grothendieck institution
approach to cover these aspects.

But let us stay away from the more technical side for a moment and take a more methodological
view. There are a number of situations when heterogeneity arises:

• Specification involving different languages due to different skills and customs of the different
specifiers involved.

• Sub- and superlanguages : e.g. first-order specifications with some higher-order part (e.g. real
numbers).

• Viewpoint specifications [BBD+00] combine specifications expressing different viewpoints on
a common system, e.g. data types, process algebra and temporal logic.

• Wide-spectrum specifications involving specifications and programs, hence avoiding the need
of special wide-spectrum languages.

• Specifications involving different modalities (e.g. deontic and temporal modalities).

• Specifications involving different input languages for tools.

• Specifications involving switches between “black box” and “glass box” views of a system.

• Combination of formal ontologies that are axiomatized in different logics.

Let us now have a closer look to some of these situations, and discuss some examples. For
an introduction to the syntax of these examples, see the Casl user manual [BM04] and reference
manual [CoF04], as well as Chaps. 3 and 5.
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logic Casl
spec Bool = free type Bool ::= True | False
spec List[sort Elem] =

free type List [Elem] ::= nil | cons(Elem; List [Elem])

logic HasCasl
spec Filter = Bool and List[sort Elem]

then
op filter : (Elem → Bool) → List [Elem] → List [Elem]
var p : Elem → Bool ; x : Elem; l : List [Elem]
. filter p [] = []
. filter p (x :: l) = x :: filter p l if p x = True
. filter p (x :: l) = filter p l if p x = False

Figure 1.1: Specification of lists and a filter function in Casl and HasCasl.

Figure 1.2: Development graph for specification of filter in Casl and HasCasl.

logic Haskell
spec FilterImp = Prelude
then {

data Elem

filter :: (Elem -> Bool) -> [Elem] -> [Elem]

filter p [] = []

filter p (x:l) | p x == True = x:filter p l

| p x == False = filter p l

}
end

view Correct : Filter to FilterImp
end

Figure 1.3: Implementation of filter function in Haskell.
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1.1 Examples of Sub-/Superlanguage and Wide-Spectrum
Specifications

Among sub- and superlanguages, there is always a trade-off between ease to learn and tool-support
on the one hand and expressivity and conciseness on the other hand. Hence, it very well makes sense
to use heterogeneous specifications with parts written in different sublanguages, even if in principle
the whole specification could be expressed in one and the same superlanguage.

There are basically two different kinds of heterogeneous sub-/superlanguage specifications. They
differ in whether the main specification is written in the sub- or in the superlanguage.

One of these situations (namely, main specification written in the superlanguage) is illustrated
in Fig. 1.1: the standard datatypes of Booleans and lists are specified in the specification language
Casl (a first-order language that also supports the specification of inductive datatypes). This
specification then is extended with some higher-order filter function that is specified in HasCasl
(the higher-order extension of Casl). The lists and Booleans typically will come from a library of
Casl specifications (with theorems proved about the specifications), such that it would make not
much sense to use HasCasl variants of lists and Booleans here.

Fig. 1.2 shows the development graph for the specification in Fig. 1.1. Development graphs are a
formalism for the management of proofs in heterogeneous specifications. Nodes corresponds to the
basic building blocks of specifications, while the arrows (links) indicate their relations. Solid arrows
denote an import of another specification. Double arrow indicate imports that are heterogeneous,
i.e. such that the logic changes along the arrow (here, it changes from Casl to HasCasl). Finally,
Fig. 1.3 shows an implementation of the filter function in Haskell, and a so-called view that states
the correctness of the Haskell program with respect to the HasCasl specification.

A similar, but more complex, specification formalizes the process algebra CCS in CoCasl (see
Fig. 1.6, and the development graph in Fig. 1.7). Full details of this specification are explained in
[MSRR].

An example for the other kind (i.e. main specification in the sublanguage) is given in Fig. 1.4.
Here, the real numbers (which can be thoroughly specified only in higher-order logic) are imported
from a HasCasl library, while a graphics package using the reals is otherwise specified in first-
order Casl. In such situations, one typically wants (for the sake of readability, better tool support
etc.) to stay in the sublanguage as long as possible, and involve the superlanguage only at certain
specific points. The development graphs of this example are shown in Fig. 1.5. Indeed, since the
specifications are distributed over several libraries, we show one development graph per library, with
rectangle nodes denoting imports from other libraries. The second development graph shows the
structure of the projection of the real numbers from HasCasl onto Casl. Actually, two hetero-
geneous arrows1 jointly denote the logic projection. The reason for this is explained in Sect. 6.10
and 6.11.

1.2 Example of a Viewpoint Specification: Temporal Prop-
erties of Reactive Systems

“Three types of formal models are used:

1. Firstly, we require an executable model (written in LOTOS using an object-based
style) which is useful for constructing an executable model for validation.

2. Secondly, we have a logical model (based on the B method) which is used to verify
the state invariant properties of our system (statically).

3. Finally, we use TLA to provide semantics for a static analysis of liveness and fair-
ness properties. No one model can treat each of these aspects, yet each of these

1One of them is a hiding arrow, indicated by a different colour. In Chap. 5, we will use an h to indicate hiding
arrows. The projection corresponds to an institution morphism, and the verification semantics in Sect. 5.5 translates
this into two heterogeneous links via comorphisms, one of which is a hiding link.
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library HasCASL/Real

from Basic/RelationsAndOrders get RichTotalOrder

from Basic/Algebra I get Field

logic Casl
spec OrderedField =

Field
and

RichTotalOrder
then

vars a, b, c: Elem
• (a + c) < (b + c) if a < b
• (a ∗ c) < (b ∗ c) if a < b ∧ c > 0

end

logic HasCasl
spec Real =

OrderedField with Elem 7→ Real
then

ops < : Pred (Real * Pred (Real));
< : Pred (Pred (Real) * Real);

isBounded : Pred (Pred (Real)); inf, sup : Pred (Real) →? Real
∀ r, s : Real ; M : Pred (Real)
• M < r ⇔ (∀ s : Real • M (s) ⇒ s < r)
• r < M ⇔ (∀ s : Real • M (s) ⇒ r < s)
• inf (M ) = r ⇔ r < M ∧ (∀ s : Real • s < M ⇒ s < r)
• sup(M ) = r ⇔ M < r ∧ (∀ s : Real • M < s ⇒ r < s)
• isBounded(M ) ⇔ (∃ ub, lb: Real • lb < M ∧ M < ub)
• isBounded(M ) ⇒ def inf (M ) ∧ def sup(M ) %(completeness)%

end

library HasCASL/Graphics

from HasCASL/Real get Real

logic Casl
spec Graphics =

Real hide logic → Casl
then

free type Coordinate ::= C (x, y :Real)
sort Screen
op move : Coordinate × Coordinate → Screen

end

Figure 1.4: Specification of real numbers and graphics in Casl and HasCasl.
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Figure 1.5: Development graphs for specification of real numbers and graphics in Casl and Has-
Casl.
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library CoCASL/CCS Automaton
. . .
logic CoCasl
spec FinalNonDeterministicAutomaton [Action] =

cofree {Set [sort State] then
cotype State ::= (next : Act→ Set[State]) }

end
spec Zero = FinalNonDeterministicAutomaton [Action]
then op zero : State

∀ a: Act • next(a, zero) = {}
end
spec ActionPrefixing = FinalNonDeterministicAutomaton [Action]
then op → : Act × State → State

∀ x, y : Act ; s : State • next(x, y → s) = { s } when x = y else {}
end
spec Summation = Zero and
logic Casl : BinRelFun [sort State op + : State × State → State]
then ∀ a: Act ; s1, s2 : State

• next(a, s1 + s2 ) = pplus(zero ∗ next(a, s2 ) union next(a, s1 ) ∗ zero)
end
spec Composition = FinAct and FinalNonDeterministicAutomaton [Action] and
logic Casl : BinRelFun [sort State op || : State × State → State]

with pplus 7→ ppar
and logic Casl : ExtSet [sort State]
and logic Casl : ExtSet [sort Act ]
then ops || : State × State → State; h : State × State × Set [Label ] → Set [State]

∀l : Label; s1, s2 : State; set1, set2 : Set[Label]
• h(s1, s2, {}) = {}
• h(s1, s2, { l }) = next(l, s1 ) intersection next(bar(l), s2 )
• h(s1, s2, set1 union set2 ) = h(s1, s2, set1 ) union h(s1, s2, set2 )
• next(l, s1 || s2 ) = ppar(next(l, s1 ) ∗ s2 union s1 ∗ next(l, s2 ))
• next(tau, s1 || s2 ) = ppar(next(tau, s1 ) ∗ s2 union s1 ∗ next(tau, s2 )) union h(s1, s2, actions)

end
spec Hiding = FinalNonDeterministicAutomaton [Action] and ActionRelabelling
then op − : State × Set [Label ] → State

∀ l : Label ; s : State; L: Set [Label ]
• next(l, s − L) = {} when l isIn L = True else next(l, s)
• next(tau, s − L) = next(tau, s)

end
spec Relabelling = FinalNonDeterministicAutomaton [Action] and
logic Casl : ExtSet [sort Act ] and ActionRelabelling
then op rel : State × Relabelling → State

∀ l : Label ; s : State; f : Relabelling
• next(l, rel(s, f )) = next(eval(f, l), s)
• next(tau, rel(s, f )) = next(tau, s)

end
spec CCS Coalgebraic Semantics = FinAct and Zero and ActionPrefixing
and Summation and Composition and Hiding and Relabelling and CCS
end

Figure 1.6: Specification of CCS in Casl and CoCasl.
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Figure 1.7: Development graph for specification of CCS in Casl and CoCasl.
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logic Csp-Casl
spec Buffer =

data List
channels read ,write : Elem
process let Buf (l : List [Elem]) =

read?x → Buf (cons(x ,nil))
� if l = nil then STOP

else write!last(l) → Buf (rest(l))
in Buf (nil)

with logic → ModalCasl
then %implies • AG F ∃x : Elem . 〈write.x 〉 true

end

Figure 1.8: A specification of fair buffers in Casl, Csp-Casl and ModalCasl.

aspects of the conceptualization are necessary in the formal development of fea-
tures.” [GMM97]

Here, we provide a similar scenario of heterogeneity arising in the specification of reactive systems:
some equational or first-order logic is used to specify the data (here, lists over arbitrary elements),
some process algebra (here, CSP) is used to describe the system (here, a buffer implemented as
a list), and some temporal logic is used to state fairness or eventuality properties that go beyond
the expressiveness of the process algebra (here, we express the fairness property that the buffer
cannot read infinitely often without writing). A corresponding heterogeneous specification is given
in Fig. 1.8, the corresponding development graph in Fig. 1.9. The dotted arrow in the development
graph is a so-called local theorem link (indicated with a different colour), denoting a proof obligation
that is caused by the %implies annotation.

Actually, one should add that the process Buf does not meet the fairness constraint, since it
can read infinitely often without ever writing. However, a simplistic buffer such as

Copy = read?x → write!x → Copy

satisfies the fairness constraint, and so does a buffer using bounded lists.
We now briefly introduce the several languages involved; a more detailed definition has to wait

until Chapt. 3.

Casl [CoF04] is based on an extension of first-order logic with partial functions and subsorted.
Moreover, sort generation constraints allow expressing that sorts are term generated, which is
needed for the specification of inductive datatypes like lists.

Csp-Casl [Rog] combines Casl with the process algebra CSP . CSP processes may involve data
terms from Casl for their communications.

ModalCasl is an extension of Casl with first-order modal logic with Kripke and neighbourhood
semantics. Also, the computation tree logic CTL∗ [vL90] with its path quantifiers is supported.
In the example, A G F ϕ means: for all “execution paths” (through the Kripke models), it is
always the case, that eventually φ holds.

Among these languages, we now introduce some translations; these are formally defined in
Chap. 4:

• An inclusion translation from Casl to Csp-Casl, which is implicitly invoked with the data
keyword (indicating the Casl data specification that is used for the subsequent Csp-Casl
process specification).
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Figure 1.9: Development graph for fair buffer specification in Casl, Csp-Casl and ModalCasl

• A translation Csp2Modal:Csp-Casl−→ModalCasl, mapping the labelled transition sys-
tem obtained by the Csp-Casl semantics to ModalCasl. This translation is invoked with
the syntax with logic → ModalCasl.

• An inclusion translation Casl2Modal:Casl−→ModalCasl.

1.3 Example of a Specification Refinement

Consider the following specification of sets in Casl:

spec Set [sort Elem] =
generated type Set [Elem] ::= empty | insert(Elem; Set [Elem])
pred is in : Elem × Set [Elem]
∀ e, e′: Elem; S, S′: Set [Elem]
• ¬ e is in empty
• e is in insert(e′, S ) ⇔ e = e′ ∨ e is in S
• S = S′ ⇔ (∀ x : Elem • x is in S ⇔ x is in S ′) %(equal sets)%

end

If we want to implement sets as ordered lists, we need to assume some total ordering:

spec TotalOrder =
sort Elem
pred ≤ : Elem × Elem
∀ x, y, z : Elem
• x ≤ x %(reflexive)%

• x ≤ z if x ≤ y ∧ y ≤ z %(transitive)%

• x = y if x ≤ y ∧ y ≤ x %(antisymmetric)%

• x ≤ y ∨ y ≤ x %(dichotomous)%
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end

spec List [TotalOrder] =
free type List [Elem] ::= [] | :: (head :?Elem; tail :?List [Elem])

then
preds is in : Elem × List [Elem];

is ordered : List [Elem]
vars x, y : Elem; L, L1, L2 : List [Elem]
• ¬ x is in []
• x is in (y :: L) ⇔ x = y ∨ y is in L
• is ordered([])
• is ordered(x :: [])
• is ordered(x :: y :: L) ⇔ x ≤ y ∧ is ordered(y :: L)

end

spec SortedList [TotalOrder] =
List [TotalOrder]

then
sort SortedList [Elem] = {l : List [Elem] • is ordered(l)}
ops [] : SortedList [Elem];

insert : Elem × SortedList [Elem] → SortedList [Elem];
head : SortedList [Elem] →? Elem;
tail : SortedList [Elem] →? SortedList [Elem]

pred is in : Elem × SortedList [Elem]
∀ x, y : Elem; L: SortedList [Elem]
• insert(x, []) = x :: []
• insert(x, L) = x :: L when x ≤ head(L)

else head(L) :: insert(x, tail(L)) as SortedList [Elem]
hide List [Elem]

end

In the refinement language of [MSA05], we can now express that ordered lists are an implemen-
tation of sets:

spec Nat = . . .

refinement R =
Set [Nat]
behaviourally refined via Set [Nat ] 7→ SortedList [Nat ], empty 7→ []
to SortedList [Nat]

end

The refinement expresses that each model of the target specification is also (when sufficiently
translated) a model of the source specification [MSA05]. The keyword behaviourally [MA] here
indicates that the refinement is only up to observable behaviour. I.e. the specification Set[Nat]
need not be satisfied literally, but only up to the behaviour observable by the Set[Nat] -operations.

Although all these specifications are written in Casl, the example involves some kind of het-
erogeneity. This is because in the framework of development graphs, behavioural refinement can be
best expressed by using some behavioural quotient construction (in the example, this construction
basically throws out all lists that are not sorted, and identifies any two sorted lists that contain the
same elements, i.e. duplicates are ignored). This behavioural quotient can be seen as a construction
on the Casl logic. Hence, the framework of heterogeneous specifications is well-suited to treat such
examples. The corresponding development graph is shown in Fig. 1.10. The heterogeneous links

17



here are caused by the translation of Casl into itself.2 The link between the lower two nodes is a
global theorem link (indicated with a different colour) denoting a proof obligation corresponding to
the refinement.3

1.4 Overview of the Thesis

The logics of the various specifications formalisms are formalized as so-called institutions, and related
with various kinds of institutions morphisms and comorphisms. These notions are the subject of
Chap. 2, which also discusses some properties of institutions that important for structured and
heterogeneous specification, such as amalgamation and Craig interpolation.

Chap. 3 then presents a number of institutions in detail. Most of them are extensions of the
Common algebraic specification language Casl. Casl is an expressive language based on first-order
logic with induction, that provides powerful constructs for the specification of datatypes. Partial
functions and subsorts are supported as well. The modal logic extension ModalCasl allows for
specification of labelled transition systems (=Kripke models) in modal, temporal and dynamic logic.
CoCasl is a co-algebraic extension of Casl suitable for the specification of process types. HasCasl
is a higher-order extension of Casl that is geared towards the development of functional programs,
particular ones written in the programming language Haskell. Note that it is also possible formalize
Haskell as an institution. Finally, Csp-Casl is an extension of Casl with CSP processes terms
that describe concurrent processes (with Casl data elements being communicated over the CSP
channels).

The relations and translations among these different formalisms are studies in Chap. 4, where an
initial logic graph of Casl and its extensions is built. This logic graph will be a reference example
for the theory developed in later chapters. We again stress that this theory is not limited at all to
Casl and its extensions; one can choose to work with completely different logic graphs.

Chap. 5 covers structured specifications over an arbitrary but fixed institution. Indeed, the
constructs for structuring large specifications can be defined and studied completely independent of
the underlying institution. Actually, we present two institution independent structuring formalisms:
term-like structured specifications and development graphs. For both structuring formalisms, proof
calculi are given, and their soundness and completeness is discussed.

Chap. 6 contains the core of the theory of heterogeneous specification. It starts with Diaconescu’s
notion of Grothendieck institution, which is a kind of flattening of a graph of institutions and
institution morphisms. We here dualize the construction to comorphisms. Amalgamation properties
for this Grothendieck institution, which are studied subsequently, play the same central role as
they play for individual institutions. They build the necessary prerequisite for heterogeneous proof
systems, and the completeness proof for the proof system for heterogeneous development graphs.
While the latter are just ordinary development graphs over a Grothendieck institutions, there are
some aspects that need to be covered specifically for the heterogeneous situation. Finally, the
approach is extended to deal with other types of institution translation than just with comorphisms.

All this theory also has been implemented: in the Heterogeneous Tool Set, which is the subject
of Chap. 7. We first explain the structure of Hets by explaining some toy version for some toy
heterogeneous language, and then give a short overview of the full system.

Chap. 8 contains conclusions and discusses related and future work.
Appendix A contains a detailed summary of the heterogeneous language HetCasl, which is the

input language for Hets, and which also has been used for the examples above.
Appendix B shows some central modules of Hets in full detail. Actually, they can be read as a

formalization of the theory in Haskell.
Appendix C covers freeness and cofreeness structuring constructs.

2Actually, the behavioural quotient operation corresponds to an institution semi-comorphism (see Chap. 2), and
the verification semantics in Sect. 5.5 translates this into two heterogeneous links via comorphisms, one of which is a
hiding link. The latter is indicated with a different colour.

3There are further theorem links corresponding to instantiations of parameterized specifications.
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Chapter 2

Institutions and Logics

“There is a population explosion among the logical systems used in computer science.
Examples include first order logic, equational logic, Horn clause logic, higher order logic,
infinitary logic, dynamic logic, intuitionistic logic, order-sorted logic, and temporal logic;
moreover, there is a tendency for each theorem prover to have its own idiosyncratic
logical system. We introduce the concept of institution to formalize the informal notion
of ’logical system’.” [GB92]

Institutions are the central abstract notion that is the basis for a theory of structured specification
and proving independent of the underlying logical system. Naturally, this notion is also the basis
for heterogeneous specification. While institutions capture model theory, entailment systems are a
related abstract notion capturing proof theory. Finally, an institution equipped with an entailment
is called a logic.

Many different logics, including first-order [GB92], higher-order [Bor99], polymorphic [NP86,
SML05], modal [Ĉır02, SSCM00, Dia], temporal [FC96], process [FC96], behavioural [BHa], and
object-oriented [SCS94, GD94, LF97, SS93, Ala02] logics have been shown to be institutions. Re-
cently, there have even institutions for XML [Ala02] and databases [Gog] have been examined.

2.1 Institutions

A specification formalism is usually based on some notion of signature, model, sentence and satis-
faction. These are the usual ingredients of Barwise’s abstract model theory [Bar74]. Contrary to
Barwise’s notions, institutions of Goguen and Burstall [GB92] do not assume that signatures are
algebraic signatures and thus cover a much larger variety of logics. Indeed, the theory of institu-
tions assumes nothing about signatures except that they form a class and that there are signature
morphisms, which can be composed in some way. This amounts to stating that signatures form a
category.

There is also nothing special assumed about the form of the sentences and models. Given a
signature Σ, the Σ-sentences form just a set, while the Σ-models form a category (taking into
account that there may be model morphisms).

Signature morphisms lead to translations of sentences and of models (thus, the assignments of
sentences and of models to signatures are functors). There is a contravariance between the sentence
and the model translation: sentences are translated along signature morphisms, while models are
translated against signature morphisms.

Informally, this can be motivated as follows. Forget for a moment the above generality and think
of signatures as of sets of certain symbols. Think of sentences over a signature Σ as derivation trees
over some grammar, decorated at the nodes with the symbols from Σ. Then sentence translation
along a signature morphism σ: Σ−→Σ′ keeps the structure of the derivation tree, but replaces the
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symbols decorating the nodes, using σ. This explains why sentences are translated along signature
morphisms.

Concerning models over a signature: they have to interpret the symbols from the signature
somehow. Thus, a Σ-model can be seen as a map M going from the symbols of Σ to some semantical
domain. Now given a Σ′-model M ′ and a signature morphism σ: Σ −→ Σ′, by composing the
interpretation map M ′ with σ we get a new interpretation map, let us call it M ′|σ , which is a
Σ-model! (M ′|σ is also called the σ-reduct of M ′.) This explains why models are translated against
signature morphisms.

Of course, these explanations just have motivating purpose: there can be institutions with a
completely different view of signatures, models and sentences. However, they shed some light on
how many typical institutions work.1

Finally, institutions have a satisfaction relation between models and sentences, which has to
be invariant under the simultaneous translation of sentences and models w.r.t. a given signature
morphism.

This leads to the following formal definition. Let CAT be the category of categories and functors.2

Definition 2.1 An institution I = (SignI ,SenI ,ModI , |=I ) consists of

• a category SignI of signatures,

• a functor SenI :SignI −→Set giving, for each signature Σ, the set of sentences SenI(Σ), and
for each signature morphism σ: Σ−→Σ′, the sentence translation map SenI(σ):SenI(Σ)−→
SenI(Σ′), where often SenI(σ)(ϕ) is written as σ(ϕ),

• a functor ModI : (SignI)op −→ CAT giving, for each signature Σ, the category of models
ModI(Σ), and for each signature morphism σ: Σ−→Σ′, the reduct functor ModI(σ):ModI(Σ′)−→
ModI(Σ), where often ModI(σ)(M ′) is written as M ′|σ ,

• a satisfaction relation |=I
Σ ⊆ |ModI(Σ)| × SenI(Σ) for each Σ ∈ SignI ,

such that for each σ: Σ−→Σ′ in SignI the following satisfaction condition holds:

M ′ |=I
Σ′ σ(ϕ) ⇔M ′|σ |=I

Σ ϕ

for each M ′ ∈ ModI(Σ′) and ϕ ∈ SenI(Σ). 2

We will omit the index I when it is clear from the context.
We now informally present some examples. They will be (more) formally introduced in Sect. 3.1.

Example 2.2 The institution Eq= of equational logic. Signatures are many-sorted algebraic sig-
natures consisting of a set of sorts and a set of function symbols (where each function symbol has
a string of argument sorts and a result sort). Signature morphisms map sorts and function symbols
in a compatible way. Models are just many-sorted algebras, i.e. each sort is interpreted as a carrier
set, and each function symbol is interpreted as a function between the carrier sets specified by the
argument and result sorts. Reducts are constructed as sketched above. Sentences are equations
between many-sorted terms, and sentence translation means replacement of the translated symbols.
Finally, satisfaction is the usual satisfaction of an equation in an algebra. 2

Example 2.3 The institution FOL= of many-sorted first-order logic with equality. Signatures
are many-sorted first-order signatures, i.e. many-sorted algebraic signatures enriched with predicate
symbols. Models are many-sorted first-order structures. Sentences are first-order formulas, and
again sentence translation means replacement of the translated symbols. Satisfaction is the usual
satisfaction of a first-order sentence in a first-order structure. 2

1Indeed, the above explanation has been formalized as so-called parchments [Mos96d].
2Strictly speaking, CAT is not a category but only a so-called quasicategory, which is a category that lives in a

higher set-theoretic universe [HS73].
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Example 2.4 The institution PFOL= of partial first-order logic with equality. Signatures are
many-sorted first-order signatures enriched by partial function symbols. Models are many-sorted
partial first-order structures. Sentences are first-order formulas containing existential equations,
strong equations, definedness statements and predicate applications as atomic formulas. Satisfaction
is defined using total valuations of variables, while valuation of terms is partial due to the existence
of partial functions. An existential equation holds if both sides are defined and equal, whereas a
strong equation also holds if both sides are undefined. A definedness statement holds if the term is
defined. A predicate application holds if the terms contained in it are defined, and the corresponding
tuple of values is in the interpretation of the predicate. This is extended to first-order formulas as
usual. 2

2.2 Logical Consequence and Theories

Within an arbitrary but fixed institution, we can easily define the usual notion of logical consequence
or semantical entailment : Given a set of Σ-sentences Ψ and a Σ-sentence ϕ, we say

Ψ |=Σ ϕ (ϕ follows from Ψ)

iff for all Σ-models M , we have

M |=Σ Ψ implies M |=Σ ϕ.

Here, M |=Σ Ψ means that M |=Σ ψ for each ψ ∈ Ψ.
In an arbitrary institution I , a theory is a pair T = 〈Σ,Ψ〉, where Σ ∈ Sign and Ψ ⊆ Sen(Σ)

(we set Sig(T ) = Σ and Ax (T ) = Ψ).3 Theory morphisms σ: 〈Σ,Ψ〉−→〈Σ′,Ψ′〉 are those signature
morphisms σ: Σ−→Σ′ for which Ψ′ |=Σ′ σ(Ψ), that is, axioms are mapped to logical consequences.
By inheriting composition and identities from Sign, we obtain a category Th of theories. The
category Pres of presentations (also called flat specifications) is just the full subcategory of theories
having finite sets of axioms.

It is easy to extend Sen and Mod to start from Th by putting Sen(〈Σ,Ψ〉) = Sen(Σ) and
letting Mod(〈Σ,Ψ〉) be the full subcategory of Mod(Σ) induced by the class of those models M
satisfying Ψ. In this way, we get the institution of theories I th = (Th,Sen,Mod, |=) over I .

A theory morphism σ: 〈Σ,Ψ〉 −→ 〈Σ′,Ψ′〉 is conservative, if each 〈Σ,Ψ〉 has a σ-expansion to
a 〈Σ′,Ψ′〉-model; it is monomorphic, if each model has such an expansion that is unique up to
isomorphism, and it is definitional, if each model has a unique such expansion.

We will also freely use other standard logical terminology when working within an arbitrary but
fixed institution.

2.3 Amalgamation and Craig Interpolation

The amalgamation property (called ‘exactness’ in [DGS91]) is a major technical assumption in the
study of specification semantics [ST88a] and is important in many respects. To give a few examples:
it allows the computation of normal forms for specifications [BHK90, Bor00], and it is a prerequisite
for good behaviour w.r.t. parameterization [EM90b] and conservative extensions [DGS91]. A Z-like
state based language has been developed over an arbitrary institution with amalgamation [Bau98].
Here, we mainly will need amalgamation for using the proof system for development graphs with
hiding (see Sect. 5.6). Craig interpolation plays a similar role for proof systems for structured
specifications, see e.g. [Bor02] and Sect. 5.3.

In the sequel, fix an arbitrary institution I = (Sign,Sen,Mod, |=). We now recall the institu-
tion independent definitions of amalgamation and Craig interpolation properties that will become
important for (proving in) structured specification (see Chap. 5).

3Note that the theories introduced here are presentations of theories. We follow here the terminology of Meseguer’s
general logics [Mes89a] instead of Goguen and Burstall’s original definition [GB92]. In what follows, when we talk
about a theory (Σ, Ψ) we shall mean a theory presentation.
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Definition 2.5 The institution I has the Craig interpolation property, if for any pushout in Sign

Σ

σ2

σ1
Σ1

θ2

Σ2
θ1

Σ′

any Σ1-sentence ϕ1 and any Σ2-sentence ϕ2 with

θ2(ϕ1) |= θ1(ϕ2),

there exists a Σ-sentence ϕ (called the interpolant) such that

ϕ1 |= σ1(ϕ) and σ2(ϕ) |= ϕ2.

Definition 2.6 A cocone for a diagram in Sign is called (weakly) amalgamable if it is mapped to a
(weak) limit under Mod. I (or Mod) admits (finite) (weak) amalgamation if (finite) colimit cocones
are (weakly) amalgamable, i.e. if Mod maps (finite) colimits to (weak) limits. An important special
case is pushouts: I is called (weakly) semi-exact, if it admits (weak) amalgamation for pushout
diagrams.

Pushouts in the signature category are prominently used for instance in instantiations of parame-
terized specifications. (Recall also that finite limits can be constructed from pullbacks and terminal
objects, so that finite amalgamation reduces to preservation of pullbacks and terminal objects —
dually: pushouts and initial objects). Here, the (weak) amalgamation property requires that a
pushout

Σ Σ1

Σ2 ΣR

in Sign is mapped by Mod to a (weak) pullback

Mod(Σ) Mod(Σ1)

Mod(Σ2) Mod(ΣR)

of categories. Explicitly, this means that any pair (M1,M2) ∈ Mod(Σ1) × Mod(Σ2) that is com-
patible in the sense that M1 and M2 reduce to the same Σ-model can be amalgamated to a unique
(or weakly amalgamated to a not necessarily unique) ΣR-model M (i.e., there exists a (unique)
M ∈ Mod(ΣR) that reduces to M1 and M2, respectively), and similarly for model morphisms.

More generally, given a diagram D: J −→ SignI , a family of models (Mj)j∈|J| is called D-
consistent if Mk|D(δ) = Mj for each δ: j −→ k ∈ J . A cocone (Σ, (µj)j∈|J|) over the diagram in

D: J −→ SignI is called weakly amalgamable if for each D-consistent family of models (Mj)j∈|J|,
there is a Σ-model M with M |µj

= Mj (j ∈ |J |). If this model is unique, the cocone is called
amalgamable.

Proposition 2.7 An institution admits (weak) amalgamation iff each colimiting cocone is (weakly)
amalgamable.

The notion of weakly amalgamable cocone leads to further weakenings of the above notions.
They will become important in Chapters 5 and 6.

Definition 2.8 Call an institution I quasi-exact if for each diagram D: J −→ SignI , there is
some weakly amalgamable cocone over D. Quasi-semi-exactness is the restriction of this notion to
diagrams of shape • • • .
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2.4 Entailment Systems and Logics

Coming to proofs, a logic extends an institution with proof-theoretic entailment relations that are
compatible with semantic entailment.

Definition 2.9 A logic LOG = (Sign,Sen,Mod, |=,`) is an institution (Sign,Sen, Mod, |=)
equipped with an entailment system `, that is, a relation `Σ ⊆ P(Sen(Σ)) × Sen(Σ) for each
Σ ∈ |Sign|, such that the following properties are satisfied:

1. reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} `Σ ϕ,

2. monotonicity: if Ψ `Σ ϕ and Ψ′ ⊇ Ψ then Ψ′ `Σ ϕ,

3. transitivity: if Ψ `Σ ϕi for i ∈ I and Ψ ∪ {ϕi | i ∈ I} `Σ ψ, then Ψ `Σ ψ,

4. `-translation: if Ψ `Σ ϕ, then for any σ: Σ−→Σ′ in Sign, σ(Ψ) `Σ′ σ(ϕ),

5. soundness: if Ψ `Σ ϕ then Ψ |=Σ ϕ.

A logic is complete if, in addition, Ψ |=Σ ϕ implies Ψ `Σ ϕ.

It is easy to obtain a complete logic from an institution by simply defining ` as |=. Hence, `
might appear to be redundant. However, the point is that ` will typically be defined via a system
of finitary derivation rules. This gives rise to a notion of proof that is absent when the institution
is considered on its own, even if the relation that results coincides with semantic entailment which
is defined in terms of the satisfaction relation.

Example 2.10 Many-sorted first-order logic with equality (FOL=) can be easily seen to be a
logic, using some standard entailment system. While FOL= is known to be complete, many-sorted
second-order logic with equality (SOL=) only is complete if we work with Henkin-models. The
specification language Casl has an underlying institution SubPCFOL= (subsorted partial first-
order logic with generation constraints and equality), which is usually translated to some other
institution for doing proofs, hence, it is just an institution and not a logic in the first place.

Examples of logics that can be formalized in this sense are many-sorted equational logic, many-
sorted first-order logic, higher-order logic, various lambda calculi, various modal, temporal, and
object-oriented logics etc.

2.5 Institution Morphisms

Institution morphisms relate two given institutions. A typical situation is that an institution mor-
phism expresses the fact that a “larger” institution is built upon a “smaller” institution by projecting
the “larger” institution onto the “smaller” one.

An institution morphism from an institution I to an institution J consists of the following
components:

• a translation of I-signatures to J-signatures. The idea is here that an I-signature Σ is projected
to a J-signature Φ(Σ) by leaving out all features from I that have no counterpart in J . For
example, if I has signatures with both partial and total function symbols, while J has just
total function symbols, then the projection would just remove the partial function symbols
from a signature.

• a translation of J-sentences to I-sentences. Note that we cannot expect to be able to translate
Σ-sentences in I to Φ(Σ)-sentences in J : if an Σ-sentence is thought to be a derivation tree
decorated with symbols from Σ, it is not clear what to do with those symbols that are just
thrown out during the projection. Rather, it is easy to translate Φ(Σ)-sentences to Σ-sentences:
since the Φ(Σ) can be thought to be a subset of the Σ-symbols, basically just keep sentences
as they are.
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• a translation of I-models to J-models. This translation basically should translate a Σ-model
in I to a Φ(Σ)-model in J by just leaving out the semantical interpretation of all those symbols
that are left out when going from Σ to Φ(Σ).

There is a condition imposed on institution morphisms that is analogous to the satisfaction condition
institutions: we require that a translated model satisfies a sentence iff the original model satisfies
the translated sentence.

After these rather informal motivating explanations (which explain what is going on in typical,
but not necessarily in all cases), we now come to the formal definition:

Given institutions I and J , an institution morphism µ = (Φ, α, β): I−→J consists of

• a functor Φ:SignI −→SignJ ,

• a natural transformation α:SenJ ◦ Φ−→SenI and

• a natural transformation β:ModI −→ModJ ◦ Φop,

such that the following satisfaction condition is satisfied for all Σ ∈ SignI , M ∈ ModI(Σ) and
ϕ′ ∈ SenJ(Φ(Σ)):

M |=I
Σ αΣ(ϕ′) ⇔ βΣ(M) |=J

Φ(Σ) ϕ
′

In more detail, the above definition means that each signature Σ ∈ SignI is translated to a
signature Φ(Σ) ∈ SignJ , and each signature morphism σ: Σ −→ Σ′ ∈ SignI is translated to a
signature morphism Φ(σ): Φ(Σ) −→ Φ(Σ′) ∈ SignJ . Moreover, for each signature Σ ∈ SignI , we
have a sentence translation map αΣ:SenJ(Φ(Σ)) −→ SenI (Σ) and a model translation functor
βΣ:ModI(Σ) −→ ModJ (Φ(Σ)). Naturality of α and β means that for any signature morphism
σ: Σ−→Σ′ ∈ SignI ,

SenI(Σ)

SenI (σ)

SenJ(Φ(Σ))

SenJ (Φ(σ))

αΣ

SenI(Σ′) SenJ(Φ(Σ′))
αΣ′

and

ModI(Σ)
βΣ

ModJ(Φ(Σ))

ModI(Σ′)

ModI (σ)

βΣ′

ModJ(Φ(Σ′))

ModJ (Φ(σ))

commute.

Example 2.11 There is an institution morphism going from first-order logic with equality to
equational logic. A first-order signature is translated to an algebraic signature by just forgetting
the set of predicate symbols; similarly, a first-order model is turned into an algebra by forgetting
the predicate. Sentence translation is just inclusion of equations into first-order sentences. 2

Let µ = (Φ, α, β): I−→I ′ and µ′ = (Φ′, α′, β′): I ′−→I ′′ be two institution morphisms. Then the
composition µ′′ = µ′ ◦ µ: I−→I ′′ consists of the following components:

• Φ′′ = Φ′ ◦ Φ

• α′′
Σ = αΣ ◦ α′

Φ Σ (Σ ∈ |SignI |)
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• β′′
Σ = β′

Φ Σ ◦ βΣ (Σ ∈ |SignI |)

Together with obvious identities, this gives us the category Ins of institutions and institution mor-
phisms.

2.6 Institution Comorphisms

Somewhat dually to institution morphisms, institution comorphisms allow to express that fact that
one institution I is included into an institution J . An institution comorphism from an institution I
to an institution J consists of the following components:

• a translation Φ of I-signatures to J-signatures. Given an I-signature Σ, the task is to find
a J-encoding Φ(Σ) of Σ in some way. In particular, the model category of Φ(Σ) should
approximate the model category of Σ somehow.

• a translation α of I-sentences to J-sentences. The reason why the sentence translation goes
along with the signature translation is similar to the reason why the sentence translation
within an institution goes along with the signature morphism. Namely, if a signature Σ in I is
encoded by the signature Φ(Σ) in J , it is expected that each symbol in Σ is translated to some
corresponding symbol in Φ(Σ). Now if we assume that a Σ-sentence ϕ is a derivation tree
decorated with some symbols from Σ, the translation αΣ(ϕ) just keeps the structure of the
tree and translates the symbols according to the correspondence of symbols in Σ and Φ(Σ).

• a translation β of J-models to I-models, giving the relation between Σ-models in I and Φ(Σ)-
models in J . Here, we again have the contravariance of the model translation, as in the
definition of institution. Often it happens that there is also a model translation γ in the
opposite direction. However, while β is formalized as a natural transformation, γ is not always
natural (see [KM95] for a counterexample). Naturality of β is essential for heterogeneous
specification, see Chap. 6.

We impose a satisfaction condition on comorphisms as well: we require that a translated model
satisfies a sentence iff the original model satisfies the translated sentence.

Definition 2.12 Given institutions I and J , an institution comorphism ρ = (Φ, α, β): I −→ J
consists of

• a functor Φ:SignI −→SignJ ,

• a natural transformation α:SenI −→SenJ ◦ Φ,

• a natural transformation β:ModJ ◦ Φop−→ModI

such that the following satisfaction condition is satisfied for all Σ ∈ SignI , M ′ ∈ ModJ(Φ(Σ)) and
ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣ(ϕ) ⇔ βΣ(M ′) |=I

Σ ϕ.

In more detail, this means that each signature Σ ∈ SignI is translated to a signature Φ(Σ) ∈
SignJ , and each signature morphism σ: Σ −→ Σ′ ∈ SignI is translated to a signature morphism
Φ(σ): Φ(Σ) −→ Φ(Σ′) ∈ SignJ . Moreover, for each signature Σ ∈ SignI , we have a sentence
translation map αΣ:SenI(Σ)−→ SenJ(Φ(Σ)) and a model translation functor βΣ : ModJ(Φ(Σ))
−→ ModI(Σ). Naturality of α and β means that for any signature morphism σ: Σ−→Σ′ ∈ SignI ,

SenI(Σ)
αΣ

SenI (σ)

SenJ(Φ(Σ))

SenJ (Φ(σ))

SenI(Σ′)
αΣ′

SenJ (Φ(Σ′))
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and

ModI(Σ) ModJ (Φ(Σ))
βΣ

ModI(Σ′)

ModI (σ)

ModJ(Φ(Σ′))

ModJ (Φ(σ))

βΣ′

commute.

Example 2.13 There is an institution comorphism going from equational logic to first-order logic
with equality. An algebraic signature is translated to a first-order signature by just taking the set
of predicate symbols to be empty. Sentence translation is just inclusion of equations into first-order
sentences. A first-order model with empty set of predicates is translated by just considering it as
an algebra. 2

Let ρ = (Φ, α, β): I −→ I ′ and ρ′ = (Φ′, α′, β′): I ′ −→ I ′′ be two institution comorphisms. Then
the composition ρ′′ = ρ′ ◦ ρ: I−→I ′′ consists of the following components:

• Φ′′ = Φ′ ◦ Φ

• α′′
Σ = α′

ΦΣ ◦ αΣ (Σ ∈ |SignI |)

• β′′
Σ = βΣ ◦ β′

Φ Σ (Σ ∈ |SignI |)

Together with obvious identities, this gives us the category CoIns of institutions and institution
comorphisms.

2.7 Simple Theoroidal (Co)Morphisms

Morphisms and comorphisms also come in a variant that maps signatures to theories.

Definition 2.14 A simple theoroidal institution (co)morphism from I to J is an institution (co)morphism
(Φ, α, β) from I to J th, where J th is the institution of theories over J (see Sect. 2.2). If we want to
stress that an institution (co)morphism is an ordinary one, we call it plain.

It is easy of extend ( )th to a functor on CoIns, mapping a comorphism (Φ, α, β) to (Φα, α′, β′).
Here, Φα is the extension of Φ to theories (using α for sentence translation), and α′ and β′ are
suitable variants of α and β indexed by theories instead of signatures. Then, there is an institution
comorphism ηI : I −→ Ith mapping Σ to (Σ, ∅) and an institution comorphism ξI : (I

th)th −→ Ith

mapping ((Σ,Ψ1),Ψ2) to (Σ,Ψ1 ∪ Ψ2). Both are the identity on sentences and models. It is
rather straightforward to show that this yields a monad on CoIns, and using f Kleisli composition,
institutions and simple theoroidal comorphisms form a category, see [RG04, Mos96b] for details.

On the other hand, simple theoroidal morphisms form a category only under additional assump-
tions (this is because Φ and α go in opposite directions, and hence ( )th is not a functor on Ins
from the outset). In the sequel, we will work with simple theoroidal comorphisms only: they cap-
ture the intuition of encoding an institution into another one (while examples for simple theoroidal
morphisms are less frequent). Obviously, any institution comorphism also is a simple theoroidal
one.

Definition 2.15 A simple theoroidal comorphism ρ = (Φ, α, β): I−→J is said to be a subinstitu-
tion comorphism if Φ is an embedding of categories, α is a pointwise injection, and β is a natural
isomorphism. I is said to be a subinstitution of J if there is a subinstitution comorphism from I to
J . 2
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Example 2.16 The institution comorphism from Example 2.13 is a subinstitution comorphism.
2

Example 2.17 Simple theoroidal institution comorphisms capture the encoding of a richer insti-
tution into a poorer one, as the following example shows: Define a simple theoroidal institution
comorphism going from partial first-order logic with equality to first-order logic with equality as
follows: A partial first-order signature is translated to a total one by encoding each partial function
symbol as a total one, plus a (new) unary predicate D (“definedness”) and a (new) function symbol
⊥ (“undefined”) for each sort (this means that ⊥ and D are heavily overloaded). Furthermore,
we add axioms stating that D does not hold on ⊥, and that (encoded) total functions preserve
(“totality”) and reflect (“strictness”) D, while partial functions only reflect D (and the holding of
predicates implies D to hold on the arguments). Sentence translation is done by replacing all partial
function symbols by the total functions symbols encoding them, replacing strong equations t = u
by (D(t) ∨D(u)) ⇒ t = u, existence equations by conjunctions of the equation and the definedness
(using D) of one of the sides of the equation, replacing definedness with D, and leaving predicate
symbols as they are. For a given total model of the translated signature, we just take as carriers
of the partial model the interpretations of the definedness predicates in the total model, while the
total functions are restricted to these new carriers, yielding partial functions. 2

2.8 Intersections of Subinstitutions

In Sect. 3.1.9 below, we want to define subinstitutions of the Casl institution by removing different
features from it. Therefore, we need intersections of subinstitutions.

Given a family (ρk = (Φk, α
k , βk): Jk −→ J)k∈K of plain subinstitution comorphisms, with

Jk = (Signk,Senk,Modk, |=k), their intersection I is defined as follows:

Signatures SignI :=
⋂

k∈K Φk(Signk). This is a category, since the Φk are embeddings, and
categories are closed under taking the image along embeddings and under intersection.

Models ModI(Σ) := ModJ(Σ).

Sentences SenI(Σ) :=
⋂

k∈K αk
Φ−1

k
(Σ)

(Senk(Φ−1
k (Σ))), and SenI(σ: Σ −→ Σ′) : SenI(Σ) −→

SenI(Σ′) is the domain-codomain-restriction of SenJ(σ), which exists by naturality of α. The
injection of SenI(Σ) into Senk(Φ−1

k (Σ)) given by the appropriate restriction of (αk
Φ−1

k
(Σ)

)−1

is denoted by ιkΣ.

Satisfaction M |=I
Σ ϕ iff M |=J

Σ ϕ (hence, the satisfaction condition is inherited from J). 2

Note that the intersection is a limit in the category CoIns, with limit projections (Φ−1
k , ι, (βk ◦

Φ−1
k )−1): I−→Jk (well, injections would be a better name here, since they inject the intersection I

in the Jk).

2.9 Adjointness Between Morphisms and Comorphisms

Institution morphisms and comorphisms are related by an adjunction.

Proposition and Definition 2.18 Given institutions I and J and functors Φ:SignI −→SignJ

and Ψ:SignJ −→SignI such that Φ is left adjoint to Ψ, there is a one-to-one correspondence between
institution comorphisms ρ = (Φ, α, β): I −→ J and institution morphisms µ = (Ψ, ᾱ, β̄): J −→ I . ρ
and µ are called adjoint if they are in this correspondence.

For example, the institution morphism from Example 2.11 is adjoint to the institution comorphism
from Example 2.13.
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Proof: If η is the unit and ε is the counit of the adjunction, then the one-to-one correspondence
is given by

ᾱ = (SenJ · ε) ◦ (α · Ψ) α = (ᾱ · Φ) ◦ (SenI · η)

β̄ = (β · Ψop) ◦ (ModJ · ε) β = (ModI · η) ◦ (ᾱ · Φop)

2

2.10 A Taxonomy of (Co)Morphisms

The notion of institution morphism can be varied in several ways by changing the directions of the
arrows or even, in the case of semi-morphisms, omitting some arrows.

morphism comorphism
Sign Sign′

Sen Sen′ ◦ Φ
Mod Mod′ ◦ Φ

forward morphism forward comorphism
Sign Sign′

Sen Sen′ ◦Φ
Mod Mod′ ◦ Φ

semi morphism semi comorphism
Sign Sign′

Sen Sen′ ◦ Φ
Mod Mod′ ◦ Φ

The respective satisfaction conditions are quite obvious (note that for semi-(co)morphisms, none
is required). The naming scheme follows a model-theoretic view — the name main part of the name
is determined by the action on models:

• morphisms have model translations along the signature translation, while

• comorphisms have it against the signature translation.

The sentence translation is determined by the qualification:

• no qualification means that sentence translation is done against the model translation,

• “forward” means that it is done along the model translation, and

• “semi” means that there is no sentence translation at all.

Let semi-Ins (semi-coIns) be the category of institutions and semi-morphisms (semi-comorphisms).
These notions are not just a formal game, but are relevant in practice. Let us now examine in more
detail typical practical situations.

Let two institutions (for specification purposes) be given, a “poorer” one P and a “richer” one
R having some more features. Then typically, there are four different types of translations between
them, serving different purposes:

1. trivial inclusions ρ:P −→ R, which are usually comorphisms. In heterogeneous Casl (see
Chap. 6 and Appendix A), we provide a construct SP with logic ρ allowing to move a
specification into the richer logic for the purpose of heterogeneous specification;

2. trivial projections µ:R−→P forgetting R’s additional features (they are usually morphisms).
In heterogeneous Casl, we provide a construct SP hide logic µ allowing to project a spec-
ification into the poorer logic. Typically, such a µ is adjoint (in the sense of Proposition and
Definition 2.18) to some inclusion ρ;
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3. codings ρ:R−→P encoding R’s features within P , typically coming as simple theoroidal co-
morphisms or as forward morphisms. The corresponding construct SP with logic ρ typically
is not used for writing heterogeneous specifications, but for exploiting borrowing (see Sect. 5.2,
6.3) during heterogeneous proofs;

4. “feature-interaction” either comes as a projection µ:R−→P projecting R onto P while keeping
R’s additional features within P by making them explicit (i.e. by providing explicit signature
elements in P for features that are implicit, or “logical”, in R), or as a coding of R’s additional
features in P . These come as morphisms, and provide a form of feature interaction during
heterogeneous specification (which initially seems only to put logics side by side).

When also considering institutions for programming languages, two additional situations may
arise: Firstly, a semi-morphism going from a more implementation-oriented institution (e.g. a pro-
gramming language) to a more specification-oriented institution, allows to express implementations
[ST88c]. Secondly, sometimes it is also possible to automatically translate an executable sublan-
guage of a specification language to a programming language; this situation can be modeled by
comorphisms that are similar to the inclusion comorphisms above.

We illustrate our taxonomy with some simple examples. Let FOL be first-order logic and FOL=

be first-order logic with equality (a detailed formalization as institution can be found in [GB92]).
The trivial inclusion of FOL into FOL= is easily formalized as an institution comorphism, while

the trivial projection from FOL= to FOL is a institution morphism. Both are the identity on
signatures and models, and include the set of sentences without equality into the set of sentences
with equality.

Concerning coding comorphisms, consider the simple theoroidal comorphism ρ:FOL=−→FOL.
For signatures, it adds predicate symbols ≡: s× s (overloaded for each sort s) that are axiomatized
to be congruences. Models are translated by factoring their carriers w.r.t. ≡. Sentence translation
is done by replacing = with ≡.

Finally, there is a feature interaction institution morphism µ going from first-order logic with
equality FOL= to first-order logic FOL defined in [RG04]. At the signature level, it adds a binary
equality predicate eqs for each sort s, which is interpreted as the equality relation when translating
models. In sentences, the explicit equality predicate eqs (in FOL) is translated to the built-in
equality = in FOL=. So this morphism makes equality explicit.

These four types of translations all deal with the feature of equality: inclusions add it, projections
forget it, codings make it explicit by axiomatizing it, and feature interaction translations make it
explicit by naming it and keeping it in the models. We have chosen these examples involving FOL
and FOL= because they are simple but quite typical. For example, between Casl and Casl-Lt,
the same four kinds of translations exists, some of them are sketched in [Mos02b]. E.g. the feature
interaction morphism makes the labeled transition structure explicit.

In the literature, a whole bunch of different types of translations has been used. The following
table partitions them by some informal classification scheme (a “th” stands for the simple theoroidal
case, “semi” denotes semi-morphisms, and an “x” stand for folklore knowledge or trivialities):
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(semi)
morphism

(simple the-
oroidal) co-
morphism

(simple
theoroidal)
forward
morphism

forward
comor-
phism

Inclusion [STb] [AF96, Mes89b] x x

Coding ([STb, Ala02])4

th [AC92, Cer93]
[CM97, KM95]
[MOM95, Mes89b]
[Mes92, Mos96a]
[Mos02, MKK98]
[Tar87]

th [BHa]
[WDC+95, SS93]
[SS96, Sco93])5

Projection [AF96, STb, DF02]
Feature interaction [Mos02b] x/th

Implementation
semi [ST88c]
[Tar96, STb]

x [WDC+95]

2.11 Properties of Institution Comorphisms

We now introduce various properties of institution comorphisms that will play a rôle for re-use of
proof calculi (so-called Borrowing, Sect. 5.2) and heterogeneous specification (Chap. 6). A first
property, useful for borrowing for flat specifications, is the model expansion property:

Definition 2.19 An institution (co)morphism (Φ, α, β) admits model expansion if β is pointwise
surjective on objects (i.e., each βΣ is surjective on objects). 2

Example 2.20 The institution comorphisms from Examples 2.13 and 2.17 admit model expansion.
For the former one, this is trivial. For the latter one, any partial model can be completed to a total
model by adding one element to each carrier (as interpretation of ⊥), representing “undefined”, which
is a fixpoint of all functions, while predicates do not hold on it. Then, this one-point completion
just generates the original model via the model translation. 2

Amalgamation resp. exactness can be lifted to comorphisms as follows:

Definition 2.21 Let ρ = (Φ, α, β): I −→ J be an institution comorphism and let D be a class of
signature morphisms in I . Then ρ is said to have the (weak) D-amalgamation property, if for each
signature morphism σ: Σ1−→Σ2 ∈ D, the diagram

ModI(Σ2)

ModI(σ)

ModJ(Φ(Σ2))

ModJ (Φ(σ))

βΣ2

ModI(Σ1) ModJ(Φ(Σ1))
βΣ1

admits (weak) amalgamation, i.e. any for any two modelsM2 ∈ ModI(Σ2) andM ′
1 ∈ ModJ(Φ(Σ1))

with M2|σ = βΣ1(M
′
1), there is a unique (not necessarily unique) M ′

2 ∈ ModJ (Φ(Σ2)) with
βΣ2(M

′
2) = M2 and M ′

2|Φ(σ) = M ′
1. In case that D consists of all signature morphisms, the (weak)

D-amalgamation property is also called (weak) exactness. The corresponding notions for institution
morphisms are defined similarly. 2

4It is not entirely clear whether these should be really called encodings, since —unlike the other codings in this
row— it is not clear that they are suitable for re-use of theorem provers.

5Salibra and Scollo introduce a relaxed kind of forward morphism mapping models to sets of models.
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Example 2.22 The institution comorphism from Example 2.13 trivially satisfies the weak D-
amalgamation property, where D is the class of all signature morphisms in Eq=, since the model
translations βΣ are isomorphisms. 2

Example 2.23 Let D be the class of all injective signature morphisms in PFOL=. Weak D-
amalgamation for the institution comorphism from Example 2.17 can be seen as follows: Let
σ: Σ1 −→ Σ2 ∈ D, let M2 be a Σ2-model and M ′

1 be a Φ(Σ1)-model such that M2|σ = βΣ1(M
′
1).

Extend M ′
1 to a Φ(Σ2)-model M ′

2 as follows: For any sort s not in the image of σ, let the carrier for
sort σ(s) in M ′

2 just be (M2)s ] {∗}, and let DM ′
2

hold everywhere except on ∗. ⊥ is interpreted as
∗ in M ′

2. Given a function symbol f in Σ outside the image of σ, σ(f) is interpreted in M ′
2 to be

fM2 , except that the interpretation of ⊥ is delivered if the argument is outside M2 or the result is
not defined due to partiality of the function. Given a predicate symbol p in Σ outside the image of
σ, σ(p) is interpreted in M ′

2 to be pM2 , except that it is false if the argument is outside M2. Then,
we have that βΣ2(M

′
2) = M2 and M ′

2|Φ(σ) = M ′
1, showing weak D-amalgamation. 2

We will also need the following strengthening of the weak amalgamation property:

Definition 2.24 An institution (co)morphism µ = (Φ, α, β): I−→J is said to be model-bijective if
for each Σ ∈ SignI , βΣ is a bijection on objects. 2

A property ensuring a good interaction with liberality of institutions (to be introduced in
Def. C.4) is the following one, which we have introduced in [KM95] in a slightly stronger form
under the name of categorical retractive simulation:

Definition 2.25 An institution comorphism ρ = (Φ, α, β): I−→J is called persistently liberal if for
each Σ ∈ SignI , βΣ has a left adjoint γΣ such that also βΣ ◦ γΣ

∼= id. If we have even βΣ ◦ γΣ = id,
then ρ is called strongly persistently liberal. If moreover each βΣ has a right adjoint δΣ, ρ is called
strongly persistently bi-liberal. We write (ρ, γ) resp. (ρ, γ, δ) if we want to chose a particular γ and
δ. Note that γ and δ are not required to be natural transformations. 2

Example 2.26 The institution comorphism from Examples 2.13 is strongly persistently liberal:
γΣ is just the inverse of the isomorphism βΣ. 2

Example 2.27 The institution comorphism from Example 2.17 is strongly persistently liberal: γΣ

totalizes a partial model by adding “undefined” values freely (this is the free completion [Bur86,
BLR02]). 2

Proposition 2.28 Given a strongly persistently bi-liberal institution comorphism ((Φ, α, β), γ, δ),
we always have

βΣ ◦ δΣ ∼= id.

Proof: By composability of adjoints, βΣ ◦ γΣ is left adjoint to βΣ ◦ δΣ. Now the identity functor
is left adjoint to itself, and left adjoints are unique up to natural isomorphism. Hence, βΣ ◦ δΣ ∼= id.

2

We now briefly compare the different notions of comorphisms that have been introduced so far.

Proposition 2.29 The implication shown below hold. In particular, any model-bijective institu-
tion comorphism admits model expansion and weak D-amalgamation for arbitrary D. Any subin-
stitution comorphism is model-bijective and strongly persistently bi-liberal such that both γ and δ
are natural transformations.
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subinstitution

strongly persistently bi-liberal

strongly persistently liberal model-bijective

persistently liberal admits model expansion weak D-amalgamation

2

We now present a number of counterexamples showing that the above diagram of implications
is optimal.

Example 2.30 The institution comorphism from Examples 2.17 and 2.27 admits model expansion
and it is strongly persistently liberal, but neither model-bijective admitting weak D-amalgamation
for D consisting of non-injective signature morphisms: for a given partial model, it is possible to
add any number of “undefined” elements in a model representing it. 2

Example 2.31 Modify the institution comorphism from Examples 2.17 and 2.27 by omitting the
functions ⊥ and the axioms involving ⊥. Then the resulting institution comorphism is still strongly
persistently liberal, but it does not admit weak D-amalgamation, where D is the class of all signature
morphisms adding a partial function symbol to a signature. Let σ: Σ−→Σ′ ∈ D. Take any Σ′-model
M containing a truly partial function and such that all functions in M |σ are total. Then M |σ can be
represented by a model M ′ (i.e. βΣ(M ′) = M |σ) that has no “undefined” elements at all. However,
it is not possible to represent M with an extension of M ′, since this would require the presence of
some “undefined” element in some carrier of M ′ (and hence also M). 2

Example 2.32 Modify the institution comorphism from Example 2.17 as follows: Add to Φ(Σ)
a sentence ¬ x = ⊥s ⇒ Ds(x) (for each sort s in Σ). Thus, ⊥s becomes the unique “undefined”
element. Now a two-sided inverse of the model translation can be constructed as follows: For
a partial Σ-structure M , form its one-point completion by just adding one element, ∗ (which is
the interpretation of ⊥s), to all carriers, let all functions map ∗ to itself and behave as in M
otherwise, where undefinedness of partial functions is mapped to ∗. Predicates are false on ∗. The
interpretation of the predicates D is fixed by their defining axioms. This shows the comorphism to
be model-bijective (and hence it also admits model expansion).

The above defined inverse to the model translation defines a bijection on model classes, but not an
isomorphism of model categories. This is because a Σ-homomorphism need only preserve definedness
of partial functions, while a Φ(Σ)-homomorphism has to preserve and reflect “definedness” of the
comorphisms of partial functions. Thus, the above inverse construction, being the unique inverse
construction on models, cannot be extended to a functor. This shows that the above institution
comorphism is neither a subinstitution comorphism nor persistently liberal.

Now consider the PFOL=-signature Σ with one sort s and one partial function symbol f : s−→?s,
and let σ be the inclusion of the signature consisting just of sort s into Σ. Given a set X , the σ-
free Σ-model M over X is just X with f interpreted as the everywhere undefined function. The
unique representation M ′ of M is X with one “undefined” element, and f yielding everywhere the
“undefined” element. Now M ′ is not free over X , since any homomorphism starting from M ′ has
to preserve the undefined element and thus there cannot be a homomorphism from M ′ into some
model where f is defined at some point. This shows that the assumption of persistent liberality is
really needed in Theorem C.8. 2
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Example 2.33 Let D be the class of all signature isomorphisms in an institution I . Since functors
preserve isomorphisms, any institution comorphism starting from I admits weak D-amalgamation.
Clearly, not every such comorphism admits model expansion. 2

2.12 Institution (Co)Morphism Modifications

Sometimes it is useful to indicate that two institution (co)morphisms differ only in an inessential way.
This in particular applies when the (co)morphisms arise as compositions of other (co)morphisms.
We therefore introduce the notion of modification.

The main motivation behind the use of modifications is to identify comorphisms that are re-
lated by a modification for the purpose of heterogeneous specification (cf. Chap. 6). Indeed, this
notion will later on serve to reduce the number of composite comorphisms shown to the user of the
Heterogeneous Tool Set (cf. Chap. 7). Fig. 2.1 contains a menu of translations possible for a Casl
specification; using modifications, the number of possible translations can be greatly reduced. A
crucial property of modifications therefore is that in this identification process, they do not lead to
identifications of different sentence or model translation maps. Hence, we strengthen the original
notion from [Dia02] to discrete modifications:

Definition 2.34 Given two institution morphisms µ1, µ2: I−→J with µi = (Φi, αi, βi), a (discrete)
institution morphism modification τ :µ1−→µ2 is a natural transformation τ : Φ1−→Φ2 such that

SenJ ◦ Φ1

α1

SenJ ·τSenI

SenJ ◦ Φ2

α2

ModJ ◦ Φ1

ModI

β1

β2

ModJ ◦ Φ2

ModJ ·τ

commute.

In [Dia02, Dia], the first condition is omitted, and the second condition is replaced by the
existence of a natural transformation between β1 and (ModJ · τ)◦β2. We have not found this extra
generality of practical use and hence work with the above stronger notion of discrete modification.
However, since we will not use any non-discrete modification, we will omit the qualification of being
discrete henceforth.

Dually, given two institution comorphisms ρ1, ρ2: I −→ J with ρi = (Φi, αi, βi), an institution
comorphism modification τ : ρ1−→ρ2 is a natural transformation τ : Φ1−→Φ2 such that

SenJ ◦ Φ1

SenJ ·τSenI

α1

α2

SenJ ◦ Φ2

ModJ ◦ Φ1

β1

ModI

ModJ ◦ Φ2

β2

ModJ ·τ

commute.

Example 2.35 There are two ways to go from equational logic to first-order logic: one is the
obvious subinstitution comorphism ρ1 from Example 2.13, the other one is the composition ρ2 of
the obvious subinstitution comorphism from equational logic to partial first-order logic composed
with the encoding of partial first-order logic into first-order logic from Example 2.17. (Actually, since

34



Figure 2.1: Dozens of translation possibilities for a Casl theory in Hets (from a logic graph without
comorphism modifications; using modifications, the number of possible translations can be greatly
reduced).
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the latter is a simple theoroidal comorphism, we take both to end in FOLth.) These comorphisms are
different: ρ2 adds some (superfluous) coding of partiality. The comorphism modification τ : ρ1−→ρ2

is just the pointwise inclusion of an algebraic signature viewed as first-order signature into the theory
coding a partial variant of that signature.

FOLth

Eq

PFOL

Together with obvious identities and compositions, modifications can serve as 2-cells, leading to
2-categories Ins and CoIns.

Modifications also interplay with amalgamation:

Definition 2.36 Given comorphisms ρ = (Φ, α, β): I1 −→ I2, ρ1 = (Φ1, α1, β1): I1 −→ J and
ρ2 = (Φ2, α2, β2): I2−→J , a lax triangle

I1
ρ1

ρ τ J

I2

ρ2

of institution comorphisms and modifications is called (weakly) amalgamable, if

ModI1Σ ModJΦ1Σ
(β1)Σ

ModI2Σ

βΣ

ModJΦ2Σ
(β2)Σ

ModJτΣ

is a (weak) pullback for each signature Σ ∈ SignI .

2.13 Institutions as Functors

Institutions can be alternatively characterized as functors into a certain category of rooms. This
view will be convenient in the treatment of heterogeneous specification in Chap. 6. The idea is to
collect the satisfaction system local to a signature into a so-called room.

An institution room (S,M, |=) consists of

• a set of S of sentences,

• a category M of models, and

• a satisfaction relation |= ⊆ |M| × S.
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Rooms are connected via corridors (which model change of notation within one logic, as well as
translations between logics).

An institution corridor (α, β): (S1,M1, |=1)−→(S2,M2, |=2) consists of

• a sentence translation function α:S1−→S2, and

• a model reduction functor β:M2−→M1, such that

M2 |=2 α(ϕ1) ⇔ β(M2) |=1 ϕ1

holds for each M2 ∈ M2 and each ϕ1 ∈ S1 (satisfaction condition).
Semantic entailment in an institution room is defined as usual: for Ψ ⊆ S, ϕ ∈ S, we write

Ψ |= ϕ, if all models satisfying Ψ also satisfy ϕ.
A logic room (S,M, |=,`) is an institution room (S,M, |=) equipped with an entailment relation

`⊆ P(S) × S, such that the following conditions are satisfied:

1. reflexivity: for any ϕ ∈ S, {ϕ} ` ϕ,

2. monotonicity: if Ψ ` ϕ and Ψ′ ⊇ Ψ then Ψ′ ` ϕ,

3. transitivity: if Ψ ` ϕi, for i ∈ I , and Ψ ∪ {ϕi | i ∈ I} ` ψ, then Ψ ` ψ,

4. soundness: for any Ψ ⊆ S and ϕ ∈ S,

Ψ ` ϕ implies Ψ |= ϕ.

A logic room will be called complete if, in addition, the converse of the above implication holds.
A logic corridor (α, β): (S1,M1, |=1,`1)−→ (S2,M2, |=2,`2) consists of an institution corridor

(α, β): (S1,M1, |=1) −→ (S2,M2, |=2) such that if Ψ `1 ϕ, then α(Ψ) `2 α(ϕ) (`-translation).
Together with obvious notions of composition and identity, this gives us categories InsRoom and
LogRoom.

Now, an institution can be defined to be just a functor I :Sign−→ InsRoom (where Sign is
called the category of signatures), and a logic is a functor L:Sign−→LogRoom. In terms of the
standard notation, the institution room I(Σ) is written as (SenI(Σ),ModI(Σ), |=Σ). ModI and
SenI can easily be seen to be functors, and we arrive at the standard definition of institution as a
quadruple (Sign,Sen,Mod, |=).

The definition of morphisms and comorphisms is very easy: Given institutions I1:Sign1 −→
InsRoom and I2:Sign2 −→ InsRoom, an institution morphism (Ψ, µ): I1 −→ I2 consists of a
functor Ψ:Sign1−→Sign2 and a natural transformation µ: I2 ◦Ψ−→I1. In contrast, an institution
comorphism (Φ, ρ): I1 −→ I2 consists of a functor Φ:Sign1 −→Sign2 and a natural transformation
ρ: I1 −→ I2 ◦ Ψ. We have thus recovered the categories Ins and CoIns. Logic morphisms and
comorphisms are defined analogously, leading to categories Log and coLog.

We also easily recast the notion of modification in the new setting: Given institution morphisms
(Ψ, µ): I1 −→ I2 and (Ψ′, µ′): I1 −→ I2, an institution morphism modification θ: (Ψ, µ) −→ (Ψ′, µ′)
is just a natural transformation θ: Ψ −→ Ψ′ such that µ = µ′ ◦ (I2 · θ). Similarly, given institu-
tion comorphisms (Φ, ρ): I1 −→ I2 and (Φ′, ρ′): I1 −→ I2, an institution comorphism modification
θ: (Φ, ρ)−→(Φ′, ρ′) is a natural transformation θ: Φ−→Φ′ such that (I2 · θ) ◦ ρ = ρ′.

The corresponding notions for logics are entirely analogous.

2.14 Colimits in Hom-Categories

As a first application, we show that results about the 2-categorical structure of CoIns can be proved
in a concise way using institutions as functors:

Proposition 2.37 Given two institutions I and J , if J has pushouts of signatures, then the Hom-
category CoIns(I, J) has pushouts as well. This generalizes to arbitrary non-empty colimits.
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Proof: Given comorphisms (Φi, ρi): I−→J (i = 1, 2, 3) and a span of modifications

(Φ1, ρ1)

τ1 τ2

(Φ2, ρ2) (Φ3, ρ3)

construct the signature component ΦΣ of the resulting comorphism as the pushout

Φ1Σ
(τ1)Σ (τ2)Σ

Φ2Σ

(θ2)Σ

Φ3Σ

(θ1)Σ

ΦΣ

By the universal property of the pushout, this extends to a functor Φ:SignI −→SignJ such that
θ1: Φ3−→Φ and θ2: Φ2−→Φ become natural transformations.

I
ρ2

ρ1
ρ3

J ◦ Φ2

J·θ2

J ◦ Φ1
J·τ1 J·τ2

J ◦ Φ3

J·θ1

J ◦ Φ

We can then define room component of the pushout comorphism ρ: I −→ J ◦ Φ to be J · θ2 ◦ ρ2 =
J · θ1 ◦ ρ3, and the cocone consisting of θ1: (Φ3, ρ3)=⇒(Φ, ρ) and θ2: (Φ2, ρ2)=⇒(Φ, ρ) is easily seen
to satisfy the universal property of a pushout.

The proof for coproducts, coequalizers or arbitrary non-empty colimits is very similar. 2

Note that initial objects in Hom-categories CoIns(I, J) generally do not exist: an initial comorphism
from I to J would have to translate I-sentences to J-sentences over the initial signature, thereby
losing any specific reference to the signature, which generally destroys the satisfaction condition.

The dual situation is better for initial objects:

Proposition 2.38 Given two institutions I and J , if J has an initial signature with empty set of
sentences and terminal model category, then the Hom-category Ins(I, J) has an initial object.

Proof: The initial institution morphism (Φ, µ): I −→ J is defined by letting ΦΣ be the initial
signature, and µΣ consist of the empty map of sentences and the unique functor into the terminal
model category. 2

Concerning pushouts for Ins(I, J),

I

JΦ2

µ2

Jθ2

JΦ1

µ1

Jτ1 Jτ2
JΦ3

µ3

Jθ1

JΦ

it is difficult to construct µ: JΦ−→I . While the model translation component could be constructed
using amalgamation, it is unclear how to map a J-sentence over the pushout signature ΦΣ to a
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Σ-sentence in I , based on corresponding mappings for the signatures Φ2Σ and Φ3Σ: generally, a
sentence in ΦΣ may mix symbols of both Φ2Σ and Φ3Σ. Hence, pushouts in Ins(I, J) seem to exist
only under rather strong additional assumptions.

2.15 Polymorphism in an Arbitrary Institution

Type class polymorphism has been used in programming languages like Haskell [PJ03], as well as in
the higher-order logic of Isabelle [Wen97]. It is one of the central features of the recently developed
specification language HasCasl (see Sect. 3.4). Little attention has been paid in the literature
to the question whether type class polymorphism can be formalized as an institution, the main
problem here being that with the ‘naive’ semantics, the satisfaction condition fails in the sense that
satisfaction of polymorphic axioms is preserved only by model reduction, not by model expansion,
because expanded models may have more types. Thus, the naive semantics defines only a so-called
rps preinstitution [SS93] rather than an institution.

The work of [NP86] is an initial attempt to define an institution for polymorphism but imposes
severe restrictions on signature morphisms by simply ruling out the introduction of new types. For
the case of polymorphism without type classes, one solution is to parameterize the notion of model
by a fixed universe of types [Bor00, KBS88]; this solution, however, does not seem to be suitable
for type class polymorphism.

The main goal here is to provide a semantics that avoids both problems, i.e. caters for type classes
and works with the usual structured specification style where the signature is built up successively.
In particular, we wish to avoid restrictions on signature morphisms ; instead, we argue that the
failure of the satisfaction condition points to a flaw in the notion of model. The key idea is to
notice that polymorphic axioms are intended as statements about all types including those yet to
be declared, and that therefore models should take into account future extensions. Starting from
this observation, we obtain a general procedure that transforms a preinstitution into an institution,
the so-called institution of extended models. This construction is employed in the semantics of
HasCasl. It turns out that the notions of semantic consequence and model-expansive extension
engendered by the construction agree with intuitive expectations, at least in sufficiently rich logics
such as the logic of HasCasl.

More generally, HasCasl’s treatment of polymorphic sentences can be subsumed under a defini-
tion of polymorphic formulae in institutions introduced here. Such generic polymorphic frameworks
are perfect candidates for the extended model construction, and indeed it turns out that the notion
of semantic consequence in the institution of extended models over a generic polymorphic framework
is simpler and more natural than the original notion.

There are several other known examples of logical frameworks where the satisfaction condition
fails unless restrictions are imposed. E.g. in observational logics, signature morphisms are usually
not allowed to introduce new observers [BHb, GM00], precisely in order to rescue the satisfaction
condition. Moreover, in the (non-)institution of SB-Casl [Bau01, BZ00], the satisfaction condition
fails for signature morphisms that introduce additional state components [Bau01]. It turns out that
our construction cannot be recommended for the observational case, since it suppresses coinduc-
tion, while the semantics obtained for SB-Casl arguably provides the ‘right’ notion of semantic
consequence.

In HasCasl, polymorphic types, operators, and axioms are semantically coded out by collections
of instances. That is, the effect of a polymorphic type is essentially just its contribution to the
syntactic type universe; a polymorphic operator is interpreted as a family of operators, one for
each instantiation of its type arguments; and a polymorphic axiom is understood as a collection of
axioms, indexed over all types in the classes named in the quantifiers.

2.15.1 Failures of the Satisfaction Condition

There are various features in modern specification languages that tend to cause the satisfaction
condition (cf. Sect. 2.1) to fail; besides polymorphism, this includes observational satisfaction and
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dynamic equations between programs in states-as-algebras frameworks such as SB-Casl [BZ00].
Briefly, the reasons for the failures are as follows:

• Parametric polymorphism: if a signature morphism σ introduces additional types, then
the translation of a polymorphic axiom ϕ may fail in a model M although ϕ holds in the
reduct of M along σ, namely if ϕ holds for the ‘old’ types, but not for the newly introduced
ones.

• Observational equality: if a signature morphism σ introduces additional observers, then
observational equalities that hold in the reduct of a model M under σ may fail in M , since
the new observers may detect previously unobservable differences.

• dynamic equations: if a signature morphism σ introduces additional state components
(i.e. dynamic functions, predicates, or sorts), then dynamic equations p = q between stateful
program expressions [BZ00] that hold in the reduct M |σ of a model M may fail to hold in M ,
since the interpretations of p and q may differ on the new state components [Bau01].

In all these cases, only one direction of the satisfaction condition holds, so that logics with these
features constitute proper rps preinstitutions; we explicitly repeat the definition [SS93]:

Definition 2.39 A preinstitution consists of a signature category equipped with model and sen-
tence functors and a satisfaction relation in the same sense as an institution (cf. Sect. 2.1); these
data are not, however, required to obey the satisfaction condition. A preinstitution is called an rps
preinstitution (‘reducts preserve satisfaction’) if

M |= σϕ implies M |σ |= ϕ

for allM , σ, ϕ, and an eps preinstitution (‘extensions preserve satisfaction’) if the reverse implication
holds.

Let PI1, PI2 be preinstitutions. A preinstitution comorphism [Mos96c] µ : PI1 → PI2 consists of
the same data (Φ, α, β) as an institution comorphism (in particular, sentence translation is covariant
and model translation is contravariant), without however being required to obey the satisfaction
condition as in Definition 2.12. A preinstitution comorphism µ is called rps if

M |= αϕ implies βM |= ϕ,

and weakly eps if a model M satisfies αϕ whenever βK |= σϕ for all K, σ such that K|Φσ = M .

Thus, an institution is a preinstitution that is simultaneously rps and eps, and a preinstitution
comorphism between two institutions is an institution comorphism iff it is rps and weakly eps.

The typical remedy used hitherto to obtain institutions in the presence of the mentioned features
is to restrict signature morphisms to cases where the full satisfaction condition holds. This is not an
acceptable solution for the case of polymorphism: one has to require that signature morphisms do not
introduce additional types, a restriction that effectively prevents the use of structured specifications.
We emphasize that this problem is not solved by treating quantified types as first-class types (higher
rank polymorphism), even if one manages to work around the obstacle that the latter is inconsistent
with higher order logic [Coq86]: e.g., the restriction that signature morphisms be surjective on types
is imposed also in [NP86], where it is needed in order to ensure preservation of coherent families
of domains in a semantics of higher rank polymorphism in the style of Reynolds. In other words,
ensuring coherence of polymorphic operators model-theoretically is not a feasible option.

For plain shallow polymorphism without type classes, a further alternative is to interpret the
range of quantification over type variables in a fixed universe of types, i.e. some collection of sets
closed under a number of constructions, rather than in the syntactical universe of declared types.
This is the approach taken e.g. in [Bor00, KBS88]; it is not apparently suitable for HasCasl and
similar frameworks for two reasons:

• in connection with a Henkin style semantics of function types, it is unclear what closure of the
type universe under function types means;
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• the type universe does not give an indication of what the interpretation of type classes should
be, in particular since type classes on the one hand can be entirely loose and on the other
hand are meant to contain only explicitly declared instances rather than, say, all structures
matching the interface.

Independently of these specific issues, a further general disadvantage of the universe approach is
that the choice of a universe unduly influences semantic consequence — the particularities of the
chosen universe may induce unintended semantic consequences in a rather unpredictable way, thus
introducing an unnecessary degree of incompleteness of deduction. The solution chosen in the
semantics of HasCasl is therefore to add a second level to the model semantics according to the
general construction described below.

2.15.2 Generic Polymorphism

We now introduce a general notion of syntactic polymorphism in an institution which covers Has-
Casl’s type class polymorphism as a special case. This construction provides a wide range of
examples of rps preinstitutions. We will return to this example in Sect. 2.15.4, where we will show
that the notion of semantic consequence between polymorphic formulae induced by our generic con-
struction of institutions from preinstitutions is not only in accordance with intuitive expectations,
but also greatly simplifies the original notion.

Our construction of polymorphic formulae is similar in spirit to the open formulae introduced
in [Tar86]: given a signature Σ1, an open Σ1-formula is just a sentence φ in some extension Σ2

of Σ1, and a Σ1-model M satisfies such a formula if all its expansions to Σ2 satisfy φ. In typical
algebraic settings, this produces exactly the right kind of first or higher order quantification if Σ2

introduces only additional constants or function symbols, respectively; essentially, the new symbols
then play the role of universally quantified variables. However, the given notion of satisfaction is
rather too strong if Σ2 introduces additional types; since new sorts and function symbols involving
new sorts (including instances of polymorphic operators for new sorts) can be interpreted with
arbitrary malevolence in extensions of M , most open formulae involving such a Σ2 will in fact be
unsatisfiable.

Thus, we need a relaxed notion of satisfaction in order to arrive at the right notion of universal
quantification over types. The idea is to require satisfaction of φ as above not for all extensions
of M , but only for extensions by syntactic definition, i.e. the new signature items in Σ2 have to
be interpreted in terms of the base signature Σ1. Of course, the involved notion of interpretation
will have to be sufficiently general. E.g., we will want to interpret function symbols by terms,
type constants by composite types etc. — in other words, we will need to use derived signature
morphisms. All this is formalized as follows.

Definition 2.40 An institution with signature variables is an institution I with a distinguished
object-full subcategory Var of the signature category Sign (i.e. Var need not be full in Sign, but
contains all objects of Sign) whose morphisms are called signature variables. Signature variables are
assumed to be pushout-stable, i.e. pushouts of signature variables along Sign-morphisms exist and
are signature variables. (Morphisms in Sign should be thought of as derived signature morphisms.)

In I , a polymorphic formula ∀σ. φ over a signature Σ1 consists of a signature variable σ : Σ1 → Σ2

and a Σ2-sentence φ. A Σ1-model M satisfies ∀σ. φ if

M |= τφ for all τ in Sign such that τ ◦ σ = id.

A sentence τφ as above is called an instance of ∀σ. φ. The translation ρ(∀σ. φ) of ∀σ. φ along a
signature morphism ρ : Σ1 → Σ3 is defined to be ∀σ̄. ρ̄φ, where

Σ2
ρ̄

•

Σ1

σ

ρ Σ3

σ̄
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is a pushout; note that σ̄ is indeed a signature variable. (This definition determines the translation
only up to isomorphism; for similar reasons as given in Remark 5.1. of [Tar86], this is not actually
a problem.)

The polymorphic preinstitution Poly(I) over I is given as follows: the notions of signature, model,
and model reduction are inherited from I ; Σ-sentences are polymorphic formulae over Σ; satisfaction
and sentence translation are as above.

The sentences of I can be coded in Poly(I): a Σ-sentence φ in I is equivalent to the polymorphic
formula ∀idΣ. φ, where idΣ is indeed a signature variable thanks to object-fullness of Var in Sign.

By the above example and Sect. 2.15.1, it is clear that the polymorphic preinstitution Poly(I)
will in general fail to be an institution. However, we have

Theorem 2.41 The polymorphic preinstitution Poly(I) is an rps preinstitution.

2.15.3 A Generic Institutionalization

We now describe a general process that transforms preinstitutions into institutions. We begin with
a heuristic observation regarding the intended meaning of polymorphic definitions. Consider the
specification

spec Composition =
vars a, b, c : Type
op comp : (b → c) → (a → b) → a → c
vars f : b → c; g : a → b
• comp f g = λx : a . f (g x )

where for the sake of the argument we abuse HasCasl as a notation for the simply typed λ-calculus
with shallow polymorphism in much the same sense as described in Sect. 3.4, the only real point of
this being the assumption that, unlike in actual HasCasl, there is no unit type. On the first level of
the semantics as described in Sect. 3.4, Composition is model-theoretically entirely vacuous, since
the syntactic set of types is empty and hence the polymorphic axiom is trivially satisfied in ‘all’
models of the signature (there is in fact only one model, since the signature is effectively empty).
This is clearly not the intention of Composition. Indeed this specification is necessarily meant as
a building block for other specifications that import the polymorphic operator and its definition,
which then induce instances according to the ambient signature. In other words, the real purpose of
Composition is apparently to say something about the interpretation of comp at all types, even
those not yet declared. Thus, a model of the specification should contain information not only about
the interpretation of the presently declared signature, but also about all ‘future’ extensions of this
interpretation. This is the motivation for the following definitions:

Definition 2.42 Let PI be a preinstitution. An extended model of a signature Σ1 is a pair (N, σ),
where σ : Σ1 → Σ2 is a signature morphism and N is a Σ2-model in PI . The reduct (N, σ)|τ of
(N, σ) along a signature morphism τ is (N, σ ◦ τ). The extended model (N, σ) satisfies a sentence
ϕ if

N |= σϕ

in PI .

We record explicitly

Theorem and Definition 2.43 The extended models, together with the original notions of sig-
nature and sentence from PI , form an institution, called the institution of extended models and
denoted Ext(PI).

Proof: Functoriality of reduction is easy to see. To check the satisfaction condition, let τ : Σ1 →
Σ2 be a signature morphism, let ϕ be a Σ1-sentence, and let (N, σ) be an extended Σ2-model. Then
(N, σ) |= τϕ in Ext(PI) iff N |= στϕ in PI iff (N, σ)|τ = (N, σ ◦ τ) satisfies ϕ in Ext(PI). 2
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The semantic consequence relation in Ext(PI) is precisely as expected:

Proposition 2.44 A Σ1-sentence ψ is a semantic consequence of a set Φ of Σ1-sentences in Ext(PI)
iff

σΦ |= σψ

in PI for each signature morphism σ : Σ1 → Σ2.

Proof: ‘If ’: trivial.
‘Only if ’: let σ : Σ1 → Σ2 be a signature morphism, and let N be a Σ2-model such that N |= σΦ

in PI . Then the extended model (N, σ) satisfies Φ and hence also ψ, i.e. we have N |= σψ. 2

That is, a formula is a semantic consequence of a specification Sp = (Σ,Φ) (where Φ is a set of
Σ-sentences) iff this is the case, in PI , in all extensions of Sp.

Example 2.45 In the example specification Composition from Sect. 2.15.1, all formulae are
semantic consequences on the first level, i.e. in PI , since all formulae are vacuously true. This
pathology disappears in Ext(PI), where semantic consequences of the specification are only those
formulae that follow from the definition of composition independently of how many types are intro-
duced, such as e.g. associativity of composition. Thus, the notion of semantic consequence at the
second level, unlike the one at the first level, conforms to intuitive expectations. We will make this
more precise in Sect. 2.15.4.

One can give a concise description of extensions in Ext(PI):

Lemma 2.46 The extensions of an extended model (N, τ) along a signature morphism σ are
precisely the extended models (N, ρ) where τ = ρ ◦ σ.

We can represent PI in Ext(PI) by a preinstitution comorphism (cf. Definition 2.39)

η : PI → Ext(PI)

which is the identity on signatures and sentences, and takes every extended model to its base model.

Proposition 2.47 The comorphism η is weakly eps. Moreover, η is rps if PI is rps.

Remark 2.48 Interestingly, the concept of extended model is close to the very abstract or hyper-
loose semantics as introduced in [CR98, Pep91], where models may interpret more symbols than
just the ones named in their signature. This is used e.g. in the semantics of RSL [GHH+92].

There are two crucial differences here. The first is of motivational nature: the purpose of very
abstract semantics is to ensure that refinement is model class inclusion; there is no intended connec-
tion with repairing the satisfaction condition, and in fact, the construction described in [CR98]
is explicitly intended as a construction on institutions (one of the example applications given
in [CR98, Pep91] is to the institution of many-sorted first order logic). Note that, when applied
to institutions, the very abstract semantics is equivalent to the original semantics in terms of the
engendered semantic consequence relation.

Secondly, at a more technical level, the phrase ‘models may interpret additional symbols’ means
that very abstract semantics limits the notion of model to extended models with injective signature
morphisms; the main technical content of [CR98] is to solve the difficulties caused by this restriction
w.r.t. model reduction. For the purposes pursued here, the restriction to injective extensions is
not only unnecessary, but would indeed invalidate our main result; i.e. for models of polymorphism
modeled along the construction of [CR98], the satisfaction condition would still fail.

Taking PI as the first level of the HasCasl semantics (cf. Sect. 3.4), we define the second level of
the semantics to be given by Ext(PI).
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2.15.4 Semantic Consequence for Generic Polymorphism

We now investigate the implications of the extended model construction explained in Sect. 2.15.3 in
relation to the generic polymorphism introduced in Sect. 2.15.2 — recall that generic polymorphism
in general leads only to an rps preinstitution. For the remainder of this section, let I be an institution
with signature variables, and let Poly(I) denote the polymorphic preinstitution over I as defined in
Sect. 2.15.2.

Let ∀σ. φ and ∀ρ. ψ be polymorphic formulae over a signature Σ1. It is easy to check that ∀ρ. ψ
is a semantic consequence of ∀σ. φ in Poly(I) iff

{τφ | τ ◦ σ = id} |= πψ

in I for each signature morphism π such that π◦ρ = id. This is rather unpleasant, since it means we
have to prove a possibly infinite number of semantic consequences, one for each instance πψ of ∀ρ. ψ
in Σ1. Fortunately, the (stronger) notion of semantic consequence in the institution Ext(Poly(I)) is
much more tractable:

Theorem 2.49 In Ext(Poly(I)), ∀ρ. ψ is a semantic consequence of ∀σ. φ iff

ρ(∀σ. φ) |= ψ

in Poly(I) (or, since ψ enjoys eps, equivalently in Ext(Poly(I)))

(Recall that ρ(∀σ. φ) = ∀σ̄. ρ̄φ, where (ρ̄, σ̄) is the pushout of (σ, ρ)). The above condition can be
equivalently rephrased as the semantic consequence

{λφ | λ ◦ σ = ρ} |= ψ (∗)

in I . Thus, unlike proofs of semantic consequence in Poly(I) as described above, proofs in Ext(Poly(I))
are actually feasible, since we have to prove only a single generic instance of the goal, rather than
all instances that exist in the base signature due to pure syntactic happenstance. Moreover,

any sound and complete deduction system for I induces a sound and complete deduction
system for Ext(Poly(I)),

while for Poly(I), one will in general only obtain a sound but not complete deduction system.
The formulation of semantic consequence given in the theorem is exactly what one would intu-

itively expect: we fix the additional syntactic material quantified over by ρ and prove ψ only for
this fixed instance; in the proof, we are allowed to make use of all instances of φ, including instances
involving the new syntactic material. Proofs of polymorphic formulas e.g. in Isabelle [NPW02] work
in precisely this way, which we have now provided with a semantic foundation.

Proof: [Theorem 2.49] ‘Only If ’: by Proposition 2.44, we have ρ(∀σ. φ) |= ρ(∀ρ. ψ), and ψ is an
instance of ρ(∀ρ. ψ). The latter follows from the universal property of the pushout of ρ with itself.

‘If ’: let Σ1 be the base signature of ∀σ. φ and ∀ρ. ψ, let κ : Σ1 → Σ2 be a signature morphism,
and let

•
κ̄σ

•

Σ1

σ

κ Σ2

σ̄

and •
κ̄ρ

•

Σ1 κ

ρ

Σ2

ρ̄

be the associated pushout diagrams. Then κ(∀σ. φ) = ∀σ̄. κ̄σφ and κ(∀ρ. ψ) = ∀ρ̄. κ̄ρψ. By Propo-
sition 2.44, we thus have to prove

∀σ̄. κ̄σφ |= ∀ρ̄. κ̄ρψ

in Poly(I), i.e. given a model M such that M |= ∀σ̄. κ̄σφ and τ such that τ ρ̄ = id, we have to
show M |= τκ̄ρψ in I . Since semantic consequence in I is stable under translation, this reduces
by (∗) above to showing M |= τκ̄ρλφ for all λ such that λ ◦ σ = ρ. For such a λ, we have
τκ̄ρλσ = τκ̄ρρ = τ ρ̄κ = κ, so that the pushout property yields ν such that νσ̄ = id and νκ̄σ = τκ̄ρλ.
Then M satisfies the instance νκ̄σφ of ∀σ̄. κ̄σφ; but νκ̄σφ = τκ̄ρλφ. 2
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2.15.5 Model-Theoretic Conservativity

While the semantic consequence relation engendered by the extended model construction is without
further ado precisely the ‘right’ one, the issue of model expansion, i.e. of conservativity in the
model-theoretic sense as used e.g. in Casl, is somewhat more subtle. We recall a few definitions:

Definition 2.50 A theory in a (pre-)institution is a pair Sp = (Σ,Φ) consisting of a signature Σ
and a set Φ of Σ-sentences. A model of Sp is a Σ-model M such that M |= Φ. A theory is consistent
if it has a model. A signature morphism σ : Σ1 → Σ2 is a theory morphism (Σ1,Φ1) → (Σ2,Φ2) if

Φ2 |= σΦ1.

A theory morphism σ : Sp1 → Sp2 is model-theoretically conservative or model-expansive if every
model M of Sp1 has an Sp2-extension, i.e. a model N of Sp2 such that N |σ = M .

Notice that by Proposition 2.44 and Example 2.45, the notion of theory morphism in Ext(PI) is in
general properly stronger than in PI .

Proposition 2.51 A theory is consistent in an rps preinstitution PI iff it is consistent in Ext(PI).

Typical extensions that would be expected to be model-expansive e.g. in HasCasl are (recursive)
function definitions, loose declarations of new signature elements, and declarations of free datatypes.
An apparent obstacle to model-expansivity of such extensions at the second level of the semantics
is Part (i) of the following observation:

Proposition 2.52 Let PI be an rps preinstitution, and let σ : (Σ1,Φ1) → (Σ2,Φ2) be a theory
morphism in Ext(PI). Then the following holds:

(i) If σ is model-expansive in Ext(PI) and (Σ1,Φ1) is consistent, then σ is a section as a signature
morphism; i.e. there exists a signature morphism τ : Σ2 → Σ1 such that τ ◦ σ = id.

(ii) If σ is a section as a theory morphism in Ext(PI), i.e. there exists a theory morphism τ :
(Σ2,Φ2) → (Σ1,Φ1) such that τ ◦ σ = id, then σ is model-expansive.

Proof: (i): By assumption and the rps condition, (Σ1,Φ1) has a model (M, id) in Ext(PI). By
Lemma 2.46, existence of an extension of this model along σ implies that σ is a section.
(ii): Straightforward. 2

When plain signature morphisms are used, which typically map type constants to type constants,
operators to operators etc., then the necessary condition above is clearly too restrictive; essentially,
the only model-expansive extensions one obtains are those that define symbols by other symbols
already present. The solution to this is to use derived signature morphisms instead, which typically
are allowed to map, say, type constants to composite types, operators to terms, and the like; by the
sufficient condition (ii) above, one then obtains as model-expansive extensions all declarations and
definitions which can be implemented by some composite object in the present theory.

With HasCasl derived signature morphism, model-expansive extensions behave as expected,
see Sect. 3.4.3. In general, it depends on the expressive power of signatures and theories in the
preinstitution at hand whether or not using derived signature morphisms leads to a satisfactory
notion of model-expansivity. It should however be noted that there is usually quite some latitude in
the definition of derived signature morphism; many forms of extensions can be made model-expansive
by just giving a more liberal definition of what a derived signature morphism can do.

A drawback of the extended model construction is the general failure of even weak semi-exactness:
two extended models can only be amalgamated in the rare case that there underlying models in PI
are identical.
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2.16 Bibliographical Notes

Institutions and institution morphisms have been introduced by Goguen and Burstall in a seminal
paper [GB92], with [GB84] as a precursor. Meseguer [Mes89b] has extended institutions with
entailment systems, arriving at the notion of logic. The notion of theory is not treated uniformly in
the literature: while Goguen and Burstall require closedness under semantic consequence in [GB92],
they do not require this elsewhere (see also [Mes89b]), such that theories closed under semantic
consequence are called “closed theories”. The treatment of institutions as functors is by Tarlecki,
Goguen and Burstall [TBG91, GB92].

The term “institution comorphism” has been coined by Goguen and Rosu [RG04], but the notion
has been introduced already under the names of plain map of institutions (by Meseguer [Mes89b])
and institution representation (by Tarlecki [Tar96]). Simple theoroidal comorphisms, introduced by
Goguen and Rosu [RG04], have been called simple maps of institutions in [Mes89b]. The notion of
subinstitution is due to Meseguer [Mes89b]. The adjunction between morphisms and comorphisms
has been proved by Arrais and Fiadeiro [AF96] in the context of linear-time versus branching-
time temporal logic. The model-expansion property of (co)morphisms has been studied for a long
time. Weak amalgamation of comorphisms has been introduced in [Bor02], persistent liberality in
[KM95, Dia98]. Bi-liberality is new.

Semi-morphisms have been introduced by Sannella and Tarlecki in the context of implementation
[ST88d], and been dualized by Goguen and Rosu [RG04]. The first occurrence of the notion of
forward (co)morphisms is in [Tar96], while the name has been introduced in [RG04].

Amalgamation resp. exactness of institutions has been introduced by Sannella and Tarlecki
[ST88b] (see also [DGS91]), the extension to (co)morphisms is due to Borzyszkowski [Bor02].

The notion of institution morphism modification has been introduced by Diaconescu [Dia02].
Our motivation for using modifications is essentially the same as for using representation maps as
introduced by Tarlecki [Tar96] (the latter are studied in Sect. 6.12). The results about colimits in
Hom-categories are new.

The institutional treatment of polymorphism has been developed in [SML05]. It should not only
provide a semantics for polymorphism in HasCasl, but also lead to a repairing of the satisfaction
condition for SB-Casl [BZ00].

There is a comprehensive bibliography of the FLIRTS interest group (FLIRTS = Formalism,
Logic, Institution — Relating, T ranslating, S tructuring) to be found at http://www.tzi.de/flirts.
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Chapter 3

Some Institutions for Specification
of Software Systems

“My impression is that the need for different specification languages during the con-
struction of complex system comes from the presence of features belonging to different
domains, like, for instance, imperative, functional, non deterministic, temporal and real-
time aspects. Most of those aspects are naturally described by languages (and logics)
that do not form an institution in the obvious way, though they can be (painfully) coded
to become an institution.

Then, an institution based mechanism to compose heterogeneous specifications seems
to me a fake, because the component specifications are not expressed in the “natural”
language for the particular issue they are addressing, have to be already coded in the
institution version of the “natural” language.

I have the strong belief that the heterogeneity that can be naturally achieved within this
kind of composition is limited to different subsets of logical languages.”

This quote from an anonymous referee shows some typical reservations concerning the institu-
tional approach to heterogeneous specification. In this chapter, we will demonstrate that a variety
of features can be formalized in the institutional setting in a way enabling the use of heterogeneous
specifications. Indeed, sometimes it is not so obvious how to formalize e.g. process algebras as insti-
tutions, and care has taken to choose a formalization that interacts well with the other institutions.
However, in the end, we will see that heterogeneous specification is not at all limited to logical
languages.

In the next section, we will start with introducing the institution underlying Casl, the Common
Algebraic Specification Language. The other sections of this chapter will cover modal, coalgebraic,
reactive and higher-order extensions of Casl. Note that this by no means implies that the hetero-
geneous framework introduced in Chap. 6 only applies to Casl and its extensions. However, since
Casl itself is an extension of first-order logic, its extensions already cover a wide range of logics.
This explains why we concentrate on Casl extensions in this work. But this does not preclude at
all applications of the heterogeneous framework to completely different logics.

3.1 Casl

The most fundamental assumption underlying algebraic specification is that programs are modeled
as algebraic structures that include a collection of sets of data values together with functions over
those sets. This level of abstraction is commensurate with the view that the correctness of the
input/output behaviour of a program takes precedence over all its other properties. Another common
element is that specifications of programs consist mainly of logical axioms, usually in a logical system
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in which equality has a prominent role, describing the properties that the functions are required
to satisfy—often just by their interrelationship. This property-oriented approach is in contrast to
so-called model-oriented specifications in frameworks like VDM [Jon90] which consist of a simple
realization of the required behaviour. However, the theoretical basis of algebraic specification is
largely in terms of constructions on algebraic models, so it is at the same time much more model-
oriented than approaches such as those based on type theory (see e.g. [NPS90]), where the emphasis
is almost entirely on syntax and formal systems of rules, and semantic models are absent or regarded
as of secondary importance.

Casl, the Common Algebraic Specification Language, has been designed by CoFI, the inter-
national Common Framework Initiative for algebraic specification and development [Mos97, CoF],
with the goal to subsume many previous algebraic specification languages and to provide a standard
language for the specification and development of modular software systems. See the Casl user
manual [BM04] and reference manual [CoF04] for detailed information about Casl.

Here, we concentrate on Casl basic specifications, designed for writing single specification mod-
ules. Structured specification will be covered in Chap. 5.

The logic of Casl basic specifications combines first-order logic and induction (the latter is
expressed using so-called sort generation constraints, and needed for the specification of the usual
inductive datatypes) with subsorts and partial functions. The institution underlying Casl is intro-
duced in two steps [CoF99, CHKBM97]: first, we introduce many-sorted partial first-order logic with
sort generation constraints and equality (PCFOL=), and then, subsorted partial first-order logic
with sort generation constraints and equality (SubPCFOL=) is described in terms of PCFOL=.

3.1.1 Partial First-Order Logic

Definition 3.1 The institution PCFOL=.

Signatures A many-sorted signature Σ = (S,TF ,PF , P ) in PCFOL= consists of

• a set S of sorts,

• two S∗×S-sorted families TF = (TF w,s)w∈S∗,s∈S and PF = (PF w,s)w∈S∗,s∈S of total
function symbols and partial function symbols, respectively, such that TF w,s∩PFw,s = ∅,
for each (w, s) ∈ S∗×S (constants are treated as functions with no arguments), and

• a family P = (Pw)w∈S∗ of predicate symbols.

Note that function and predicate symbols may be overloaded, occurring in more than one
of the above sets. To ensure that there is no ambiguity in sentences, however, symbols are
always qualified by profiles when used. In the Casl language constructs (see Sect. 3.1.3), such
qualifications may be omitted when these are unambiguously determined by the context.

We now introduce some notation. We write f : w → s ∈ TF for f ∈ TF w,s (including the
special case f : s for empty w), f : w →? s ∈ PF for f ∈ PF w,s (including the special case
f :→? s for empty w) and p : w ∈ P for p ∈ Pw. For a function symbol f ∈ TFw,s or
f ∈ PFw,s, we call w → s or w →? s, resp., its profile, w its argument sorts and s its result
sort. For predicate symbols p : w, we call w both its profile and its argument sorts. Given a
function f :A−→B, let f∗:A∗ −→B∗ be its extension to finite strings. Given a finite string
w = s1 . . . sn and sets Ms1 , . . . ,Msn

, we write Mw for the Cartesian product Ms1 × . . .×Msn
.

Given signatures Σ = (S,TF ,PF , P ) and Σ′ = (S′,TF ′,PF ′, P ′), a signature morphism
σ: Σ−→Σ′ consists of

• a map σS :S−→S′,

• a map σF
w,s:TFw,s ∪ PFw,s −→ TF ′

σS∗ (w),σS(s) ∪ PF ′
σS∗ (w),σS(s) preserving totality, for

each w ∈ S∗, s ∈ S, and

• a map σP
w :Pw −→P ′

σS∗ (w)
for each w ∈ S∗.
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Identities and composition are defined in the obvious way. This gives us a category of
PCFOL=-signatures.

Models Given a many-sorted signature Σ = (S,TF ,PF , P ), a many-sorted Σ-model M consists
of:

• a non-empty carrier set Ms for each sort s ∈ S,

• a partial function (fw,s)M (also written just fM ) from Mw to Ms for each function symbol
f ∈ TFw,s ∪ PFw,s, the function being total if f ∈ TF w,s, and

• a predicate (pw)M (also written just pM ) ⊆Mw for each predicate symbol p ∈ Pw.

A many-sorted Σ-homomorphism h : M −→ N consists of a family of functions (hs : Ms −→
Ns)s∈S with the property that for all f ∈ TFw,s ∪ PFw,s and (a1, . . . , an) ∈ Mw with
(fw,s)M (a1, . . . , an) defined, we have

hs((fw,s)M (a1, . . . , an)) = (fw,s)N (hs1(a1), . . . , hsn
(an)),

and for all p ∈ Pw and (a1, . . . , an) ∈Mw,

(a1, . . . , an) ∈ (pw)M implies (hs1(a1), . . . , hsn
(an)) ∈ (pw)N .

Identities and composition are defined in the obvious way.

Concerning reducts, if σ: Σ−→Σ′ is a signature morphism with Σ = (S,TF ,PF , P ), and M ′

is a Σ′-model, then M ′|σ is the Σ-model M with

• Ms := M ′
σS(s) (s ∈ S)

• (fw,s)M := (σF
w,s(f))M ′ (f ∈ TFw,s ∪ PFw,s)

• (pw)M := (σP
w (p))M ′ (p ∈ Pw)

This is well-defined since σF
w,s preserves totality.

Given a Σ′-homomorphism h′:M ′
1−→M ′

2, its reduct h′|σ :M ′
1|σ −→M ′

2|σ is the homomorphism
defined by

(h′|σ)s := h′σS(s) (s ∈ S).

It is easy to see that the reduct w.r.t. an identity is the identity, and that the reduct w.r.t.
a composition is the composition of the reducts w.r.t. the signature morphisms that are
composed. Thus, Mod is a functor.

Sentences Let a many-sorted signature Σ = (S,TF ,PF , P ) be given. A variable system over Σ is
an S-sorted, pairwise disjoint family of variables X = (Xs)s∈S . Let such a variable system be
given.

The sets TΣ(X)s of many-sorted Σ-terms of sort s, s ∈ S, with variables in X are the least
sets satisfying the following rules:

1. x ∈ TΣ(X)s, if x ∈ Xs,

2. fw,s(t1, . . . , tn) ∈ TΣ(X)s, if ti ∈ TΣ(X)si
(i = 1, . . . , n), f ∈ TF w,s∪PFw,s, w = s1 . . . sn.

Note that each term has a unique sort.

TΣ(X) can be made into a many-sorted Σ-algebra by putting

• (fw,s)TΣ(X)(t1, . . . , tn) = fw,s(t1, . . . , tn) for f ∈ TF w,s ∪ PFw,s,

• (pw)TΣ(X) = ∅ for p ∈ Pw.
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Variable assignments are total, but the value of a term w.r.t. a variable assignment may be
undefined, due to the application of a partial function during the evaluation of the term. The
evaluation of a term w.r.t. a variable assignment is defined as follows (see [CMR99]):

Given a variable valuation ν:X −→M for X in M , the term evaluation ν#:TΣ(X)→?M is
inductively defined by:

• ν#
s (x) = ν(x) for all x ∈ Xs and all s ∈ S,

• ν#
s (fw,s(t1, . . . , tn)) =















(fw,s)M (ν#
s1

(t1), . . . , ν
#
sn

(tn)),
if ν#

si
(ti) is defined (i = 1, . . . , n) and

(fw,s)M (ν#
s1

(t1), . . . , ν
#
sn

(tn)) is defined
undefined, otherwise

for all f ∈ TF w,s ∪ PFw,s, where w = s1 . . . sn, and ti ∈ TΣ(X)si
, for i = 1, . . . , n.

Given a term t, we say that t is ν-interpretable, if t ∈ dom ν# and in this case we call
ν#(t) ∈Ms the value of t in M under the valuation ν.

A many-sorted atomic Σ-formula with variables in X is either (1) an application of a qualified
predicate symbol to terms of appropriate sorts, (2) an existential equation between terms of
the same sort, (3) a strong equation between terms of the same sort, or (4) an assertion about
definedness of a term:

The set AFΣ(X) of many-sorted atomic Σ-formulas with variables in X is the least set satis-
fying the following rules:

1. pw(t1, . . . , tn) ∈ AFΣ(X), if ti ∈ TΣ(X)si
, p ∈ Pw, w = s1 . . . sn ∈ S∗,

2. t
e
= t′ ∈ AFΣ(X), if t, t′ ∈ TΣ(X)s, s ∈ S (existential equations),

3. t = t′ ∈ AFΣ(X), if t, t′ ∈ TΣ(X)s, s ∈ S (strong equations),

4. def t ∈ AFΣ(X), if t ∈ TΣ(X)s, s ∈ S (definedness assertions).

The set FOΣ(X) of many-sorted first-order Σ-formulas with variables in X is the least set
satisfying the following rules:

1. AFΣ(X) ⊆ FOΣ(X),

2. false ∈ FOΣ(X)

3. (ϕ ∧ ψ) ∈ FOΣ(X) and (ϕ ⇒ ψ) ∈ FOΣ(X) for ϕ, ψ ∈ FOΣ(X),

4. (∀x : s • ϕ) ∈ FOΣ(X) for ϕ ∈ FOΣ(X ∪ {x : s}), s ∈ S.

We omit brackets whenever this is unambiguous and use the usual abbreviations: ¬ϕ for
ϕ ⇒ false , ϕ ∨ ψ for ¬(¬ϕ ∧ ¬ψ), true for ¬ false and ∃x : s • ϕ for ¬∀x : s • ¬ϕ.

A sort generation constraint states that some set of sorts is generated by some set of functions.
Technically, sort generation constraints also contain a signature morphism component; this
is needed to be able to translate them along signature morphisms without sacrificing the
satisfaction condition.

Formally, a sort generation constraint over a signature Σ is a triple (
•
S,

•
F , θ), where θ: Σ̄−→Σ,

Σ̄ = (S̄, T̄F , P̄F , P̄ ),
•
S⊆ S̄ and

•
F⊆ ¯TF ∪ P̄ F .

Now a Σ-sentence is a closed many-sorted first-order Σ-formula (i.e. a many-sorted first-order
Σ-formula in the empty set of variables), or a sort generation constraint over Σ.

Given a signature morphism σ: Σ−→Σ′ and variable system X over Σ, we can get a variable
system σ(X) over Σ′ by putting

σ(X)s′ =
⋃

σS(s)=s′

Xs
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Since the term algebra is total, the inclusion ζσ,X :X−→TΣ′(σ(X))|σ (construed as a variable
valuation) leads to a term evaluation function

ζ#
σ,X :TΣ(X)−→TΣ′(σ(X))|σ

that is total as well. This can be inductively extended to a translation of Σ-first order formulas
along σ:

• σ(t) = ζ#
σ,X(t), if t is a Σ-term in variables X ,

• σ(pw(t1, . . . , tn)) = σP
w (p)σS∗ (w)(σ(t1), . . . , σ(tn)),

• σ(t
e
= t′) = σ(t)

e
= σ(t′),

• σ(t = t′) = σ(t) = σ(t′),

• σ(def t) = def σ(t),

• σ(false) = false ,

• σ(ϕ ∧ ψ) = σ(ϕ) ∧ σ(ψ),

• σ(∀x : s • ϕ) = ∀x : σS(s) • σ(ϕ).

The translation of a Σ-constraint (
•
S,

•
F , θ) along σ is the Σ′-constraint (

•
S,

•
F , σ ◦ θ).

It is easy to see that the sentence translation along the identity signature morphism is the
identity, and that the sentence translation along a composition of two signature morphisms
is is the composition of the sentence translations along the individual signature morphisms.
Hence, sentence translation functorial.

Satisfaction Relation Even though the evaluation of a term w.r.t. a variable assignment may be
undefined, the evaluation of a formula is always defined (and it is either true or false). That is,
we have a two-valued logic. The application of a predicate symbol p to a sequence of argument
terms holds w.r.t. a valuation ν:X−→M iff the values of all the terms are defined under ν#

and give a tuple belonging to pM . A definedness assertion concerning a term holds iff the
value of the term is defined. An existential equation holds iff the values of both terms are
defined and identical, whereas a strong equation holds also when the values of both terms are
undefined; thus both notions of equation coincide for defined terms.

More formally, satisfaction of a formula ϕ ∈ FOΣ(X) by a variable valuation ν:X −→M is
defined inductively over the structure of ϕ:

• ν `̀ Σ pw(t1, . . . , tn) iff ν#(ti) is defined (i = 1, . . . , n) and, moreover, (ν#(t1), . . . , ν
#(tn)) ∈

(pw)M

• ν `̀ Σ t1
e
= t2 iff ν#(t1) and ν#(t2) are both defined and equal,

• ν `̀ Σ t1 = t2 iff ν#(t1) and ν#(t2) are either both defined and equal, or both undefined,

• ν `̀ Σ def t iff ν#(t) is defined,

• not ν `̀ Σ false

• ν `̀ Σ (ϕ ∧ ψ) iff ν `̀ Σ ϕ and ν `̀ Σ ψ

• ν `̀ Σ (∀x : s •ϕ) iff for all valuations ξ:X ∪ {x : s}−→M which extend ν on X \ {x : s}
(i.e., ξ(x) = ν(x) for x ∈ X \ {x : s}), we have ξ `̀ Σ ϕ.

A formula ϕ is satisfied in a model M (written M |= ϕ) iff it is satisfied w.r.t. all variable
valuations into M .

A Σ-constraint (
•
S,

•
F , θ) satisfied in a Σ-model M , if the carriers of M |θ of the sorts in

•
S are

generated by the function symbols in
•
F , i.e. for every sort s ∈

•
S and every value a ∈ (M |θ)s,
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there is a Σ̄-term t containing only function symbols from
•
F and variables of sorts not in

•
S

such that ν#(t) = a for some assignment ν into M |θ.

For a sort generation constraint (
•
S,

•
F , θ) we can assume without loss of generality that all

the result sorts of function symbols in
•
F occur in

•
S. If not, we can just leave out from

•
F

those function symbols not satisfying this requirement. The satisfaction of the sort generation
constraint in any model will not be affected by this: in the Σ̄-term t witnessing the satisfaction

of the constraint, any application of a function symbol with result sort outside
•
S can just be

replaced by a variable of that sort, which gets then as assigned value the evaluation of the
function application.

Concerning the satisfaction condition, we need the following two lemmas:

Lemma 3.2 Let a signature morphism σ: Σ−→Σ′, a Σ′-model M ′, and a variable system X
over Σ be given. Then for each valuation ν:σ(X)−→M ′, there is valuation ν|σ :X −→M ′|σ
such that ν#|σ ◦ ζ#

σ,X = (ν|σ)#. Moreover, this is a one-one correspondence.

|TΣ(X)|

ζ#
σ,X

(ν|σ)#

|M ′|σ |

|TΣ′(σ(X))|σ |

ν#|σ

Proof: We put
(ν|σ)s(x) := νσ(s)(x) for x ∈ Xs.

The inverse is given by
(( |σ)−1(ν))s′ (x) := νs(x),

where s is the unique s ∈ S with x ∈ Xs and σ(s) = s′.

The property ν#|σ ◦ ζ#
σ,X = (ν|σ)# follows by induction over TΣ(X). 2

Lemma 3.3 Given a signature morphism σ: Σ−→Σ′, a Σ′-model M , a variable system X
over Σ, and a formula ϕ ∈ FOΣ(X), we have

ν|σ `̀ ϕ iff ν `̀ σ(ϕ)

Proof: Induction over ϕ.

E.g. for strong equations, we have ν|σ `̀ t1 = t2
iff (ν|σ)#(t1) = (ν|σ)#(t2) (or both sides are undefined)

iff (by Lemma 3.2) ν# ◦ ζ#
σ,X(t1) = ν# ◦ ζ#

σ,X(t2) (or both sides are undefined)

iff (by definition) ν#(σ(t1)) = ν#(σ(t2)) (or both sides are undefined)
iff ν `̀ σ(t1 = t2).

For quantifications, we have ν|σ `̀ ∀x : s • ψ iff for all ξ:X ∪ {x : s}−→M ′|σ extending ν|σ
on X \ {x : s}, ξ `̀ ψ iff (by induction hypothesis) for all ξ:X ∪ {x : s}−→M ′|σ extending
ν|σ on X \ {x : s}, ( |σ)−1(ξ) `̀ σ(ψ) iff (since |σ is one-one) for all ρ:σ(X ∪ {x : s})−→M ′

extending ν on σ(X) \ {x : σ(s)}, ρ `̀ σ(ψ) iff ν `̀ ∀x : σ(s) • σ(ψ).

The other cases are treated similarly. 2
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The satisfaction condition for first-order formulas now follows easily from Lemma 3.3 (noting
that by Lemma 3.2 σ is surjective on valuations).

The satisfaction condition for sort generation constraints is obvious (indeed, the extra signature
morphism component in the sort generation constraints has been introduced to make it work).

This completes the definition of the institution PCFOL=. 2

3.1.2 Subsorted Partial First-Order Logic

Subsorted partial first-order logic is defined in terms of partial first-order logic. The basic idea is to
reduce subsorting to injections between sorts. While in the subsorted institution, these injections
have to occur explicitly in the sentences, in the Casl language, they may be left implicit. Apart
from the injections, one also has partial projection functions (one-sided inverses of the injections)
and membership predicates.

Definition 3.4 The institution SubPCFOL=.

Signatures The notion of subsorted signatures extends the notion of order-sorted signatures as
given by Goguen and Meseguer [GM92], by allowing not only total function symbols, but also
partial function symbols and predicate symbols:

A subsorted signature Σ = (S,TF ,PF , P,≤S) consists of a many-sorted signature (S,TF ,PF , P )
together with a reflexive transitive subsort relation ≤S on the set S of sorts. Note that ≤S is
not required to be antisymmetric; this allows to declare isomorphic sorts, where the injections
correspond to change of representations.

The relation ≤S extends pointwise to sequences of sorts. We drop the subscript S when
obvious from the context.

For a subsorted signature, Σ = (S,TF ,PF , P,≤S), we define overloading relations (also called
monotonicity orderings), ∼F and ∼P , for function and predicate symbols, respectively:

Let f : w1 −→ s1, f : w2 −→ s2 ∈ TF ∪ PF , then

f : w1 −→ s1 ∼F f : w2 −→ s2

iff there exist w ∈ S∗ with w ≤ w1 and w ≤ w2 and s ∈ S with s1 ≤ s and s2 ≤ s.

Let p : w1, p : w2 ∈ P , then p : w1 ∼P p : w2 iff there exists w ∈ S∗ with w ≤ w1 and w ≤ w2.

A signature morphism σ : Σ → Σ′ is a many-sorted signature morphism that preserves the
subsort relation and the overloading relations. Note that, due to preservation of subsorting,
the preservation of the overloading relations can be simplified to:

f : w1 −→ s1 ∼F f : w2 −→ s2 implies σF
w1,s1

(f) = σF
w2,s2

(f)

p : w1 ∼P p : w2 implies σP
w1

(p) = σP
w2

(p)

With each subsorted signature Σ = (S,TF ,PF , P,≤S) we associate a many-sorted signature
Σ̂, which is the extension of the underlying many-sorted signature (S,TF ,PF , P ) with

• a total injection function symbol inj : s→ s′, for each pair of sorts s ≤S s
′,

• a partial projection function symbol pr : s′ →? s, for each pair of sorts s ≤S s
′, and

• a unary membership predicate symbol ∈s: s′, for each pair of sorts s ≤S s
′.

We assume that the symbols used for injection, projection and membership are not used
otherwise in Σ. In formulas, we also write t ∈ s instead of ∈s

s′ (t) if s′ is clear from the
context.

Given a signature morphism σ: Σ−→Σ′, we can extend it to a signature morphism σ̂: Σ̂−→ Σ̂′

by just mapping the injections, projections and memberships in Σ̂ to the corresponding injec-
tions, projections and memberships in Σ̂′. This turns ˆ into a functor ˆ:SignSubPCFOL=

−→
SignPCFOL=

.
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Models Subsorted Σ-models are ordinary many-sorted Σ̂-models satisfying the following set of
axioms Ĵ(Σ) (where the variables are all universally quantified):

inj(s,s)(x)
e
= x (identity)

inj(s,s′)(x)
e
= inj(s,s′)(y) ⇒ x

e
= y for s ≤S s

′ (embedding-injectivity)

inj(s′,s′′)(inj(s,s′)(x))
e
= inj(s,s′′)(x) for s ≤S s

′ ≤S s
′′ (transitivity)

pr(s′,s)(inj(s,s′)(x))
e
= x for s ≤S s

′ (projection)

pr(s′,s)(x)
e
= pr(s′,s)(y) ⇒ x

e
= y for s ≤S s

′ (projection-injectivity)

∈s
s′ (x) ⇔ def pr(s′,s)(x) for s ≤S s

′ (membership)

inj(s′,s)(fw′,s′(inj(s1,s′
1)

(x1), . . . , inj(sn,s′
n)(xn))) =

= inj(s′′,s)(fw′′,s′′(inj(s1,s′′
1 )(x1), . . . , inj(sn,s′′

n)(xn)))

for fw′,s′ ∼F fw′′,s′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s
′
n, w′′ = s′′1 . . . s

′′
n and

s′, s′′ ≤ s (function-monotonicity)

pw′(inj(s1,s′
1)

(x1), .., inj(sn,s′
n)(xn)) ⇔ pw′′(inj(s1,s′′

1 )(x1), .., inj(sn,s′′
n)(xn))

for pw′ ∼P pw′′ , where w ≤ w′, w′′, w = s1 . . . sn, w′ = s′1 . . . s
′
n, and w′′ = s′′1 . . . s

′′
n (predicate-

monotonicity)

Σ-homomorphisms are Σ̂-homomorphisms.

Lemma 3.5 Let σ: Σ−→Σ′ be a subsorted signature morphism. Then

SenPCFOL=

(σ̂)(Ĵ(Σ)) ⊆ Ĵ(Σ′)

Proof: σ̂ preserves subsorting, injections, projections, membership and the overloading
relations ∼F and ∼P . Now the sentences in Ĵ(Σ) and Ĵ(Σ′) just correspond to these. 2

To obtain a reduct of a subsorted Σ′-model M ′ along a subsorted signature morphism σ: Σ−→
Σ′, take the the many-sorted reduct M ′|σ̂ = ModPCFOL=

(σ̂)(M ′) of M ′ along σ̂: Σ̂−→ Σ̂′.
By definition of subsorted model, M ′ |=PCFOL=

Σ̂′
Ĵ(Σ′). By the lemma,

M ′ |=PCFOL=

Σ̂′ SenPCFOL=

(σ̂)(Ĵ(Σ)).

From this, we get by the satisfaction condition for PCFOL=

ModPCFOL=

(σ̂)(M ′) |=PCFOL=

Σ̂
Ĵ(Σ).

Thus, ModPCFOL=

(σ̂)(M ′) is a subsorted Σ-model, and hence, we can define ModSubPCFOL=

(σ)(M ′)
to be ModPCFOL=

(σ̂)(M ′).

Sentences Subsorted Σ-sentences are ordinary many-sorted Σ̂-sentences. Sentence translation
along a subsorted signature morphism σ is just sentence translation along the many-sorted
signature morphism σ̂.

Satisfaction Since models and sentences are taken from PCFOL=, satisfaction, as well as the
satisfaction condition, can also be inherited from PCFOL=.

This completes the definition of the institution SubPCFOL=. 2
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%list [ ],nil , ::
%prec { :: } < { ++ }

spec List [sort Elem ] =

free type List [Elem] ::= nil | :: (head :? Elem; tail :? List [Elem]);
sort NEList [Elem] = {L : List [Elem] • ¬L = nil};
op ++ : List [Elem] × List [Elem] → List [Elem];
forall e : Elem; K ,L : List [Elem]

• nil ++L = L %(concat nil)%
• (e :: K ) ++L = e :: K ++L %(concat cons)%

end

Figure 3.1: Specification of lists over an arbitrary element sort in Casl.

3.1.3 Casl Language Constructs

Since the level of constructs will be treated only informally in this work, we just give a brief overview
of the constructs for writing basic specifications (i.e. specifications in-the-small) in Casl. A detailed
description can be found in the Casl Language Summary and the Casl semantics (see the Casl
reference manual [CoF04]; the Casl user manual [BM04] provides a gentle introduction).

The Casl language provides constructs for writing sort, subsort, operation1 and predicate dec-
larations that contribute to the signature in the obvious way. Operations, predicates and subsorts
can also be defined; this leads to a corresponding declaration plus a defining axiom.

Operation and predicate symbols may be overloaded; this may lead to ambiguities in the for-
mulas. A formula is well-formed only if it has a unique fully-qualified expansion up to equivalence
w.r.t. the overloading relations ∼F and ∼P .

For operations and predicates, a mixfix syntax is provided. Precedence and associativity annota-
tions may help to disambiguate terms containing mixfix symbols. There is also a syntax for literals
such as numbers and strings, which allows the specification of the usual datatypes purely in Casl,
without the need of magic built-in modules.

Binary operations can be declared to be associative, commutative, idempotent, or to have a unit.
This leads to a corresponding axiom, and, in the case of associativity, to an associativity annotation.

The type, free type and generated type constructs allow the concise description of datatypes.
They are expanded into the declaration of the corresponding constructor and selector operations
and axioms relating the selectors and constructors. In the case of generated and free datatypes, also
a sort generation constraint is produced. Free datatypes additionally lead to axioms that state the
injectivity of the constructors and the disjointness of their images.

A typical Casl specification is shown in Fig. 3.1. Its translation to a presentation in SubPCFOL=,
the institution underlying Casl, is shown in Fig. 3.3. The translation has been generated with
the Heterogeneous Tool Set (see Chap. 7) and uses the Casl notation to display theories in
SubPCFOL=. However, the notations are so close to each other that it should be easy to un-
derstand the specification in Fig. 3.3 as a theory in SubPCFOL=. A Casl specification with loose
types and mutually recursive free types is given in Fig. 3.2, the corresponding SubPCFOL=-theories
are shown in Fig. 3.4. The translation of Casl constructs to the underlying mathematical concepts
is formally defined in the Casl semantics [CoF04]. An important concept for this translation is
that of a local environment (which is given to the analysis of a specification): it is just the signature
containing the previously declared items.

1At the level of constructs, functions are called operations.
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spec Container [sort Elem ] =

type
Container ::= empty | insert(first :? Elem; rest :? Container);

spec NTree [sort Elem] =
free types

NTree ::= fork(Elem; Forest)
Forest ::= null | grow(NTree; Forest)

Figure 3.2: Some type definition in Casl .

sorts Elem, List [Elem], NEList [Elem]
sort NEList [Elem] < List [Elem]
op ++ : List [Elem] × List [Elem] → List [Elem]
op :: : Elem × List [Elem] → List [Elem]
op head : List [Elem] →? Elem
op nil : List [Elem]
op tail : List [Elem] →? List [Elem]
• ∀ X1 : Elem; X2 : List [Elem] • head(X1 :: X2 ) = X1 %(ga selector head)%

• ∀ X1 : Elem; X2 : List [Elem] • tail(X1 :: X2 ) = X2 %(ga selector tail)%

• ∀ X1 : Elem; X2 : List [Elem]; Y1 : Elem; Y2 : List [Elem]
• X1 :: X2 = Y1 :: Y2 ⇔ X1 = Y1 ∧ X2 = Y2 %(ga injective :: )%

• ∀ Y1 : Elem; Y2 : List [Elem] • ¬ nil = Y1 :: Y2 %(ga disjoint nil :: )%

• ¬ def head(nil) %(ga selector undef head nil)%

• ¬ def tail(nil) %(ga selector undef tail nil)%

generated {sort List [Elem]
op :: : Elem × List [Elem] → List [Elem]
op nil : List [Elem] %(ga generated List[Elem])%}

• ∀ L: List [Elem] • L ∈ NEList [Elem] ⇔ ¬ L = nil
• ∀ L: List [Elem] • nil ++ L = L %(concat nil)%

• ∀ e: Elem; K, L: List [Elem] • (e :: K ) ++ L = e :: (K ++ L) %(concat cons)%

Figure 3.3: Translation of the specification List to a theory in SubPCFOL=.
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sorts Container, Elem
op empty : Container
op first : Container →? Elem
op insert : Elem × Container → Container
op rest : Container →? Container
• ∀ X1 : Elem; X2 : Container • first(insert(X1, X2 )) = X1 %(ga selector first)%

• ∀ X1 : Elem; X2 : Container • rest(insert(X1, X2 )) = X2 %(ga selector rest)%

sorts Elem, Forest, NTree
op fork : Elem × Forest → NTree
op grow : NTree × Forest → Forest
op null : Forest
• ∀ X1 : Elem; X2 : Forest ; Y1 : Elem; Y2 : Forest
• fork(X1, X2 ) = fork(Y1, Y2 ) ⇔ X1 = Y1 ∧ X2 = Y2 %(ga injective fork)%

• ∀ X1 : NTree; X2 : Forest ; Y1 : NTree; Y2 : Forest
• grow(X1, X2 ) = grow(Y1, Y2 ) ⇔ X1 = Y1 ∧ X2 = Y2 %(ga injective grow)%

• ∀ Y1 : NTree; Y2 : Forest • ¬ null = grow(Y1, Y2 ) %(ga disjoint null grow)%

generated {sorts Forest, NTree
op grow : NTree × Forest → Forest
op null : Forest
op fork : Elem × Forest → NTree %(ga generated Forest NTree)%}

Figure 3.4: Translation of the specifications Container and NTree to theories in SubPCFOL=.
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3.1.4 Proof Calculus

We have developed a proof calculus for Casl in Chap. IV:2 of [CoF04]. We do not show it here,
because rather than using this calculus, we will rely on an encoding of Casl into higher-order logic
(Sect. 4.1) instead.

3.1.5 Checking Conservativity in Casl

Casl has annotations expressing that an extension of a specification is conservative, monomorphic
or definitional, meaning that every model of the ‘small’ specification can be expanded to some
model, some model unique up to isomorphism, or some unique model, of the ‘large’ specification,
respectively (cf. Sect. 2.2). Moreover, as can be seen from the calculi studied in Sect. 5.3 and 5.6,
checks for conservative extensions already arise from the presence of hiding. Furthermore, during the
development process, it may be desirable to check the specification for consistency at an early stage
– and consistency is just conservativity over the empty specification. Finally, using consistency, also
non-consequence can be checked: an axiom does not follow from a specification if the specification
augmented by the negation of the axiom is consistent.

So far there is no hope to tackle these questions in an institution independent way. There-
fore, in this section we deal with the specific institution of Casl only. However, unfortunately
already for first-order logic, neither the check for conservative, nor monomorphic, nor definitional
extension are recursively enumerable, which means that there cannot be a complete (recursively
axiomatized) calculus for them. For conservativity, this follows from Theorem 5.23 and the proof
of Theorem 5.22: a recursively axiomatized calculus for conservativity would provide the needed
oracle for Theorem 5.23, contradicting the example from the proof of Theorem 5.22.

Although there is no general approach to verify that an extension of a specification is conservative
(or monomorphic, or definitional), several schemes for extending specifications have been developed
in the past which guarantee these properties by construction. We only very informally list some
possible rules here:

• extensions declaring new signature elements are conservative, provided the new symbols are not
constrained in any way (by axioms, by requirements on the subsort and overloading relations,
etc.) to be related to old symbols, and the new symbols themselves are constrained by a
positive theory (i.e. not involving negation),

• free datatypes are monomorphic extensions of the local environment in which they are intro-
duced,

• structured free Horn theories are monomorphic extensions,

• subsort definitions are definitional extensions, and

• inductive definitions over free datatypes are definitional extensions.

Some of these checks have been implemented in the Heterogeneous Tool Set.

3.1.6 Colimits of Casl signatures

Theorem 3.6 PCFOL= has a cocomplete signature category. (If restricted to finite signatures,
PCFOL= has a finitely cocomplete signature category.)

Proof: See [CGRW95]. 2

The proof of cocompleteness of the Casl signature category is a bit more involved, due to the
presence of the overloading relations.

As an example, consider the specification of SignSubPCFOL=

within CASL itself given in Fig. 3.5.
Subsorted partial-first order logic with sort generation constraints (SubPCFOL) is the under-

lying institution of CASL. It is described in [CoF97, CHKBM97]. For our cocompleteness proofs,
we will need the following proposition, which follows from Corollaries 15 and 17 in [Mos96a].
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spec OrderedStrings =
sorts S, S∗

preds ≤ : ¶S × S
≤ : ¶S∗ × S∗

ops λ : S∗

:S × S∗−→S∗

vars s, s1, s2, s3 : S; w1, w2 : S∗

axioms s ≤ s
s1 ≤ s2 ∧ s2 ≤ s3 ⇒ s1 ≤ s3
λ ≤ λ
w1 ≤ w2 ∧ s1 ≤ s2 ⇔ s1w1 ≤ s2w2

s1w1 = s2w2 ⇒ (s1 = s2 ∧ w1 = w2)
λ = sw ⇒ (s1 = s2 ∧ w1 = w2)

spec CASLSig =
OrderedStrings then
sorts FunProfiles, P redProfiles
ops arity:FunProfiles−→S∗

coarity:FunProfiles−→S
arity:PredProfiles−→S∗

preds istotal : FunProfiles
∼F : FunProfiles× FunProfiles
∼P : PredProfiles× PredProfiles

vars fp1, fp2 : FunProfiles; pp1, pp2 : PredProfiles; s : S; w : S∗

axioms (fp1 ∼F fp2 ∧ arity(fp1) = arity(fp2)
∧ coarity(fp1) = coarity(fp2))

⇒ fp1 = fp2

(pp1 ∼P pp2 ∧ arity(pp1) = arity(pp2)) ⇒ fp1 = fp2

λ = sw ⇒ (fp1 = fp2 ∧ pp1 = pp2 ∧ istotal(fp1))

Figure 3.5: A specification of the CASL signature category within CASL
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Proposition 3.7 Let θ:T −→ T1 be a theory morphism in SubPCFOL between universal Horn
theories which both avoid the use of subsorting and do use strong equalities only in the conclusions
of Horn formulae.2

Then both Mod(T ) and Mod(T1) are cocomplete, and the forgetful functor |θ:Mod(T1)−→
Mod(T ) has a left adjoint.3 2

Some Categorical Tools for Proving Cocompleteness

In this section, we recall some results from category theory that comprise a useful toolkit for proving
cocompleteness theorems.

Definition 3.8 ([AHS90], 13.17) A functor F :A−→B is said to lift colimits, if for every dia-
gram D: I−→A and every colimit C of F ◦D there exists a colimit C ′ of D with F (C′) = C. 2

Definition 3.9 ([AHS90], 4.16) Let A be a subcategory of B, and let B be a B-object. An
A-reflection arrow for B is a morphism r:B−→A into an A-object A having the following universal
property:
For any morphism f :B −→ A′ from B into some A-object A′, there exists a unique A-morphism
f ′:A−→A′ such that f = f ′ ◦ r.

A is called a reflective subcategory of B provided that each B-object has an A-reflection.4

The dual notion is that of co-reflective subcategory. 2

Proposition 3.10 ([Bor94], 3.5) If A is a full, reflective or coreflective, subcategory of B, and
B is cocomplete, then A is cocomplete as well. 2

Proposition 3.11 Consider a commuting diagram of four subcategories

A
full

A′

B
full

B′

reflective

where A is a full subcategory of A′, B is a full subcategory of B′, and B′ is a reflective subcategory
of A′.

If the B′-reflection of an arbitrary A′-object coming from A is already a B-object, then B is a
reflective subcategory of A. 2

Cocompleteness of the CASL Signature Category

We now come to the proof of cocompleteness of SignSubPCFOL=

.
Consider the universal Horn CASL specification CASLSig given in Fig. 3.5. It might look a

bit strange that we do not introduce a sort for names of functions and predicates, but only for
profiles. We have done this because we want to capture CASL signature morphisms by CASLSig-
homomorphisms. Now CASL signature morphisms can map different profiles for one and the same
symbol name to profiles with different symbol names, while homomorphisms of course only have one
choice for mapping elements of carriers. That is the reason why profiles are appropriate as carriers,
and not symbol names. The identity of names can be recovered by using the overloading relations.

2The proposition can also be proved without the restriction that subsorting is not used; but forbidding strong
equations in the premises of the Horn formulae is essential.

3For the purpose of this paper, we assume that empty carriers are allowed in the models of a CASL theory.
4Note that this is equivalent to the condition that the inclusion functor from A to B has a left adjoint, which then

produces the reflection.
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spec CASLSigGen =
CASLSig then
generated { sort S∗

ops λ : S∗

:S × S∗−→S∗ }
vars s : S; w : S∗

axioms ¬(λ = sw)
¬(λ ≤ sw)
¬(sw ≤ λ)

vars fp1, fp2 : FunProfiles; pp1, pp2 : PredProfiles
axioms fp1 ∼F fp2 ⇒ ∃w : S∗; s : S•

(w ≤ arity(fp1) ∧ w ≤ arity(fp2)
∧ coarity(fp1) ≤ s ∧ coarity(fp2) ≤ s)

pp1 ∼P pp2 ⇒ ∃w : S∗ • (w ≤ arity(pp1) ∧ w ≤ arity(pp2))

Figure 3.6: A necessary refinement of CASLSig

The axioms starting with λ = sw ensure that any confusion of elements in S∗ enforces the model
to be terminal.

By Prop. 3.7 we know that Mod(CASLSig), the model-category of CASLSig, is cocomplete.
The intention is now that CASLSig specifies SignSubPCFOL=

somehow and thus SignSubPCFOL=

inherits cocompleteness.
Unfortunately, Mod(CASLSig) is not equivalent to SignSubPCFOL=

: it is not guaranteed that
there are no junk strings in the interpretation of S∗. Moreover, the profiles do not exactly capture
function and predicate symbols. To repair this, we need the extension of CASLSig given in Fig. 3.6.

Lemma 3.12 Mod(CASLSigGen) is equivalent to SignSubPCFOL=

.

Proof: A CASL-signature is mapped to a CASLSigGen-model by taking the obvious in-
terpretations of the symbols. A CASLSigGen-model M is mapped to is the CASL-signature
(MS , F, TF, P,≤M ) which consists of

• the set of sorts MS (without loss of generality, (MS)∗ can be identified with MS∗),

• the pre-order ≤M ,

• FunNames = MFunProfiles/(∼F )M ,

• for each w ∈ (MS)∗ and s ∈MS , Fw,s = {c ∈ FunNames | there is some prof ∈ c with arityM (prof) =
w, coarityM (prof) = s},

• for each w ∈ (MS)∗ and s ∈ MS , c ∈ TFw,s iff there is some prof ∈ c with arityM (prof) =
w, coarityM (prof) = s and istotalM (prof),

• PredNames = MPredProfiles/(∼P )M ,

• for each w ∈ (MS)∗ , Pw,s = {c ∈ PredNames | there is some prof ∈ c with arityM (prof) =
w}. 2

To prove cocompleteness of Mod(CASLSigGen), we cannot apply Prop. 3.7, since CASLSigGen
is not in Universal Horn form. But we can apply the following lemma:

Lemma 3.13 Mod(CASLSigGen) is a full coreflective subcategory of the category Mod(CASLSig).

Proof: The coreflection of a CASLSig-model M that is not terminal is the following submodel
M ′ of M :
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• M ′
S = MS,

• M ′
S∗ is the subset of MS∗ generated by λM and M ,

• ≤ on M ′
S∗ is ≤ on MS∗ restricted to arguments of same length (otherwise, it yields false),

• FunProfilesM ′ = {prof ∈ FunProfilesM | arityM (prof) ∈M ′
S∗},

• prof1(∼F )M ′prof2 iff prof1(∼F )Mprof2 and there exist some w ∈ M ′
S∗ and s ∈ M ′

S with
w ≤M arityM ′(prof1), w ≤M arityM ′(prof2), coarityM ′(prof1) ≤M s and coarityM ′(prof2) ≤M

s,

• PredProfilesM ′ = {prof ∈ PredProfilesM | arityM (prof) ∈M ′
S∗},

• prof1(∼P )M ′prof2 iff prof1(∼P )Mprof2 and there exists some w ∈M ′
S∗ with w ≤M arityM ′(prof1)

and w ≤M arityM ′(prof2),

• and the other operations and relations are inherited from M .

The coreflection property can be seen as follows: Consider a CASLSigGen-model MGen, a
CASLSig-model M , and a CASLSig-homomorphism σ:MGen −→ M . Then σ is already a
CASLSig-homomorphism into the coreflection of M , since σ preserves both the generatedness
of elements of MS∗ and common super- and subsorts of arities and coarities, resp.

The coreflection of the terminal CASLSig-model is the terminal CASLSigGen-model consisting
of one sort and, for each number of arguments, one total function and one predicate profile. 2

We hence arrive at:

Theorem 3.14 SubPCFOL= has a cocomplete signature category.

Proof: Now cocompleteness of Mod(CASLSig) follows from Prop. 3.7, cocompleteness of
Mod(CASLSigGen) with Lemma 3.13 and Prop. 3.10, and cocompleteness of SignSubPCFOL=

with Lemma 3.12. 2

3.1.7 Amalgamation in Casl

Theorem 3.15 PCFOL= admits amalgamation. (If restricted to finite signatures, PCFOL=

admits finite amalgamation.)

Proof: See [CGRW95]. 2

Example 3.16 SubPCFOL= fails to admit finite amalgamation, even to be semi-exact.
Let Σ be the signature with sorts s and t (and no operations), and let Σ1 be the extension of Σ

by the subsort relation s < t. Then the pushout

Σ Σ1

Σ1 Σ1

in SignSubPCFOL=

fails to be amalgamable (since two models of Σ1, compatible w.r.t. the inclusion
of Σ, may interpret the subsort injection differently).

Identifications of different paths of subsort injections is not the only source of failure of amalga-
mation in Casl.
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Example 3.17 The pushout

sorts s, t, u
op c : t

sorts s, t, u; t, u < w
ops c : t; c : u

sorts s, t, u; s, t < v; s, u < z
ops c : s; c : t

sorts s, t, u; s, t < v; t, u < w; s, u < z
ops c : s; c : t; c : u

fails to be amalgamable. The reason is that it is not guaranteed in the amalgamation that c : s and
c : u are mapped to the same value of sort z. Though the overloading-equivalence between c : s and
c : u can be traced back to a sequence of overloading-equivalences in the signatures of the diagram,
the specific way of c : s and c : u being in the overloading relation in the pushout signature cannot
be traced back.

3.1.8 Craig Interpolation in Casl

Theorem 3.18 PFOL= enjoys the Craig interpolation property for pushout squares where at
least one of the signature morphisms of the diagram is injective on sorts.

Proof: A proof of a slightly weaker result (with both signature morphisms of the diagram required
to be injective on sorts) can be found in [Bor00]. The strengthening will be found in the forthcoming
books [STa, Dia]. 2

The counterexamples for amalgamation in Casl can easily be turned into counterexamples for
Craig interpolation:

Example 3.19 SubPFOL= fails to have Craig interpolation even for injective signature mor-
phisms.

Let Σ be the signature with sorts s and t and an operation symbol f : s−→ t, and let Σ1 be the
extension of Σ by the subsort relation s < t. Then the pushout

Σ Σ1

Σ1 Σ1

fails to admit Craig interpolation: for the entailment

∀x : s . fs,t(x) = inj(s,t)(x) |=Σ1 ∀x : s . fs,t(x) = inj(s,t)(x),

there is no Σ-interpolant.

It is not difficult to extend Example 3.17 to a further counterexample for Craig interpolation in
SubPFOL.

Finally, also sort generation constraints can lead to failure of Craig interpolation:

Example 3.20 PCFOL= fails to have Craig interpolation even for injective signature morphisms.
Let Σ have a sorts Nat and s and operations 0 : Nat and succ:Nat −→ Nat. Let Σ1 be Σ

extended with an operation c : s, and Let Σ1 be Σ extended with an operation d : s. If we take
Σ′ = Σ1 ∪ Σ2, then clearly the diagram built with the obvious inclusions

Σ

σ2

σ1
Σ1

θ2

Σ2
θ1

Σ′
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is a pushout. Let ϕ1 be the Σ1-sentence ({Nat, s}, {0, succ, c}, id) and ϕ2 the Σ2-sentence ({Nat, s}, {0, succ, d}, id).
Both sentences express that Nat is generated by 0 and succ and that the sort s is interpreted as a
singleton set. Hence

θ2(ϕ1) |= θ1(ϕ2).

Assume that ϕ is an interpolant, i.e. a Σ-sentence such that

ϕ1 |= σ1(ϕ) and σ2(ϕ) |= ϕ2.

Since generatedness of Nat is not first-order expressible, ϕ cannot be a first-order sentence. Hence, it
must be a sort generation constraint. However, a sort generation constraint over Σ cannot constrain
sort s at all, and hence it is impossible that σ2(ϕ) |= ϕ2. We arrive at a contradiction. Thus, there
is no interpolant.

Indeed, the above counterexample can be repaired if we allow a set if interpolants. In this case,
set set would be

{({Nat}, {0, succ}, id), ∀x, y : s . x = y}

We conjecture that PCFOL= restricted to sort-injective signature morphisms has Craig interpo-
lation with a set of interpolants. The reason is that basically, the only ways in which two sort
generation constraints over different signatures can interact are (1) via the shared signature sym-
bols and (2) via sorts that are constrained to be singletons.

Another possibility of repairing the counterexample would be to close PCFOL= under con-
junction. However, this adds the possibility of interaction between sort generation constraints and
first-order formulas within the sentences to be interpolated, and we conjecture that this again leads
to a failure of interpolation.

3.1.9 Subinstitutions of Casl

Despite being first-order, Casl is a quite rich and complex language. When relating Casl to other
languages, it is quite useful to single out sublanguages of Casl. Here, we define a number of
subinstitutions of the Casl institution SubPCFOL=. The corresponding restriction of the Casl
language is then straightforward, see [Mos97].

Below, we define subinstitutions of SubPCFOL= by just imposing restrictions on the signatures
and/or axioms. This implicitly means that we take the full subcategory of signatures satisfying the
restriction, and restrict the model and sentence functors and the satisfaction relation to this signature
subcategory. A restriction on sentences further leads to the replacement of the sentence functor
by a subfunctor. In each case, it is quite obvious to construct the corresponding subinstitution
comorphism into SubPCFOL=.

A Number of Features of Casl

In this section, we describe a number of Casl’s features negatively by specifying, for each feature,
the subinstitution of Casl that leaves out exactly that feature. This is possible since Casl is
already the combination of all its features. A combination of only some of Casl’s features can
then be obtained by intersecting (in the sense of Sect. 2.8) all those subinstitutions that exclude
exactly one of the undesired features. (Note that the combination of features from scratch is far
more complicated [MTP98].)

Partiality The institution SubCFOL= is the restriction of the institution SubPCFOL= to those
signatures with an empty set of partial function symbols and those sentences that do not involve
partial projection symbols. Note that SubCFOL=, like SubPCFOL=, is still defined via a reduc-
tion to PCFOL=, which involves signatures Σ̂ containing partial projection symbols. However,
these symbols are not used in the sentences, and they are redundant in the models (meaning that
leaving them out leads to isomorphic model categories). Thus, it is justified to call SubCFOL= an
institution of total algebras.
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Predicates The institution SubPCFOAlg= is the restriction of SubPCFOL= to those signatures
with an empty set of predicate symbols. Note that the signatures Σ̂ and therefore the sentences in
SubPCFOAlg= do involve membership predicate symbols. In the OBJ community, these are called
“sort constraints”. That is, SubPCFOAlg= includes subsorting with sort constraints.

Subsorting The institution PCFOL= has already been defined. It can be made into a subin-
stitution of SubPCFOL= by extending each signature with the trivial subsort relation (i.e., the
subsort relation which is the identity relation on the set of sorts).

Sort Generation Constraints The institution SubPFOL= is the restriction of the institution
SubPCFOL= to those sentences that are not sort generation constraints.

Equality The institution SubPCFOL is the restriction of the institution SubPCFOL= to those
sentences that involve neither strong nor existential equality.

A Number of Levels of Axiom Expressiveness

In the sequel, we introduce a number of subinstitutions of SubPCFOL= that correspond to different
levels of expressiveness of the axioms. In contrast to the previous subsection, these are not orthogonal
features, but rather we get a hierarchy of expressiveness.

First-order Logic This is given by SubPCFOL=, which trivially is a subinstitution of itself.

Positive Conditional Logic Positive conditional logic more precisely means: universally quan-
tified positive conditional logic. Usually this means that formulas are restricted to universally
quantified implications that consist of a premise that is a conjunction of atoms, and a conclusion
that is an atom:

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇒ ϕ

Positive conditional means that the ϕi must not implicitly contain negative parts. Usually, this
condition is satisfied by atomic formulas. However, strong equations are implicit implications (if
one side is defined, then so is the other, and they are equal), and the premise of an implication is
a negative part of a formula. Hence, strong equations may not occur in the premises of positive
conditional axioms (they are harmless in the conclusion, since the implicit premise can be thought of
as an additional premise of the whole implication). The main motivation for this is that we want to
use proof techniques such as conditional term rewriting and paramodulation [Pad88] and semantical
constructions such as initial models. These work only if strong equations are not allowed in the
premises (see [Cer93, AC95]).

Let SubPCHorn= be the restriction of SubPCFOL= to sentences of form

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇒ ϕ

where the ϕi and ϕ are atomic formulas such that none of the ϕi is a strong equation.

Generalized Positive Conditional Logic In the following, we generalize the above form of
positive conditional formulas. Each formula of this more general kind is equivalent to a set of
formulas of the standard conditional kind. Thus, there is an easy transformation from generalized
positive conditional logic to plain positive conditional logic.

Within generalized positive conditional formulas, we also allow

• conjunctions of atoms in the conclusion (they can be removed by writing, for each conjunct,
an implication with the original premise and the conjunct as conclusion), and

• equivalences instead of implications (an equivalence is equivalent to two implications).
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Thus, let SubPCGHorn= be the restriction of SubPCFOL= to sentences of form

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇒ ψ1 ∧ . . . ∧ ψn

where the ϕi and ψj are atomic formulas such that none of the ϕi is a strong equation, or of form

∀x1 : s1 . . . ∀xk : sk • ϕ1 ∧ . . . ∧ ϕm ⇔ ψ1 ∧ . . . ∧ ψn

where the ϕi and ψj are atomic formulas that are not strong equations.

Atomic Logic Let SubPCAtom= be the restriction of SubPCFOL= to sentences of form

∀x1 : s1 . . . ∀xn : sn • ϕ

where ϕ is an atomic formula not being a strong equation.
This is the restriction of conditional logic to unconditional formulas. Strong equations are

removed due to their conditional nature: in [Mos96a] it is proved that strong equations can simulate
positive conditional formulas.

A Terminology for Naming Casl Subinstitutions

We now give a two-component name to the various subinstitutions that can be obtained by combining
Casl’s features. The first component is a vector of tokens. The presence (or absence) of a token
denotes the presence (or absence) of a corresponding feature (cf. Sect. 3.1.9). The second component
determines the level of expressiveness due to Sect. 3.1.9.

We assign the following tokens to the features:

• Sub stands for subsorting,

• P stands for partiality,

• C stands for sort generation constraints, and

• an equality symbol (=) stands for equality.

There is a naming problem with the predicate feature. Firstly, the letter P already stands for
partiality. Secondly, FOL for first-order logic or Horn for Horn clause logic have become quite
standard, but do not contain a token corresponding to predicates. Therefore, we deal with the
predicate feature together with the levels of expressiveness from Sect. 3.1.9:

With predicates, we have the following endings:

• FOL stands for the unrestricted form of axioms (first-order logic),

• GHorn stands for the restriction to generalized positive conditional logic,

• Horn stands for the restriction to positive conditional logic,

• Atom stands for the restriction to atomic logic.

Without predicates, we have the following endings:

• FOAlg stands for the unrestricted form of axioms (first-order logic),

• GCond stands for the restriction to generalized positive conditional logic,

• Cond stands for the restriction to positive conditional logic,

• Eq stands for the restriction to atomic logic.

Any subset of the set of the four tokens Sub, P , C and =, followed by any of the eight above
introduced endings now denotes the subinstitution obtained by intersecting
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• the subinstitution of SubPCFOL= corresponding to the ending with

• the intersection of all the subinstitutions of SubPCFOL= associated to those letters not
occurring in the set of tokens.

We finally adopt the convention that the equality sign = is always put at the end, as a superscript.

Some Interesting Subinstitutions of Casl

This section shall help to understand what the above naming scheme means in practice.

SubPCFOL= (read: subsorted partial constraint first-order logic with equality). This is the logic
of Casl itself!

SubPFOL= (read: subsorted partial first-order logic with equality). Casl without sort generation
constraints. This is described in [CHKBM97].

FOL= Standard many-sorted first-order logic with equality.

PFOL= Partial many-sorted first-order logic with equality.

FOAlg= First-order algebra (i.e., no predicates).

SubPHorn= This is the positive conditional fragment of Casl. It has two important properties:

1. Initial models and free extensions exist (see [Mos02]).

2. Using a suitable encoding of subsorting and partiality, one can use conditional term
rewriting or paramodulation [Pad88] for theorem proving.

SubPCHorn= The positive conditional fragment plus sort generation constraints. Compared with
SubPHorn=, one has to add induction techniques to the theorem proving tools.

PCond= These are Burmeister’s partial quasi-varieties [Bur86] modulo the fact the Burmeister
does not have total function symbols. But total function symbols can be easily simulated
by partial ones, using totality axioms, as in the partly total algebras of [BLR02]. A suitable
restriction leads to Reichel’s HEP-theories [Rei87]. Meseguer’s Rewriting Logic [Mes92] can
be embedded into PCond=.

Horn= This is Eqlog [GM86, Pad88]. By further restricting this we get Membership Equational
Logic MEqtl [Mes98a], Equational Type Logic [MSS90] and Unified Algebras [Mos89]. Of
course, Membership Equational Logic, Equational Type Logic and Unified Algebras are not
just restrictions of Horn=, but all have been invented in order to represent more complex
logics within a subset of Horn=.

Horn Logic Programming (Pure Prolog) [Llo87].

SubCond= Subsorted conditional logic. This is similar but not equal to OBJ [GW88]. See [Mos02]
for a detailed comparison.

Cond= This is many-sorted conditional equational logic [TWW81] .

SubPAtom The atomic subset of Casl. Unconditional term rewriting becomes applicable.

SubPCAtom The atomic subset plus sort generation constraints.

Eq= This is the classical equational logic [GTW78].

CEq= Equational logic plus sort generation constraints.
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In the literature, some of the above institutions are typically defined in a way allowing empty
carrier sets, while Casl excludes empty carriers. This problem is discussed in [Mos02].

See Fig. 3.7 for a graph of Casl sublogics generated by the Heterogeneous Tool Set. Indeed,
more important is the ability of Hets to detect the smallest sublogic of a given specification.

There are also some sublogics that do not fit in the scheme developed so far. For example, Prop,
propositional logic, is the restriction of Casl to signatures that consist entirely of nullary predicates
(these correspond to propositional variables).

3.1.10 Second-Order Logic

For the encoding of sort generation constraints, we will need the institution SOL= (second-order
logic with equality), a superinstitution of FOL=, which is strong enough to express sort generation
constraints directly. Note that sort generation constraints cannot be expressed within first-order
logic (since sort generation constraints can be used to specify the natural numbers up to isomorphism,
this follows from Gödel’s incompleteness theorem). Indeed, they cannot be expressed in HasCasl
either, since HasCasl comes with a Henkin semantics (see Sect. 3.4).

The institution SOL= of second-order logic can be described as follows:

Signatures Signatures and signature morphisms are those of FOL=.

Models Models, model homomorphisms and reducts are that of FOL=.

Sentences Σ-sentences may contain variables that may be typed not only with sorts, but also with
function types w −→ s or predicate types pred(w), where w ∈ S∗, s ∈ S. Quantification
within sentences over variables of these higher types is also allowed. Variables of function or
predicate types may be applied to arguments, like function and predicate symbols in FOL=.

Satisfaction The satisfaction is defined much as in FOL=, with the exception that valuations map
variables of a function type to functions of that type, and variables of a predicate type to
predicates of that type. 2

3.2 Modal Casl

Modal logic was originally conceived as the logic of necessary and possible truths. Meanwhile,
it is also used to express statements of knowledge, belief, provability, obligation and permissions,
relations in time and space, and facts about behaviour of programs. From this diversity, it is clear
that multi-modal logics will play a role. Moreover, there is a strong connection between Kripke
models of multi-modal logics and labelled transition systems that are used for modeling reactive
and concurrent systems. For the latter, often more expressive temporal logics like µ-calculus, ω-
automata, CTL∗, CTL or LTL are needed. Here, we choose to extend modal logic with CTL∗,
which is less expressive, but more readable than the µ-calculus, and still expressive enough for most
applications.

ModalCasl extends Casl by modal logic, providing a multi-modal first-order logic with par-
tiality and subsorting. Modalities can be either declared as fixed modalities, or a term-modal logic
in the sense of [FM91, Tha00] can be used. For the latter, modalities are generated by terms, and
some form of dynamic logic can be expressed as well. It is also possible to use both fixed modalities
and term-modalities in parallel.

Specific modal logics can be obtained via restrictions to sublanguages.

3.2.1 Signatures

A ModalCasl signature consists of

• a Casl signature,
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Figure 3.7: Graph of sublogics of Casl
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• a predicate on the operation and predicate symbols of the Casl signature, marking some of
them as rigid (the other ones are called flexible),

• a set of modalities, and

• a subset of the sort set of the Casl signature, called the set of modality sorts.

A ModalCasl signature morphism consists of

• a Casl signature morphism between the Casl signatures, and

• a mapping between the modality sets,

such that both rigidity of symbols as well as modality sorts are preserved.

3.2.2 Models

A ModalCasl model consists of

• a non-empty set of worlds W ,

• for each world w ∈ W , a CASL model Mw,

• for each modalitym, and for each carrier elementm of each modality sort, a binary accessibility
relation ∼m on W ,

such that carrier sets and the interpretation of rigid operation and predicate symbols are the same
for all Mw, and the associated accessibility relation is preserved under the embedding of a carrier
element along a subsort injection.

The reduct of ModalCasl model against a signature morphism keeps the set of possible worlds.
The accessibility relations are reduced against the renaming of modalities. The accessibility relations
for the carrier elements of modality sorts are reduced along with the carrier elements (e.g. if a
modality sort is not present in the source signature, they are just forgotten). The Casl models are
reduced individually.

3.2.3 Sentences

ModalCasl sentences are closed state formulas built using the following grammar (S stand for
state formulas, P for path formulas):

S ::= At | false | S ∧ S | ∀x : s . S | A P | [m] S | [m-] S | [m∗] S | [m-∗] S P ::= S | false
| P ∧ P | ∀x : s . P | X(m) P | X-(m) P | G P | G- P | P U P | P U - P

where m is a modality or a term of a modality sort (which can be omitted if m is empty) and At
denotes a Casl atomic formula.

Informally,

• [m]ϕ means that ϕ holds in all worlds that are 1-step-reachable through modality m from the
present world,

• [m-]ϕ means that ϕ holds in all worlds that are 1-reverse-step-reachable through modality m,

• [m∗]ϕ means that ϕ holds in all worlds that are reachable by a finite number of steps with
modality m,

• [m-∗]ϕ means that ϕ holds in all worlds that are reachable by a finite number of reverse steps
with modality m,

• Aϕ means that ϕ holds on all paths starting in the current world,
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• X(m)ϕ holds if ϕ holds for the next time position of the path (and the transition to there is
m),

• X-(m)ϕ holds if ϕ holds for the previous time position of the path (and the transition to there
is m),

• Gϕ holds if ϕ holds for all future times on the path,

• G-ϕ holds if ϕ held for all past times on the path,

• ϕU ψ holds if ϕ holds until ψ holds (or ϕ holds for all future times) on the path,

• ϕU -ψ holds if ϕ held since ψ held (or ϕ held at all past times) on the path.

We adopt the abbreviations of Casl (see Sect. 3.1.1), and furthermore, 〈m〉ϕ abbreviates ¬[m]¬ϕ,
〈m∗〉ϕ abbreviates ¬[m∗]¬ϕ, Eϕ abbreviates ¬A¬ϕ, F ϕ abbreviates ¬G¬ϕ, ϕW ψ abbreviates
¬ψ U ϕ ∧ ψ, and similarly for the past time operators (i.e. those marked with a “-”). m (together
with the brackets) can be omitted if equal to empty.

Sentence translation along a signature morphism extends that of Casl in a straightforward
manner.

3.2.4 Satisfaction

Satisfaction is based on the definition of satisfaction in Casl, while modalities are interpreted with
Kripke semantics. Term evaluation is inherited from Casl, but now additionally parameterized by
a world w (this is necessary due to the flexible operations). A state formula is interpreted relative
to a model M , a valuation ν:X−→M and a world w of the model:

• ν, w `̀ Σ ps1...sn
(t1, . . . , tn) iff (ν, w)#(ti) is defined (i = 1, . . . , n) and, moreover, ((ν, w)#(t1), . . . , (ν, w)#(tn)) ∈

(ps1...sn
)Mw

• ν, w `̀ Σ t1
e
= t2 iff (ν, w)#(t1) and (ν, w)#(t2) are both defined and equal,

• ν, w `̀ Σ t1 = t2 iff (ν, w)#(t1) and (ν, w)#(t2) are either both defined and equal, or both
undefined,

• ν, w `̀ Σ def t iff (ν, w)#(t) is defined,

• not ν, w `̀ Σ false

• ν, w `̀ Σ (ϕ ∧ ψ) iff ν, w `̀ Σ ϕ and ν, w `̀ Σ ψ

• ν, w `̀ Σ (∀x : s . ϕ) iff for all valuations ξ:X ∪ {x : s}−→M which extend ν on X \ {x : s}
(i.e., ξ(x) = ν(x) for x ∈ X \ {x : s}), we have ξ, w `̀ Σ ϕ.

• ν, w `̀ Σ Aϕ if for all paths π starting from w (i.e. πw(0) = w), we have ν, π, 0 `̀ Σ ϕ,

• ν, w `̀ Σ [m]ϕ if for all w′ with w ∼(ν,w)#(m) w
′, we have ν, w′ `̀ Σ ϕ,

• ν, w `̀ Σ [m-]ϕ if for all w′ with w′ ∼(ν,w)#(m) w, we have ν, w′ `̀ Σ ϕ,

• ν, w `̀ Σ [m∗]ϕ if for all w′ with w(∼(ν,w)#(m))
∗w′, we have ν, w′ `̀ Σ ϕ,

• ν, w `̀ Σ [m-∗]ϕ if for all w′ with w′(∼(ν,w)#(m))
∗w, we have ν, w′ `̀ Σ ϕ.

Here, ( )∗ denotes reflexive transitive closure. Moreover, we set (ν, w)#(m) = m if m is just a
modality (and not a term modality). A path π = 〈πw, πm〉 consists of a sequence πw of worlds and
a sequence πm of modalities or modality sort carrier elements, both indexed by natural numbers,
such that for all t ∈ IN , πw(t) ∼πm(t) πw(t+ 1).

A path formula is interpreted relative to a model M , a valuation ν:X −→M a path π and a
natural number t marking a position (“time”) on the path.
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• ν, π, t `̀ Σ ϕ if ν, πw(t) `̀ Σ ϕ (ϕ a state formula)

• not ν, π, t `̀ Σ false

• ν, π, t `̀ Σ (ϕ ∧ ψ) iff ν, π, t `̀ Σ ϕ and ν, π, t `̀ Σ ψ

• ν, π, t `̀ Σ (∀x : s . ϕ) iff for all valuations ξ:X ∪ {x : s}−→M which extend ν on X \ {x : s}
(i.e., ξ(x) = ν(x) for x ∈ X \ {x : s}), we have ξ, π, t `̀ Σ ϕ,

• ν, π, t `̀ Σ X(m)ϕ if πm(t) = (ν, πw(t))#(m) and ν, π, t+ 1 `̀ Σ ϕ

• ν, π, t `̀ Σ X-(m)ϕ if t = 0 or πm(t− 1) = (ν, πw(t))#(m) and ν, π, t− 1 `̀ Σ ϕ

• ν, π, t `̀ Σ Gϕ if for all t′ ≥ t, we have ν, π, t′ `̀ Σ ϕ

• ν, π, t `̀ Σ G-ϕ if for all t′ ≤ t, we have ν, π, t′ `̀ Σ ϕ

• ν, π, t `̀ Σ ϕU ψ if either for all t′ ≥ t, we have ν, π, t′ `̀ Σ ϕ, or there is a t′ ≥ t such that
ν, π, t′ `̀ Σ ψ and for all t ≤ u < t′, we have ν, π, u `̀ Σ ϕ,

• ν, π, t `̀ Σ ϕU -ψ if either for all t′ ≤ t, we have ν, π, t′ `̀ Σ ϕ, or there is a t′ ≤ t such that
ν, π, t′ `̀ Σ ψ and for all t′ < u ≤ t, we have ν, π, u `̀ Σ ϕ.

A state formula ϕ is satisfied in a model M (written M |= ϕ) iff it is satisfied w.r.t. all variable
valuations into M and all worlds w ∈W .

The satisfaction condition is proved similarly to that of the Casl institution.

3.2.5 Sublanguages of ModalCasl

We single out a number of sublanguages of ModalCasl. All of them but the last one can also
be qualified with a “Prop”, which means the restriction to propositional logic (i.e. signatures are
restricted to those with sorts and operation symbols, and only nullary predicate symbols are allowed).

Modal is first-order multi-modal logic. It excludes from full ModalCasl the path formulas and
the modalities [m-], [m∗] and [m-∗].

MonoModal is the restriction of Modal to a single modality empty.

CTL∗ removes all the past formulas and the modalities [m] and [m∗].

CTL is a restriction of CTL∗ where only path formulas involving temporal operators (X , G, U)
are allowed.

LTL is a restriction of CTL∗ to those formulas containing exactly one A, and this occurs at the
outermost position of the formula.

IndexedPropModal (indexed propositional modal logic) is a weak fragment of MonoModal that
is still more expressive than PropMonoModal. Within one sentence, we require that for each
argument position, the variable appearing in that position is the same for all predicate ap-
plications. This fragment has been chosen in such a way that for the purpose of performing
proofs, we still can reduce it to propositional modal logic. Indeed, IndexedPropModal just
formalizes the common practice to work with propositions in PropModal that are indexed by
some (possibly infinite) set.
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3.2.6 Amalgamation

ModalCasl fails to have the amalgamation property. This is because there is a part of the Modal-
Casl models that is unnamed in the signatures: namely, the set of worlds. More specifically, the
initial (=empty) ModalCasl signature is not mapped to the terminal model category. Instead,
each set of possible worlds leads to a different model of the empty signature.

One might try to repair this situation by dropping the set of worlds from models of signatures
without modalities (which would mean that some reduct functors would drop the set of worlds as
well). However, this would destroy the following pleasant property:

Theorem 3.21 ModalCasl has a cocomplete signature category and is semi-exact.

Proof: Cocompleteness of the signature category is proved similarly as for the Casl institution.
Let a pushout

Σ

σ2

σ1
Σ1

θ2

Σ2
θ1

Σ′

a Σ1-model M1 and a Σ2-model M2 with M1|σ1 = M2|σ2 be given. The latter implies that M1 and
M2 have the same set W of possible worlds5, which then must be also the set of possible worlds for
the amalgamated model M ′. For each world w ∈ W , M ′

w is the amalgamation (as Casl-models)
of (M1)w and (M2)w. Finally, each modality in M ′ is interpreted (i.e. associated with a transition
relation) in the way as its origin in Σ1 is interpreted in M1 (resp. its origins in Σ2 is interpreted
in M2, where equality of the reducts M1|σ1 = M2|σ2 ensures that this is well-defined in case it can
be traced back to both Σ1 and Σ2). The interpretation of carrier elements for modality sorts as
transition relation works similarly. 2

3.3 CoCasl

In recent years, coalgebra has emerged as a convenient and suitably general way of specifying the
reactive behaviour of systems [Rut00]. While algebraic specification deals with functional behaviour,
typically using inductive datatypes generated by constructors, coalgebraic specification in concerned
with reactive behaviour modeled by coinductive process types that are observable by selectors, much
in the spirit of automata theory. An important role is played here by final coalgebras, which are
complete sets of possibly infinite behaviours, such as streams or even the real numbers [PP99].

While Casl has been designed as a unifying standard for specification of inductive datatypes
and functional requirements, for the much younger field of coalgebraic specification there is still a
divergence of notions and notations. The design of CoCasl aims a fruitful synergy by extending
Casl with coalgebraic constructs that dualize the algebraic constructs already present in Casl.
Figure 3.8 contains a summary of dualizations of Casl concepts in CoCasl

At the level of basic specifications, the duality addresses the various forms of the types construct
that serves to define inductive datatypes in Casl. In its elementary form, its dual is the cotypes
construct, which serves to specify process types with observers (we shall reserve the word ‘datatype’
for the algebraic types). Recall that in Casl, a type declaration can be strengthened in two ways.
In a generated type, junk is excluded, while a free type additionally forbids confusion. Dually,
we introduce a cogenerated cotypes construct for fully abstract process types (Sect. 3.3.1), as well
as a cofree cotypes construct, which additionally requires that all possible observable behaviours
are realized in the process type; cf. Section 3.3.2. (Intercombinations such as cofree types etc. are
not provided, and their emulation is expressly discouraged.) Moreover, we introduce a modal logic
for axioms about state evolution in process types as syntactical sugar (Sect. 3.3.3).

5Here we need that the set of possible worlds is not forgotten when reducing to the empty signature.
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Algebra Coalgebra
type = (partial) algebra cotype = coalgebra
constructor observer (=selector)
generation observability
generated type cogenerated cotype

= no junk = full abstractness
= induction principle = coinduction principle
= pre-initiality = pre-finality

no confusion all possible behaviours
= inductive definition principle = coinductive definition principle
= weak initiality = weak finality

free type cofree cotype
= absolutely initial datatype = absolutely final process type
=no junk +

no confusion
= full abstractness +

all possible behaviours
free { . . . } cofree { . . . }

= initial datatype = final process type
(typically with equations) (typically with modal axioms)

Figure 3.8: Summary of dualities between Casl and CoCasl.

At the level of structured specifications, we dualize the structured free construct to a structured
cofree construct which equips arbitrary specifications with a final semantics. See Appendix C for
more information.

Let us now come to the level of CoCasl basic specifications in more detail. Casl’s types
construct is complemented in CoCasl by the cotypes construct. The syntax of this construct is
nearly identical to the type construct; e.g., one may write

cotype Process ::= cont(hd1 :?Elem; next :?Process)
| fork(hd2 :?Elem; left :?Process ; right :?Process)

thus determining constructors and selectors as for types.
However, for cotypes, the constructors are optional and the selectors (which we henceforth call

observers) are mandatory. The latter requirement rules out Casl’s sort alternatives making a given
sort a subsort of the declared type, as in

type Int ::= sort Nat | − (Pos)
Moreover, we also allow additional parameters for the observers. These have to come from the

local environment (recall that the latter consists of all the declarations before the cotype):

spec Moore =
sorts In,Out
cotype State ::= (next : In → State; observe : Out)

end

The cotype definition in this case expands to

sort State
ops next : In × State → State;

observe : State → Out
Observers with additional parameters do not have a corresponding constructor, since the con-

structor would need to have a higher-order type — e.g. in the above example (In→ State) → State
— which is unavailable in Casl.
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Last but not least, the cotype construct introduces a number of additional axioms concerning the
domains of definition of the observers, besides the axioms relating constructors with their observers
as for types:

• definedness of observers is independent of the additional parameters; the domain of an observer
can thus be defined as a subset of the associated cotype,

• the domains of two observers in the same alternative are the same,

• the domains of two observers in different alternatives are disjoint, and

• the domains of all observers of a given sort are jointly exhaustive.

Thus, the alternatives in a cotype are to be understood as parts of a disjoint sum, so that cotypes,
unlike types, correspond directly to coalgebras (see Proposition 3.23 below).

Definition 3.22 A cotype in CoCasl is given by the local environment sorts and the family of
observers

CT = (S, (obsijk :Ti−→Tijk)i=1...n,j=1...mi,k=1...rij
).

Here, S is a set of sorts (the local environment sorts, also called observable sorts), T1 . . . Tn are
the newly declared process types (or non-observable sorts) in the cotype (which possibly involve
mutual recursion like in Figure 3.13), and obsijk is the k-th observer of the j-th alternative in the
cotype definition of Ti. The result sort Tijk of the observer may be either one of the Ti or one of
the local environment sorts in S. Next, consider observers with additional parameters. In a cotype
declaration, they are written obsijk : s1 × · · · × sm → s, where s1 . . . sm come from S and s either
is one of the Ti or comes from S as well. In order to keep the format obsijk :Ti−→Tijk for the type
of the observer, the corresponding Tijk is not simply a sort, but a function space

s1 × · · · × sm → s,

and the observer, normally having type obsijk : s1×· · ·×sm×Ti → s, by currying can be equivalently
considered to have the higher order type

obsijk : Ti → (s1 × · · · × sm → s),

which is just Ti → Tijk . Although higher-order functions are not available in CoCasl, we prefer
this notation for uniformity reasons. Still, the signature Sig(CT ) of a cotype CT is a first-order
signature consisting of the local environment sorts S, the cotype sorts T1 . . . Tn, and the first-order
profiles of the observers.

The induced theory of the cotype consists of the signature Sig(CT ) and the axioms generated
by the cotype declaration as described above. The induced theory is also referred to as CT . An
S-palette is an S-sorted family C = (Cs) of sets of colours ; a C-colouring is a a family h of maps
(hs:As−→Cs)s∈S). A CT -algebra A is called a (CT,C)-algebra if A interprets the non-observable
sorts as prescribed by C, i.e. As = Cs for all s ∈ S; a homomorphism of (CT,C)-algebras is a
CT -algebra homomorphism that acts as the identity on the sorts in S.

Note that within cotypes, also constructors may be declared. However, we ignore them here,
since they do not contribute to the coalgebra structure. However, they do play a role when homo-
morphisms are concerned, which is why we exclude them in the next proposition:

Proposition 3.23 To a given CoCasl cotype definition without constructors with induced the-
ory CT and set S of observable sorts, one can associate a functor F :Setn −→Setn such that, for
each S-palette C, the category of (CT,C)-algebras is isomorphic to the category of F -coalgebras.
In particular, this implies that all homomorphisms between (CT,C)-algebras are closed.
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spec Stream1 [sort Elem] =
cogenerated cotype

Stream ::= cons(hd : Elem; tl : Stream)
end

Figure 3.9: Cogenerated specification of bit streams in CoCasl
.

Proof: We begin with the parameterless case, without any local environment, i.e. we have a
cotype

CT = (∅, (obsijk :Ti−→Tijk)i=1...n,j=1...mi,k=1...rij
).

By abuse of notation, we treat the Ti as set variables in the definition of the functor F :Setn−→Setn:

F (T1, . . . , Tn) = (
∐

j

∏

k

T1,j,k, . . . ,
∐

j

∏

k

Tn,j,k),

We now have to prove the stated isomorphism of categories. The axioms in Γ ensure that each Ti

is the disjoint sum of sets Xij , where Xij is the domain of definition of the observers in the j-th
alternative of the cotype declaration for Ti. Thus, we can regard CT -algebras as coalgebras

(T1, . . . , Tn)
(g1,...,gn)

F (T1, . . . , Tn)

on Setn by taking gi to be defined on Xij by gi(x) = (obs ij1(x), . . . , obs ijrij
(x)). It is easy to

reverse this process: given an F -coalgebra A, the tuple 〈obs , . . . , obs ijrij
〉 of observers in the j-th

alternative for Ti is defined as the restriction of the i-th component of the structure map of A to
the preimage of the j-th summand

∏

k Tijk of the i-th component of F (T1, . . . , Tn). Altogether,
this leads to a bijective correspondence between CT -algebras and F -coalgebras. Furthermore, this
correspondence is functorial, i.e. a tuple h = (h1, . . . , hn):M −→ N of maps is a homomorphism
of CT -algebras iff it is a homomorphism of the corresponding F -coalgebras. This equivalence is
due to the fact that homomorphisms of partial algebras preserve definedness and hence respect the
disjoint decompositions of the Ti, so that hi can be decomposed into mi maps between the disjoint
summands of Ti. It is straightforward to generalize these arguments to the case that S is non-empty.
2

3.3.1 Generation and cogeneration constraints

Dually to Casl’s sort generation constraints, CoCasl introduces cogeneratedness constraints that
amount to an implicit coinduction axiom and thus restrict the models of the type to fully abstract
ones. This means that equality is the largest congruence w.r.t. the introduced sorts, operations and
predicates (excluding the constructors). Put differently, everything that cannot be distinguished by
its behaviour, as determined by the observers and the predicates, is identified (where observations
can only be made on sorts in the local environment, i.e. outside the type declaration itself). In
the example in Figure 3.9, the Stream-models are (up to isomorphism) the subsets of Eω that
are closed under tl, where E is the interpretation of the sort Elem. (Note: since there is only one
alternative, there is no difference between a type and a cotype here.)

A more complex example is the specification of CCS and CSP, see Fig. 1.6 and [MSRR]. States
are generated by the CCS syntax, but they are identified if they are bisimilar w.r.t. the ternary
transition relation. This can be expressed in CoCasl by stating that states are cogenerated w.r.t.
the transition relation.
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spec Stream2 [sort Elem] =
cofree cotype

Stream ::= (hd : Elem; tl : Stream)
end

Figure 3.10: Cofree specification of bit streams in CoCasl.

Given a signature Σ = (S,TF ,PF , P,≤), a cogeneration constraint over a signature is a sub-
signature fragment (i.e. a tuple of subsets of the respective signature components, which need not
by itself form a complete signature) Σ̄ = (S̄, T̄F , P̄F , P̄ ) of Σ. In the above example, the cogen-
eration constraint is ({Elem}, {hd, tl}, ∅, ∅). The constraint Σ̄ is satisfied in a Σ-model M if each
(S̄, (S, T̄F , P̄F , P̄ ))-bisimulation on M is the equality relation.

In duality to generated types in Casl, the construct cogenerated cotype . . . abbreviates
cogenerated {cotype . . . }. No such abbreviation is provided for cogenerated {type . . . }, the
use of which is in fact expressly discouraged (as are generated {cotypes . . . }).

Remark 3.24 Note that observers of cotypes always have exactly one non-observable argument.
However, like the generated { . . . } construct in Casl, the cogenerated { . . . } construct allows
the inclusion of arbitrary signature items in the cogeneratedness constraint, so that observers of
arbitrary arity are also possible. In particular, full abstractness for binary observers in the sense of
[Tew02] (i.e. observers with two non-observable argument sorts) is expressible.

Remark 3.25 At the level of model homomorphisms, the duality between generatedness and co-
generatedness constraints becomes formally a lot clearer: a generatedness constraint essentially
amounts to a weakened form of initiality in the sense that a model M of the corresponding specifi-
cation is pre-initial in the fibre over its reduct to the local environment (cf. Definition C.12 below)
— i.e. there is at most one morphism from M into any other model over the same reduct. Du-
ally, a model M that satisfies a cogeneratedness constraint is pre-final in its fibre in the sense
that there exists at most one morphism from any other model over the same reduct into M . This
may also roughly be expressed as follows: generated models do not have proper substructures, and
cogenerated models do not have proper quotients.

3.3.2 Free types and cofree cotypes

Dually to Casl’s free types construct, in CoCasl we provide a cofree cotypes construct that
specifies the absolutely final coalgebra of infinite behaviour trees (see Example C.14 on why there is
no cofree types construct). More concretely, this means that, in addition to cogeneratedness, there
is also a principle stating that there are enough behaviours, namely all infinite trees [AM82] (with
branching as specified by the observers). In contrast to its dual (no confusion among constructors),
the latter principle cannot be expressed in first-order logic; however, a second-order specification
is possible (see below). In the example in Figure 3.10, the Stream2-models are isomorphic to
Eω, where E is the interpretation of the sort Elem. An example with an extra parameter for the
observer is the specification of function types in Figure 3.11 (actually, this shows that higher-order
types can be easily encoded in CoCasl). Similarly, Figure 3.12 specifies the final Moore automaton.
Finally, in Figure 3.13 we use mutually recursive cofree cotypes to specify trees of infinite depth and
branching, dualizing the Ntree example of Figure 3.2.

We are now ready to dualize the important algebraic concept of term algebra.

Definition 3.26 Given a cotype

CT = (S, (obsijk :Ti−→Tijk)i=1...n,j=1...mi,k=1...ri,j
)
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spec FunctionType =
sorts A,B
cofree cotype

Fun[A,B ] ::= (eval : A → B)
end

Figure 3.11: Cofree specification of function types.

spec FinalMoore1 =
sorts In,Out
cofree cotype State ::= (next : In → State; observe : Out)

end

Figure 3.12: Cofree specification of the final Moore automaton.

spec InfTree [sort Elem ] =
cofree cotypes

InfTree ::= (label : Elem; children : InfForest)
InfForest ::= (first : InfTree; rest : InfForest)

end

Figure 3.13: Cofree specification of trees of possibly infinite depth and branching.
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and an S-palette C, the behaviour algebra BehCT (C) is defined to be the following (CT,C)-algebra:

• the carriers for observable sorts (i.e. in S) are those determined by C;

• the carriers for a non-observable sort Ti0 consist of all infinite trees of the following form:

– each inner node is labelled with a pair (Ti, j), where Ti is a non-observable sort and
j ∈ {1, . . . ,mi} selects an alternative out of those for Ti;

– the root is labelled with (Ti0 , j0) for some j0;

– each leaf is labelled with an observable sort s ∈ S and some colour from Cs;

– each inner node with label (Ti, j) has one child for each of the observers obsijk (k =
1 . . . rij) and each tuple of colours for the extra parameters of the observer. The child
node is labelled with the result sort of the observer.

• an observer operation obsi0,j,k is defined for a tree with root (Ti0 , j0) if and only if j = j0,
and in this case, it just selects the child tree corresponding to the observer and the argument
colours for the extra parameters of the observer.

Proposition 3.27 Given a cotype

CT = (S, (obsijk :Ti−→Tijk)i=1...n,j=1...mi,k=1...rij
)

and an S-palette C, the behaviour algebra BehCT (C) is final in the category of (CT,C)-algebras
(note that the latter correspond to coalgebras).

Proof: Using the characterization of Proposition 3.23, the result follows from the general con-
struction of final coalgebras for polynomial functors over the category of {T1, . . . , Tn}-sorted sets
(this generalizes the well-known result for Set [AK95, AM82]). Intuitively, the morphism from a
given (CT,C)-algebra into BehCT (C) constructs the behaviour of an element, which is the infinite
tree given by all possible observations that can be made successively applying the observers until a
value of observable sort (i.e. in S) is reached. 2

Given a signature Σ, we formally add cofreeness constraints of form cofree(CT ), where

CT = (S, (obsijk :Ti−→Tijk)i=1...n,j=1...mi,k=1...rij
)

is a cotype with Sig(CT ) ⊆ Σ, as Σ-sentences to the CoCasl logic. A cofreeness constraint
cofree(CT ) holds in a Σ-algebra A if the reduct of A to Sig(CT ) is isomorphic to the behaviour
algebra BehCT (C) over the set of colours C with Cs := As for s ∈ S.

Note that this implies the satisfaction of the cogeneratedness constraint

(S, {obsijk|obsijk total}, {obsijk|obsijk partial}, ∅),

i.e. each cofree cotype is also cogenerated. The converse does not hold, i.e. a cogenerated cotype
need not be cofree. However, cogenerated cotypes still behave quite nicely (in contrast to arbi-
trary cogenerated types): the elements of carriers of the non-observable sorts (i.e. those outside
S) are completely determined by their behaviours. Thus, the elements can be identified with their
behaviours, and up to isomorphism, we have a submodel of the cofree model. Hence, cofreeness
essentially adds the requirement that each possible behaviour is actually represented by an element.

Full abstractness of cofree cotypes implies that cofreeness is not destroyed in the presence of
constructors. Normally, constructors are determined only up to bisimilarity and hence may destroy
the homomorphism condition. However, in the cofree model, bisimilarity is just equality.

The main benefit of cofree cotypes (in comparison to cogenerated cotypes) is the principle

corecursive definitions in cofree cotypes are conservative.

This completes the definition of CoCasl constraint sentences. Note that in order to be able
to translate the various constraints along signature morphisms in such a way that the satisfaction
condition for institutions is fulfilled, one has to equip the constraints with an additional signature
morphism, as in Sect. 3.1.
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ϕ ::= t1 = t2
| t1

e
= t2

| def t
| [t]ϕ
| 〈t〉ϕ
| [t∗]ϕ
| 〈t∗〉ϕ
| [{t1, . . . , tn}]ϕ
| 〈{t1, . . . , tn}〉ϕ
| [{t1, . . . , tn}∗]ϕ
| 〈{t1, . . . , tn}∗〉ϕ

Figure 3.14: Syntax of CoCasl’s modal logic.

3.3.3 Modal logic

We now define a multi-sorted modal logic for use with process types, the basic idea being that
observer operations give rise to modalities that describe the evolution of the system upon application
of the observer. The underlying intuition is that the non-observable sorts of a process type form
a multi-sorted state space, and that observers either directly produce observable values or effect
an evolution of the state. Modal logic allows formulating statements about such systems without
explicit reference to the states. The effect is that axioms formulated in modal logic indeed describe
only the observable behaviour of a system, formally: satisfaction of modal formulae is bisimulation
invariant (see e.g. [MSRR, Kur01a, Pat01]). Methodologically, this means that the state space is
appropriately encapsulated; a technical advantage is that restriction by modal formulae preserves
existence of final models.

In CoCasl, this takes the following shape. We define modal formulae for a given cotype
declaration. All the sorts defined in the cotype are called non-observable, and the selectors are
called observers. Sorts from the local environment are called observable. These notions can also be
reformulated in terms of a signature of the modal CoCasl institution, see Sect. 3.3.4.

The full syntax of CoCasl’s modal logic is given in Fig. 3.14 and explained successively in the
sequel. Note that the syntax does not include propositional variables, since these would violate
invariance under bisimulation. Atomic formulae in the modal logic involve observer terms. These
are built from unary observers with observable result sort (which are treated as flexible constants,
i.e. constants that depend on the respective state), observers with additional parameters (which
then need to be applied to sufficiently many observer terms) and variables and function symbols
from the local environment. The modal logic has (existential or strong) equations between as well
as definedness assertions of observer terms as atomic sentences. Sentences may be combined using
the usual propositional connectives, the quantification over variables of observable sorts, as well as
the following modalities: An observer t (possibly applied to extra parameters) with non-observable
result sort leads to modalities [t], 〈t〉, [t∗], 〈t∗〉 (all-next, some-next, always, eventually). Using this
logic, we can write, in the example of Figure 3.15,

hd = 0 ∧ [tl]hd = 0 ⇒ [tl][tl]hd = 1

as syntactic sugar for
hd(s) = 0 ∧ hd(tl(s)) = 0 ⇒ hd(tl(tl(s))) = 1

More precisely, we define the meaning of a modal formula ϕ to be the meaning of the formula

∀x : s[[ϕ]]x:s

Here, [[ ]] takes a modal formula (or an observer term) and a sorted term to an ordinary formula
(or ordinary term). Intuitively, the sorted term, which is written as a subscript, carries the current
state. This is defined as follows:
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spec BitStream3 =
free type Bit ::= 0 | 1
cotype BitStream ::= (hd : Bit ; tl : BitStream)
∀s : BitStream
• hd(s) = 0 ∧ hd(tl(s)) = 0 ⇒ hd(tl(tl(s))) = 1

end

Figure 3.15: Specification of a subset of bit streams in CoCasl.

• [[u]]t:s ≡ u, if u is an observer term consisting of variables and operation symbols from the
local environment,

• [[f ]]t:s ≡ f(t) if f : s−→s′ is a unary observer with observable result,

• [[f(t1, . . . , tn)]]t:s ≡ f([[t1]]t:s, . . . , [[tn]]t:s, t), if f : s1 × · · · × sn × s −→ s′ is an observer with
additional parameters and observable result, and ti is an observer term of sort si (i = 1, . . . , n),

• [[u1 = u2]]t:s ≡ [[u1]]t:s = [[u2]]t:s,

• [[u1
e
= u2]]t:s ≡ [[u1]]t:s

e
= [[u2]]t:s,

• [[def u]]t:s ≡ def [[u]]t:s,

• [[[f ]ϕ]]t:s ≡ def f(t) ⇒ [[ϕ]]f(t):s′ , if f : s−→s′ is a unary observer with non-observable result,

• [[[f(t1, . . . , tn)]ϕ]]t:s ≡ def f([[t1]]t:s, . . . , [[tn]]t:s, t) ⇒ [[ϕ]]f([[t1]]t:s,...,[[tn]]t:s,t):s′ , if f : s1 × · · · ×

sn × s−→s′ is an observer with additional parameters and non-observable result and ti is an
observer term of sort si (i = 1, . . . , n),

• [[[f ]ϕ]]t:s ≡ ∀x1 : s1, . . . , xn : sn . def f(x1, . . . , xn, t) ⇒ [[ϕ]]f(x1,...,xn,t):s′ , if f : s1 × · · · × sn ×

s−→s′ is an observer with additional parameters and non-observable result.

The translation is extended to the logical connectives and quantifiers by structural rules which just
copy these.

Note that each modal formula has a sort, which is the sort occurring in the subscript argument of
the translation function. In particular, a modal formula is well-formed and the translation function
[[ ]] is defined only in case of correct sorting. One may switch to a different sort (i.e. a different
state space) using the modalities, but only in a well-sorted way. If necessary (due to overloading),
observers have to be provided with explicit types.

The other modalities now can be defined as derived notions, where the starred forms [t∗], 〈t∗〉,
being inspired by dynamic logic, need infinitary formulae. We here only treat the case of unary
observers, the other cases being entirely analogous:

• [[〈f〉ϕ]]t:s ≡ ¬[[[f ]¬ϕ]]t:s

• [[[f∗]ϕ]]t:s ≡ [[ϕ ∧ [f ]ϕ ∧ [f ][f ]ϕ ∧ [f ][f ][f ]ϕ ∧ . . .]]
(here, argument and result sort of f must coincide)

• [[〈f∗〉ϕ]]t:s ≡ ¬[[[f∗]¬ϕ]]t:s

The starred modalities have the limitation that only one specific observation can be repeated
arbitrarily often. However, sometimes it is desirable to express that a group of observations can
be repeated. We hence allow for grouping observers with braces: [{f1, . . . , fn}] and 〈{f1, . . . , fn}〉
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spec BitStream4 =
free type Bit ::= 0 | 1
cotype BitStream ::= (hd : Bit ; tl : BitStream)
• 〈tl∗〉hd = 1

end

Figure 3.16: Specification of a fairness property.

denote the conjunction and the disjunction, respectively, of the modal formulae obtained for the
individual observers. Note that for the unstarred versions, this can also be expressed explicitly as a
conjunction (disjunction), while this is not possible for the starred versions. This machinery allows
us to express that a buffer eventually outputs all elements that are read in:

∀a : Elem .
[next(input(a))] 〈{next(input), next(output)}∗〉 〈next(output(a))〉 true

The modal logic introduced above allows expressing safety or fairness properties. For example,
the model of the specification BitStream4 of Figure 3.16 consists of bitstreams that will always
eventually output a 1. Here, the ‘always’ stems from the fact that the modal formula is, on the
outside, implicitly quantified over all states, i.e. over all elements of type BitStream.

Remark 3.28 The modal µ-calculus [Koz83], which provides a syntax for least and greatest fixed
points of recursive modal predicate definitions, is expressible using free and cofree specifications: µ is
expressible by free recursively defined predicates, while ν is expressible by cofree recursively defined
predicates. We have refrained from including syntactical sugar for the µ-calculus in CoCasl,
because this would involve higher order variables and hence appear to be against the grain of
CoCasl, which is first-order in spirit (although higher-order types can be emulated).

Remark 3.29 In [MSRR], we also introduce modalities for structured observations. For simplicity
and also because this is subject of ongoing research, we do not include these here.

3.3.4 The CoCasl Institution

We now come to the definition of the CoCasl institution. Actually, CoCasl does not form just a
single institution, but a hierarchy of institutions with increasing expressiveness.

Definition 3.30 The (plain) CoCasl institution PlainCoCasl is identical to the Casl insti-
tution [CoF04], except that it has two additional types of sentences, namely, cogeneratedness con-
straints and cofreeness constraints as explained in Sections 3.3.1 and 3.3.2.

From this institution, which does not record enough information on cotype definitions in order to
define the required notion of modal formula, we distinguish the modal CoCasl institution, defined
as follows.

Definition 3.31 An extended CoCasl signature consists of a Casl signature (cf. Sect. 3.1) and
the following additional data:

• a transitive relation sees and

• a partial equivalence relation sibling on the set of sorts.
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A sort is called a cotype if it is in the domain of sibling (in signatures generated by CoCasl
specifications, the cotypes in this sense will indeed be the sorts coming from cotype declarations).

Signature morphisms σ are required to preserve the sibling and sees relations.
The set of sentences associated to an extended CoCasl signature Σ consists of the sentences

associated to the underlying Casl signature in the CoCasl institution and, additionally, the modal
formulae over Σ. The syntax of modal formulae is defined as in Sect. 3.3.3, with flexible constants
and modal operators determined as follows. We say that a modal operator has type U → S if it
applies to modal formulae of type U , yielding modal formulae of type S. Each function symbol
f : R1 × . . .×Rn × S →W , where S is a cotype that sees the Ri, gives rise to

• a parameterized flexible constant f : R1 × . . .×Rn →W if S sees W ;

• simple modal operators [f(r1, . . . , rn)], 〈f(r1, . . . , rn)〉, [f(r1, . . . , rn)∗], and 〈f(r1, . . . , rn)∗〉 of
type W → S, parameterized over ri : Ri, i = 1, . . . , n, if W is a sibling of S.

Finally, modal operators can be combined e.g. in the form [{f1(r11, . . . , r1n1), . . . , fl(rk1, . . . , rknk
)}],

and parameters may be omitted as explained in Sect. 3.3.3.
Given a modal formula φ, the translation of φ along a signature morphism σ is defined by

recursion over the formula structure. Here, modal operators and flexible constants associated to a
function symbol f are translated into the corresponding entities for σ(f), which exist by preservation
of the sees and sibling relations.

The notions of model and model reduction for extended CoCasl signatures is the same as in
the plain CoCasl institution.

The satisfaction relation for modal formulae is defined as described in Sect. 3.3.3.

Proposition and Definition 3.32 These data define an institution ModalCoCasl, the modal
CoCasl institution.

Proof: We have to establish the satisfaction condition for modal formulae. This is done by a
straightforward induction on the formula structure. 2

The additional data for extended CoCasl signatures show up in the semantics of CoCasl con-
structs as follows. The sees and sibling relations are determined purely by the cotype declarations.
W.r.t. these relations, a cotype declaration of cotypes S1, . . . , Sn has the following effects.

• The sees relation is extended by relations Si sees U for all sorts U in the local environment
such that Si has a selector with result type U or a parameter (i.e. argument other than Si) of
type U , except when U is one of the Sj . The transitive closure of the resulting relation is the
new sees relation.

• The cotypes S1, . . . , Sn are declared to be siblings. The partial equivalence generated by the
resulting relation is the new sibling relation.

In particular, redeclaring a cotype may increase the number of sorts it sees as well as the number
of its siblings.

The intuition behind this is that the local environment is regarded as observable for purposes
of observing a given cotype; i.e. the sees relation gives rise to a local notion of observability. In
particular, it is possible to instantiate observable parameter sorts in a parameterized specification
such as the specification List [sort Elem] of lists of entries of type Elem with, 〈f(r1, . . . , rn)〉,
[f(r1, . . . , rn)∗], and 〈f(r1, . . . , rn)∗〉 a non-observable argument sort to obtain e.g. lists of streams.

Remark 3.33 The above definitions do not prevent the user from causing a certain amount of
havoc by abusive renaming or redeclaration of symbols. E.g. it is possible to declare a cotype S
that sees a sort T in its local environment, and then redeclare T as a cotype that sees S and hence
itself. Then an observer f : T → T gives rise both to a flexible constant f and to a modal operator
[f ], despite the proviso in the semantics of cotypes which excludes siblings from the sees relation.
While this would certainly be regarded as a specification error — the sorts S and T would more
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appropriately be defined within a single cotype declaration — we have preferred delegating this
and further problems to a forthcoming set of methodological guidelines rather than overburden the
definition of the signature category with further formal restrictions.

3.3.5 Amalgamation

Proposition 3.34 The category of ModalCoCasl signatures has pushouts.

Proof: Let σ : Σ1 → Σ2 and τ : Σ1 → Σ3 be morphisms of extended CoCasl signatures, and let

Σ1

τ

σ
Σ2

τ̄

Σ3 σ̄
Σ4

be the pushout of the underlying Casl signatures (which we denote by Σ1 etc. as well). The
resulting Casl signature Σ4 is made into an extended CoCasl signature by taking the sees and
sibling relations to be the smallest transitive relation and partial equivalence relation, respectively,
that make σ̄ and τ̄ morphisms of extended CoCasl signatures; the presentations in Σ4 are defined
as the images of the presentations in Σ2 and in Σ3 under σ̄ and τ̄ , respectively. This defines Σ4 as
a pushout of extended CoCasl signatures. 2

Since both PlainCoCasl and ModalCasl models are just Casl models, and the sees and
sibling relations do not interact with models, we have

Proposition 3.35 PlainCoCasl and ModalCoCasl admit amalgamation under the same re-
strictions as Casl (see Sect. 3.1.7).

3.4 HasCasl

The development of programs in modern functional languages such as Haskell calls for a wide-
spectrum specification formalism that supports the type system of such languages, in particular
higher order types, type constructors, and parametric polymorphism, and that contains a functional
language as an executable subset in order to facilitate rapid prototyping. HasCasl, a higher order
extension of Casl, is geared towards precisely this purpose. Its semantics is tuned to allow program
development by specification refinement, while at the same time staying close to the set-theoretic
semantics of first order Casl. The number of primitive concepts in the logic has been kept as
small as possible (actually, HasCasl is based on the partial λ-calculus). Various extensions to the
logic, in particular general recursion and specification of side-effects encapsulated via monads, can
be formulated within the language itself.

3.4.1 The partial λ-calculus

The natural generalization of the simply typed λ-calculus to the setting of partial functions is the
partial λ-calculus as introduced in [Mog86, Mog88, Ros86]. The basic idea is that function types
are replaced by partial function types, and λ-abstractions denote partial functions instead of total
ones.

A simple signature consists of a set of sorts and a set of partial operators with given profiles
(or arities) written f : s̄ ⇀ t, where t is a type and s̄ is a multi-type , i.e. a (possibly empty) list
of types. A type is either a sort or a partial function type (product types will be introduced in
Sect. 3.4.2)

s̄→?t,
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x : s in Γ

Γ � x : s

Γ � ᾱ : t̄
f : t̄ ⇀ u

Γ � f(ᾱ) : u

Γ, ȳ : t̄� α : u

Γ � λ ȳ : t̄ • α : t̄→?u

Figure 3.17: Typing rules for the partial λ-calculus

with s̄ and t as above (one cannot resort to currying for multi-argument partial functions; e.g.,
s →?(t →?u) is not isomorphic to st →?u [Mog86]). Following [Mog86], we assume for each multi-
type s̄ and each type t an application operators with profile (s̄ →?t)s̄ ⇀ t in the signature, so that
application does not require extra typing or deduction rules. This operator is denoted as usual by
juxtaposition, while application of other operators in the signature is written with brackets. For
t̄ = (t1, . . . , tm), s̄ →?t̄ denotes the multi-type (s̄ →?t1, . . . , s̄ →?tm), not to be confused with the
(non-existent) ‘type’ s̄ →?t1 × . . . × tm. A morphism between two simple signatures is a pair of
maps between the corresponding sets of sorts and operators, respectively, that is compatible with
operator profiles.

A signature gives rise to a notion of typed terms in context according to the typing rules given
in Figure 3.17, where a context Γ is a list (x1 : s1, . . . , xn : sn), shortly (x̄ : s̄), of type assignments
for distinct variables. More precisely, we speak simultaneously about terms and multi-terms , i.e.
lists of terms also denoted shortly in the form ᾱ instead of (αi, . . . , αn). The judgement Γ � α : t
reads ‘(multi-)term α has (multi-)type t in context Γ’. The empty multi-term () doubles as a term
of ‘type’ (), where the latter is also denoted as Unit.

A partial λ-theory T is a signature Σ together with a set A of axioms that take the form of
existentially conditioned equations: an (existential) equation ᾱ1

e
= ᾱ2 is read ‘ᾱ1 and α2 are defined

and equal’. Equations ᾱ
e
= ᾱ are abbreviated as def ᾱ and called definedness judgements . An

existentially conditioned equation (ECE) is a sentence of the form Γ � def ᾱ⇒ φ, where ᾱ is a
multi-term and φ is an equation in context Γ, to be read ‘φ holds on the domain of ᾱ’. By equations
between multi-terms, we can express conjunction of equations (e.g. def (α, β) ≡ def α ∧ def β); true

will denote def ().

Remark 3.36 In the simple signature associated to a HasCasl signature according to the trans-
lation given in Sect. 3.4.5, all operators except the application operators will be total constants
f : t, i.e. operators f : () ⇀ t together with an axiom def f().

In Figure 3.18, we present a set of proof rules for existential equality in a partial λ-theory. The
rules are parameterized over a fixed context Γ. We write Γ � def ᾱ ` φ if an equation φ can be
deduced from def ᾱ in context Γ by means of these rules; in this case, Γ � def ᾱ ⇒ φ is a theorem .
The rules are essentially a version of the calculus presented in [Mog86], adapted for existential (rather

than strong) equations. Of course, there is no reflexive law, since α
e
= α is false if α is undefined.

For conciseness, subderivations are denoted in the form ∆ � def ᾱ ` φ, where the context ∆ and
the assumption def ᾱ are to be understood as extending the ambient context and assumptions. E.g.
the first premise of rule (sub) reads ‘in the context enlarged by ȳ : t̄ and under the additional

assumption def ᾱ, φ is derivable’. Strong equations ∆ � α
s
= β, or just α

s
= β, are abbreviations

for ‘∆ � def α ` def β and ∆ � def β ` α
e
= β’; in particular, rule (β) is really two rules. Rule (ξ)

implies that all λ-terms are defined.
The higher order rules (ξ) and (β) show a slight preference for strong equations. Note, however,

that the usual form of the η-equation, λ ȳ : t̄ • α(ȳ) = α, is an ECE, not a strong equation.
A translation between partial λ-theories T1 and T2 with signatures Σ1 and Σ2, respectively, is

a signature morphism σ : Σ1 → Σ2 which transforms axioms into theorems — i.e. for every axiom
Γ � def ᾱ⇒ φ in T1, σΓ � def σᾱ ` σφ in T2.
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(var)
x : s in Γ

def x
(st)

def f(ᾱ)

def ᾱ
(unit)

x : Unit in Γ

x
e
= ()

(sym)
ᾱ

e
= β̄

β̄
e
= ᾱ

(tr)

ᾱ
e
= β̄

β̄
e
= γ̄

ᾱ
e
= γ̄

(cong)

ᾱ
e
= β̄

def f(ᾱ)

f(ᾱ)
e
= f(β̄)

(ax)

(ȳ : t̄� def ᾱ ⇒ φ) ∈ A

ȳ : t̄ in Γ

def ᾱ

φ
(sub)

ȳ : t̄� def ᾱ ` φ

def (ᾱ[ȳ/β̄])

def (β̄)

φ[ȳ/β̄]

(η)
x : t̄→?u in Γ

(λ ȳ : t̄ • x ȳ)
e
= x

(β)
ȳ : t̄ in Γ

(λ ȳ : t̄ • α) ȳ
s
= α

(ξ)
ȳ : t̄� α

s
= β

λ ȳ : t̄ • α
e
= λ ȳ : t̄ • β

Figure 3.18: Deduction rules for existential equality in context Γ
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Remark 3.37 So-called conditioned terms ᾱres β̄, which denote the restriction of a multi-term
ᾱ to the domain of a multi-term β̄ [Bur93, Mog88], can in our setting be coded using projection
operators: we can put ᾱres β̄ = (λ x̄, ȳ • x̄) (ᾱ, β̄). Conditioned terms, in turn, provide a coding for
λ-abstraction of multi-terms.

Remark 3.38 A notion of predicates is provided in the shape of terms Γ � α : Unit, for which
we write α in place of def α. The sentence def β can be coded as the predicate (λx • ∗)(β).

The expressive power of ECEs is greatly increased in the presence of an equality predicate (see
also [CO89, Mog86]):

Definition 3.39 A partial λ-theory has internal equality if there exists, for each type s, a binary
predicate (cf. Remark 3.38) eqs such that

x, y : s� eqs(x, y) ⇒ x
e
= y and x : s� true ⇒ eqs(x, x)

Such a predicate allows coding conditional equations as ECEs. In combination with λ-abstraction,
it gives rise to a full-fledged intuitionistic logic [CO89, LS86, SM02]; this is explained in more detail
in Sect. 3.4.8.

The notion of model we choose for the partial λ-calculus and thus, in effect, for HasCasl, is that
of intensional Henkin model . Briefly, this means that not only may the sets interpreting partial
function types fail to contain all set-theoretic partial functions, but they may also contain several
elements describing the same set-theoretic function. Henkin models may be described as syntactic
λ-algebras modeled on the corresponding notion defined for the total λ-calculus in [BTM85]:

Definition 3.40 A syntactic λ-algebra for a partial λ-theory T is a family of sets [[s]], indexed
over all types of T , together with partial interpretation functions

[[Γ. α]] : [[Γ]] ⇀ [[t]]

for each term Γ � α : t in T , where [[Γ]] denotes the extension of the interpretation to contexts via
the cartesian product. This interpretation is subject to the following conditions:

(i) [[Γ. xi]], where Γ = (x̄ : s̄), is the i-th projection;

(ii) [[ȳ : t̄. γ]]◦[[Γ. β]] = [[Γ. γ[ȳ/β]]], where Γ � β : t̄ is a multi-term, with the interpretation extended
to multi-terms in the obvious way;

(iii) whenever Γ � φ ` α
e
= β in T and [[Γ. φ]](x) holds (i.e. is defined), then [[Γ. α]](x) = [[Γ. β]](x)

are defined.

A model morphism between two syntactic λ-algebras is a family of functions hs, where s ranges
over all types, that satisfies the usual homomorphism condition for partial algebras w.r.t. all terms.
A syntactic λ-algebra satisfies an ECE Γ � def ᾱ ⇒ β

e
= γ if

[[(). λΓ • βresᾱ]] = [[(). λΓ • γresᾱ]] and
[[(). λΓ • def (β, ᾱ)]] = [[(). λΓ • def ᾱ]].

It is shown in [Sch03] that such models are essentially equivalent to categorical models involving
partial cartesian closed categories.

Remark 3.41 let Ts(Γ) denote the set of terms of type s in context Γ. Then the family T (Γ) =
(Ts(Γ)) can be equipped with total interpretation functions for all operators of the signature, but
does not, of course, form a syntactic λ-algebra, since it fails to satisfy any equations, in particular
β and η. However, Definition 3.40 says that T (Γ) has a property resembling the universal property
of classical term algebras: one has a family of partial evaluation functions η# : T (Γ) → A for each
valuation η in A of the variables in Γ (in the above notation, η#(α) = A[[Γ. α]](η(x̄))), and that these
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evaluation functions are compatible with homomorphisms in the sense that for each homomorphism
h, the equation h◦η# = (h◦η)# holds on the domain of η#, i.e. one has a lax commutative diagram

T (Γ)

η#
(h◦η)#

A
h

B

Remark 3.42 Having to interpret all λ-terms can be avoided by using combinators instead of
λ-abstraction. In fact, it is implicit in [Mog88] that syntactic λ-algebras are equivalent to the
combinatorically defined λp-algebras considered there; however, it is unclear whether λp-algebras
can be finitely axiomatized.

A translation σ : T1 → T2 of partial λ-theories gives rise to a reduct functor from the model
category of T2 to that of T1: given a model M of T2, M |σ interprets each type and each term in T1

by the interpretation of its translation along σ in M .

3.4.2 Product types

In a first extension step, we add product types to the partial λ-calculus, i.e. essentially promote
multi-types to types. In a signature with product types Σ, the set T of types is generated from
the set S of sorts by the grammar

T ::= S | T × . . .× T | T →?T,

with types of the form s̄→?t coded as s1× . . .×sn →?t; operators, however, have profiles consisting
as before of a multi-type describing their arguments and a result type. Product types s1 × . . .× sn

are equipped with tuple formation and projection operators ( , . . . , ) : s̄ ⇀ s1 × . . . × sn and
pri : s1 × . . . × sn ⇀ si. Terms for Σ are defined as before, but using these new operators.
Morphisms of such signatures are defined as for simple signatures; of course, compatibility with
operator profiles now refers to an extension of the translation that takes product types into account.
A partial λ-theory with product types is a signature with product types equipped with a set of
ECEs, where ECEs can now be restricted to have a definedness condition for a term (rather than a
multi-term) as their premise.

The semantics of a partial λ-theory T with product types is given by a translation into a partial
λ-theory T ′: the sorts of T ′ are the sorts and the non-trivial product types of T . This gives rise to
an obvious translation of types in T to types in T ′. The operators of T ′ are, then, the operators of
T with accordingly translated profiles. This, in turn, induces to a translation of terms; the axioms of
T ′ are the correspondingly translated axioms of T , extended by axioms stating that tuple formation
and projections are mutual inverses, i.e.

x̄ : s̄� true ⇒ pri(x1, . . . , xn)
e
= xi and

x : s1 × . . .× sn � true ⇒ (pr1(x), . . . , prn(x))
e
= x.

The models of T are defined to be the models of T ′, and an ECE in T holds in such a model M iff its
translation to an ECE in T ′ holds in M . Translations of partial λ-theories give rise to translations
of the corresponding simple signatures and hence to reduct functors .

3.4.3 Signatures

We now proceed to define actual HasCasl signatures, which will then be translated into simple
signatures as defined in the previous section.

As it is standard in higher-order logic, operations are just constants of an appropriate (possibly
higher-order) type. Moreover, the type of constants may be polymorphic, containing type variables
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that may be instantiated later on. Type constructors map types to types. More generally, also
higher-order type constructors are allowed, mapping type constructors to type constructors (where
types are regarded as nullary type constructors). Declaration and application of type constructors
is subject to correct kinding. Kinds can be regarded as sets of type constructors. Higher-order type
constructors have higher-order kinds.

As in Haskell, a type constructor class is a user-declared subkind of a given kind, such that all
members of the constructor class come with a bunch of operations (also called methods). Type
constructors may be overloaded with several kinds built from different classes, but only if all these
kinds are of the same shape, formalized as raw kind.

Finally, type synonyms just are abbreviations of more complex types by names.
A gentle introduction into polymorphic types, type constructors, kinds, and type classes is given

in [HPF99].
A HasCasl signature Σ = (C,≤C , T, A,O,≤) consists of:

• a set C of type constructor classes (or just classes) with assigned raw kinds ;

• a subclass relation ≤C between classes and kinds

• a set T of type constructors consisting of their name and a set of kinds called profiles ;

• a set A of type synonyms , where a type synonym associates a name to a pseudotype (i.e.
a λ-term at the level of types; see below), its expansion ; and

• a set O of constant symbols with assigned type schemes (i.e types, possibly with a universal
quantification over type variables at the outermost level; see below).

• a subtype relation between type constructors and pseudotypes.

The sets K and RK of kinds and raw kinds, respectively, are defined by the grammar

K ::= C | {V • V ≤ P} | Type | K ∩K | K → K | K+ → K | K− → K
RK ::= Type | RK → RK | RK+ → RK | RK− → RK,

where Type is the kind of all types, P is the set of all pseudotypes (see below), and V is a set of
type variables. The downset kind {a • a ≤ t} denotes the kind of all subtypes of a given closed
pseudotype t. The +/− superscripts indicate covariant or contravariant dependency on the type
arguments, respectively, for purposes of subtyping. A class Cl is associated to its raw kind Kd
by writing Cl : Kd . The raw kind of a kind Kd is obtained by replacing each class occurring in
Kd with its raw kind and each downset kind with the raw kind of the corresponding pseudotype
as defined below. The formation of the intersection kind Kd 1 ∩ Kd2 is allowed only when Kd1

and Kd2 have the same raw kind, which is then also the raw kind of Kd 1 ∩ Kd2. We require that,
whenever Cl ≤C Kd , then the raw kinds of Cl and Kd are in the subkind relation. The subclass
relation is extended to an order relation ≤K on kinds by the rules shown in Figure 3.19; note that
co- and contravariant constructor kinds are subkinds of the corresponding constructor kind without
variance information. The rule for intersection kinds works in both directions. By induction over
the derivation length, it is shown that Kd 1 ≤K Kd2 implies that the same relation holds for the
associated raw kinds, i.e. that the latter are identical up to possible removal of variance annotations.
Note that a class or kind is not necessarily a subkind of its raw kind (e.g., given a class Ord of ordered
types, Ord → Ord has raw kind Type → Type, but is not a subkind of that kind.); however, for a
class Cl of raw kind Type, it is required that Cl ≤C Type.

By writing t : Kd , we express that a type t is associated to a kind Kd . We require that all
the kinds assigned to a type constructor are of the same raw kind, which is then regarded as the
raw kind of the type constructor (kinds derivable for the type constructor may have a greater raw
kind). There are built-in type constructors

× : Type+ → Type+ → Type,
→? , → : Type− → Type+ → Type, and

Unit : Type
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Cl ≤C Kd

Cl ≤K Kd

Kd1 ≤K Kd2 Kd3 ≤K Kd4

Kd
(+/−/.)
2 → Kd3 ≤K Kd

(+/−/.)
1 → Kd4

.

Kd ≤K Kd i, i = 1, 2

Kd ≤K Kd1 ∩ Kd2

t1 ≤ t2
{a • a ≤ t1} ≤K {a • a ≤ t2}

Kd
(+/−)
1 → Kd2 ≤K Kd1 → Kd2

Kd ≤K Kd

Kd1 ≤K Kd2 Kd2 ≤K Kd3

Kd1 ≤K Kd3
.

Figure 3.19: Subkinding rules

for products, partial and total function spaces, and the singleton type, respectively (with, in fact,
an n-ary product type constructor × . . .× , covariant in all arguments, for each n).

A signature induces a set P of pseudotypes , where a pseudotype, formed in a type context Θ
of type variables , is either a type variable, a type constructor, an application, or an abstraction.
The type context consists of distinct type variables with assigned extended kinds , denoted (a1 :
Kd1, . . . , an : Kdn) or, briefly, (ā : Kd). Here, an extended kind is a kind, possibly annotated
with a variance (+/−) (called its outer variance), as used in argument kinds of constructor kinds
Kd1 → Kd2.

More precisely, pseudotypes are formed and kinded according to the rules shown in Figure 3.20.
A judgement of the form Θ � t : Kd is to be read ‘t is a type constructor of kind Kd in context
Θ which depends on the variables in Θ with the indicated variance’. The contexts Θ−1 and Θ0

denote Θ with all outer variances reversed or removed, respectively. In the kinding rule for type
abstraction, the variance of the abstracted variable in the premise must, of course, be identical to
the variance of the argument kind in the conclusion. A pseudotype of kind Type is called a type .
The (unique) raw kind of a pseudotype can be calculated by the essentially the same set of rules,
with the following modifications:

• type constructors are introduced with their raw kind instead of with one of their profiles

• type contexts contain only variables of raw kinds

• exact fits are required where the kinding rules have subkinding constraints, i.e. ≤K is replaced
by = throughout.

Note that the raw kind of a type constructor or pseudotype t need not be a derivable kind for t!
The corresponding raw kinding judgements are written Θ �raw t : Kd .

It is easy to show that the kinds derivable for a pseudotype are upwards closed w.r.t the subkind
relation (which is why we can require exact fits in the application rules). The raw kinds of kinds
derivable for a pseudotype t are bounded below by the raw kind of t. Moreover, kinding is invariant
under substitution and hence under β-equality (but not under η-equality, which is therefore not
imposed on type constructors).

The subtype relation ≤ between type constructors and pseudotypes is extended to two preorders
≤ and ≤∗ on pseudotypes. The intuition behind this distinction is that certain subtypes will be
mapped injectively into a supertype (recall that this is assumed for all subtypes in first order Casl),

90



t : Kd1 in Σ
Kd1 ≤K Kd2

Θ � t : Kd2

a : Kd
(+/.)
1 in Θ

Kd1 ≤K Kd2

Θ � a : Kd2

Θ � t : Kd1

Θ � t : Kd2

Θ � t : Kd1 ∩ Kd2

Θ � t : Kd1

Θ � s : Kd1 → Kd2

Θ0
� s t : Kd2

Θ � t : Kd1

Θ � s : Kd+
1 → Kd2

Θ � s t : Kd2

Θ−1
� t : Kd1

Θ � s : Kd−
1 → Kd2

Θ � s t : Kd2

Θ, a : Kd
(+/−/.)
1 � t : Kd2

Kd3 ≤K Kd1

Θ � λ a : Kd1 • t : Kd
(+/−/.)
3 → Kd2

Figure 3.20: Kinding rules for type constructors

while others may have non-injective coercion functions (e.g., function restriction). The former type
of subtype relation is denoted by ≤, the latter by ≤∗. In Figure 3.21, this difference shows up in
the rule for application of contravariant type constructors, which applies only to the relation ≤∗.

The subtyping relation implicitly contains

→ ≤ →? ,

i.e. total functions can be regarded as partial when required. From this extended relation, the
preorders on the set of pseudotypes are defined by the rules in Figure 3.21. Like kinding judge-
ments, subtyping judgements are parameterized by a type context; however, for subtyping, the outer
variances of type variables are irrelevant.

Type synonyms are intended as shorthands for pseudotypes; they are not meant as a means
of constructing recursive types. More formally, expansion of type synonyms is required to be non-
recursive, i.e. the relation ‘the expansion of a contains b’ on synonyms must be well-founded. A
named pseudotype (as opposed to an anonymous pseudotype) is a pseudotype that can be con-
structed from type constructors, type synonyms, and its type context using only application (not
λ-abstraction). Of course, any pseudotype can be made into a named pseudotype by just introducing
suitable synonyms.

HasCasl features ML-polymorphism , i.e. constants of types that contain type variables, im-
plicitly or explicitly universally quantified on the outermost level. Thus, the types are complemented
by type schemes : A type scheme consists of a type context Θ and a named type t in that context
(the variables of the type scheme will stem either from an explicit quantification or from a global
or local variable declaration), together with a coherence flag stating whether or not instances are
required to be coherent w.r.t. subtyping (typically, recursively defined polymorphic functions will be
coherent, while predicates and functions used only for specification purposes may fail to be so); see
also Sect. 3.4.4. Such a type scheme is written ∀Θ • t, with the coherence flag left implicit. Types
will be regarded as type schemes with empty type context.

The constant symbols are given, like symbols in first order Casl, by their names with
associated profiles , the difference being that a profile is now represented by a single type scheme.
A constant symbol with name f and profile t is written f : t. An operator is called monomorphic
if t is a type, otherwise polymorphic. The set O of constants contains the following distinguished
constants :

• the unique inhabitant of the unit type, () : Unit;
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s ≤ t in Σ

Θ � s ≤ t

Θ � s ≤ t

Θ � s ≤∗ t

Θ �raw t : Kd+
1 → Kd2

Θ � s1 ≤ s2

Θ � t s1 ≤ t s2

Θ �raw t : Kd+
1 → Kd2

Θ � s1 ≤∗ s2

Θ � t s1 ≤∗ t s2

Θ �raw t : Kd−
1 → Kd2

Θ � s2 ≤∗ s1

Θ � t s1 ≤∗ t s2

Θ � t1 ≤ t2
Θ � t1 s ≤ t2 s

Θ � t1 ≤∗ t2
Θ � t1 s ≤∗ t2 s

Θ, a : Kd1 � t ≤ s
Kd1 ≤K Kd2

λ a : Kd2 • t ≤ λ a : Kd1 • s

Θ, a : Kd1 � t ≤∗ s
Kd1 ≤K Kd2

λ a : Kd2 • t ≤∗ λ a : Kd1 • s

Figure 3.21: Subtyping rules for pseudotypes

• for each partial or total function type s → t or s → t an implicit application operator of
profile ((s → t) × s) → t or ((s → t) × s) → t, respectively;

• for each pair s ≤ t of types, a downcast operator as s : t→?s

Note that constant symbols may be overloaded , i.e. different profiles can be associated to the
same name. To ensure that there is no ambiguity in sentences at this level, constant symbols f are
always qualified by their profile t when used, written ft. (The language considered in [SMM] allows
the omission of such qualifications when these are unambiguously determined by the context.) In
fact, we require signatures to be embedding-closed (see also [SMT+01b]), i.e. the profiles associated
to a given name must be upwards closed under ≤∗.

6 (Of course, embedding-closure is provided
implicitly, so that the user is not actually required to specify all these profiles). This also makes
sense of the profile of the upcast operator: : s implicitly has profiles u → t for all u, t with
u ≤ s ≤ t.

A signature morphism

σ : (C1,≤C , T1, A1, O1,≤) → (C2,≤C , T2, A2, O2,≤)

consists of mappings from C1 to C2, from T1 to T2 +A2, from A1 to A2, and from O1 to O2. These
maps are required to preserve

• raw kinds of classes and type constructors

• the subclass relation in the sense that Cl ≤C Kd implies Cl ≤K Kd .

• kinding judgements for type constructors in the sense that assigned kinds are mapped to
derivable kinding judgements,

• expansions of type synonyms,

• profiles of constant symbols,

6This requirement makes it superfluous to define overloading relations as in Casl.
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• all distinguished constants, and

• the subtyping relation ≤, again in the sense that subtyping judgements must be derivable in
the target signature.

Moreover, distinguished constants must also be reflected (this in order to avoid ambiguities in the
notation of signature morphisms). (This means that we could have omitted them for purposes
of describing the signature category; they are included in the set of constants mainly in order to
simplify the presentation of the typing and deduction rules.)

Remark 3.43 Note that the above definition explicitly allows type constructors to be mapped
to type synonyms; this allows instantiating type constructors with pseudotypes, albeit at the cost
of having to define an synonym first. A consequence is that the signature category fails to be
cocomplete (while its non-full subcategory consisting of the signature morphisms that map type
constructors to type constructors is cocomplete, being essentially the category of models of a Horn
theory). However, the pushouts required for instantiating parameterized specifications do exist,
which is all that is needed for HasCasl structured specifications.

As explained in Sect. 2.15, polymorphism can be achieved via derived signature morphisms. We
hence generalize signature morphisms appropriately: A HasCasl derived signature morphism maps

• operator constants to terms;

• type constructors to λ-expressions which denote composite type constructors possibly contain-
ing subtype formation; and

• classes to subsets of the syntactic type universe.

A signature variable in this institution is an injective plain HasCasl signature morphism (which
maps types to types, operators to operators etc. as usual) which is bijective on all syntactic enti-
ties except types. (This illustrates the necessity of the restricted cocompleteness requirement for
institutions with signature variables: pushouts of derived signature morphisms in general fail to
exist, while pushouts of derived signature morphisms along signature variables do exist; this phe-
nomenon is typical of derived signature morphisms in general.) Then, polymorphic formulae and
their satisfaction as defined above coincide with the corresponding notions in HasCasl as explained
in Sect. 3.4. E.g., if σ : Σ1 ↪→ Σ2 extends Σ1 by a single new type constant a, then the polymorphic
formula ∀σ. φ is equivalent to the polymorphic HasCasl sentence ∀a : Type . φ: the left inverses τ
of σ correspond to the possible instantiations of the type variable a in Σ1. Note that the interpre-
tation of instances of polymorphic operators involving a is forced by the interpretation of a, since,
as emphasized above, signature morphisms map polymorphic operators as single entities.

Thanks to the richness of HasCasl specifications, model-expansive extensions of theories (cf.
Sect. 2.15.5) are indeed the expected ones under this definition; this includes

• equational definitions

• well-founded recursive definitions of functions into types that admit a unique description op-
erator [Sch]

• general recursive definitions over cpo’s

• inductive datatype definitions, provided that the base theory already contains the natural
numbers (this is a categorical result inherited from topos theory [MP00])

• class declarations.

If we move to the category of theories and then understand equality of such signature morphisms
to hold only up to provable equivalence of terms, then even all pushouts of derived signature mor-
phisms exist. This will be needed in Sect. 3.4.10 below. A more precise background is given in
[Sch].
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3.4.4 Models

The model semantics of HasCasl is split into two levels. The first level yields an institution
only for the fragment of HasCasl without polymorphism, while in the general case one obtains
an rps preinstitution [SS93], i.e. the satisfaction condition holds only in the direction leading from
the extended to the reduced model. This is remedied at the second level by means of a general
mechanism for transforming rps preinstitutions into institutions, which we define but do not discuss
in detail here; a fuller presentation is given in [SM04].

At the first level , the models of a signature Σ are defined by a translation of Σ into a partial
λ-theory with products Th(Σ) to be defined in Sect. 3.4.5 — i.e. the models of Σ are defined to
be the syntactic λ-algebras for Th(Σ), correspondingly for model morphisms. In the interest of
compatibility with first-order Casl, the carrier sets of all types are additionally required to be
non-empty. Note that every Casl model of a signature Σ can be extended to a HasCasl model
of Σ regarded as a HasCasl signature. However, this extension will in general not be unique; in
particular, there is always a free extension, where function types are in a sense minimal, and a
standard extension with function types interpreted maximally, i.e. by full function sets.

At the second level , models of a signature Σ are pairs (N, σ), where σ is a derived signature
morphism (see Sect. 3.4.3) Σ → Σ2 into a further signature Σ2, and N is a model of Σ2 at the
first level. Here, derived signature morphisms generalize signature morphisms in that they may map
type constructors to pseudotypes, including types formed by subtype comprehension, and constant
symbols to terms. Subtype comprehension , in turn, refers to the formation of types of the form
{x : t | φ}, where t is a type and φ is a formula. The reduct of (N, σ) along a signature morphism τ
into Σ is (N, σ◦τ). This construction, together with the definition of satisfaction given in Sect. 3.4.7,
ensures that the satisfaction condition holds.

3.4.5 Translation of HasCasl signatures into partial λ-theories

An instance of a kind is essentially a closed named pseudotype of that kind, taken modulo β-
equality; in addition to the usual type forming operators, an instance may however include the use
of subtype formation by definedness assertions for terms. The sorts of Th(Σ) are the loose types of
Σ, where a loose type is an application of a type constructor other than the built-in type constructors
×, →, →, and Unit, to an instance of its argument kind. This gives rise to a recursively defined
translation of kind instances in Σ to types in Th(Σ) (and conversely), since in β-normal types,
λ-abstractions can only occur nested inside loose types. We leave this translation implicit in the
notation.

The operators of Th(Σ) are defined to be

• for each operator f with profile ∀ā : Kd • t a family of total constants (cf. Remark 3.36)
fs̄ : t[s̄/ā], indexed over all instances s̄ : Kd ;

• for each pair (s, t) of types in Th(Σ) such that s ≤∗ t holds for the corresponding types in Σ,
an embedding operator

ems,t : s ⇀ t.

Finally, Th(Σ) has the following axioms (all expressible as ECEs):

• coherence of subtyping essentially as in Casl;

• overloading axioms stating for each pair (s, t) of types in Th(Σ) and each constant c : s
that

ems,t(c : s) = c : t

(where the profile c : t is in Σ by embedding closure).

• injectivity of subtype embeddings ems,t for s ≤ t (not, more generally, for s ≤∗ t), expressed
by their mutual inverse property with the corresponding downcast operators (also as in Casl);
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• coherence of correspondingly flagged polymorphic operators w.r.t. subtyping: if f : ∀ā : Kd • t
is a coherent polymorphic operator, and s̄ and ū are instances of Kd such that t[s̄/ā] ≤∗ t[ū/ā],
then

fū = emt[s̄/ā],t[ū/ā](fs̄).

A signature morphism σ : Σ1 → Σ2 induces a morphism Th(σ) : Th(Σ1) → Th(Σ2) of simple
signatures with products. The reduct functor for σ is defined to be that of Th(σ).

3.4.6 Sentences

Sentences for a signature Σ are just atomic formulae, understood to be universally quantified:

• fully-qualified terms of sort Unit, regarded as predicates qua implicit definedness assertions

• definedness assertions def for fully-qualified terms

• existential and strong equations
e
= and = , respectively, between fully-qualified terms

of the same sort.

Here, a fully-qualified term (or, when no confusion is likely, just a term) is a term in Th(Σ)
(with the context determined by enclosing quantifications). A fully-qualified term in type context
Θ (arising from enclosing universal quantifications over type variables) is a fully-qualified term in
Σ+Θ, where Σ+Θ is obtained by extending Σ with the variables in Θ, regarded as type constructors
of the appropriate kinds (with raw kinds determined by their unique kinds).

As syntactical sugar over these sentences, one has the following additional features:

• for each pair (s, t) of types in Th(Σ), an elementhood operator ∈ s : t → Unit abbreviating
λx : t • def x as s;

• a total λ-abstraction λ x̄ : s̄ • !α which abbreviates a downcast of the partial λ-abstraction to
the type of total functions;

• syntactical support for emulation of non-strict functions by the procedural lifting method :
let ?t abbreviate the type Unit →?t. We admit terms formed using two additional typing rules:
a function that expects an argument of type t (possibly as part of a product type) may be
applied to a term α of type ?t, which is then implicitly replaced by α(); conversely, a func-
tion that expects an argument of type ?t accepts arguments β of type t, which are implicitly
replaced by λx : Unit • β (where x is a fresh variable).

• let-terms : for a term α : t in type context Θ = (ā : Kd), a variable x, and a term β in
operator context x : ∀Θ • t, one has a term

let ∀Θ • x = α in β;

here, a term in operator context x : ∀Θ • t is a term in the signature obtained from Σ by
adding a constant x : ∀Θ • t. Such a let-term abbreviates β with all occurrences xs̄ of x
substituted by α[s̄/ā]. Repeated bindings let ∀Θ1 • x1 = α1 in let ∀Θ2 • x2 = α2 in . . . are
abbreviated as let ∀Θ1 • x1 = α1; ∀Θ2 • x2 = α2 in . . ..

• recursive datatypes are syntactical sugar for the usual no-junk-no-confusion axioms; details
are laid out in [SMM].
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3.4.7 Satisfaction

At the first level of the model semantics (cf. Sect. 3.4.4), the satisfaction of a sentence in a model
M is determined as usual by the holding of its atomic formulae w.r.t. assignments of (defined) values
to all the variables that occur in them, the values assigned to variables of sort s being in sM . The
value of a term w.r.t. a variable assignment may be undefined, due to the application of a partial
function during the evaluation of the term. Note, however, that the satisfaction of sentences is 2-
valued (as is the holding of open formulae with respect to variable assignments). The satisfaction of
a universal quantification over type variables is defined as satisfaction of all instances of that formula
(this is possible because quantifications over type variables are allowed only at the outermost level).

A term of type Unit holds as an atomic formula if it is defined in M . A definedness assertion
concerning a term holds iff the value of the term is defined (thus it corresponds to the application
of an operator a ⇀ Unit to the term). An existential equation holds iff the values of both terms
are defined and identical, whereas a strong equation holds also when the values of both terms are
undefined.

Since the type context has been ‘substituted away’, every term α occurring in the expanded
formulae is a term in Th(Σ). The value of α is determined as follows: the given variable assignment
for the context Γ is an element x of [[Γ]] (cf. Definition 3.40); the value of α is defined to be [[Γ. α]](x).

At the second level of the semantics, a model (N, σ) of Σ satisfies a sentence φ iff N satisfies the
translated sentence σφ at the first level.

3.4.8 The Internal Logic

The basic logic of HasCasl is quite limited: there are no logical connectives and only outer universal
quantification. One can, however, emulate conjunction, the constant true proposition, and universal
quantification, the latter via the elementhood predicate for total function types as subtypes of partial
function types. However, we can strengthen the logic by means of an internal equality . Let Pred a
abbreviate the type a→?Unit, and call the inhabitants of (Pred a) predicates . A predicate

eq : ∀a • Pred (a× a)

in a partial λ-theory (with products) is called an internal equality (see also [Mog86]) if eq(x, y) is

equivalent to x
e
= y in the deduction system of Figure 3.18 (due to intensionality, this is a stronger

property than equivalence of the two formulae for each pair (x, y) of elements of a in a model).
In fact, internal equality can be specified in HasCasl. The introduction of internal equality is

highly non-conservative, since it makes the logic available within λ-abstracted predicates substan-
tially richer: one can define all quantifiers and logical operators of intuitionistic higher order logic
similarly as in [LS86]. The specification of internal equality and the new connectives is given in Fig-
ure 3.22. The specification uses the type of truth values Logical = Pred Unit. Moreover, it liberally
applies the support for non-strict functions to pass back and forth between predicate applications,
i.e. partial terms of type Unit, and terms of type Logical.

In order to improve readability, the equality symbol
e
= can, after all, be used within λ-terms,

but is, then, implicitly replaced by eq. It may come as a surprise that the last formula shown in
Figure 3.22 as a consequence of the definitions expresses a form of extensionality; however, it is
well-known that all categorical models are ‘internally extensional’ [MS89].

The internal logic is intuitionistic: there may be more than two truth values, and neg(neg A)
is in general different from A. The obvious deduction rules can be proved as lemmas; e.g., it is not
hard to show that the rule

φ impl ψ; φ

ψ

is derivable from the rules in Figure 3.18 and the definitions in Figure 3.22.
The internal logic is used in specifications by implicitly importing its specification; the usual

logical connectives and quantifiers are construed as operations of this specification.
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spec InternalLogic =
var a : Type
funs tt : Logical = λ x : Unit • ()

all : Pred(Pred a) = λ p : Pred a • p ∈ (a → Unit)
& : Pred(Logical × Logical) = λ x , y : Logical • def(x (), y())

then
fun eq : Pred(a × a)
• all(λ x : a • eq(x , x ))
• λ x , y : a • fst(x , eq(x , y)) = λ x , y : a • fst(y , eq(x , y))
then %def

funs impl , or : Pred(Logical × Logical)
ff : Logical
neg : Pred Logical
ex : Pred(Pred a)

• impl = λ x , y : Logical • eq [Logical ](x , x & y)
• or = λ x , y : Logical • all(λ r : Logical •

((x impl r) & (y impl r)) impl r)
• ff = λ y : Unit • all(λ x : Logical • x )
• neg = λ x : Logical • x impl ff
• ex [a] = λ p : Pred a • all(λ r : Logical •

all(λ x : a • p(x ) impl r)) impl r
then %implies

var a, b : Type
• all(λ f , g : a →? b • all(λ x : a • eq [?b](f (x ), g(x ))) impl eq(f , g))

Figure 3.22: Specification of the internal logic
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3.4.9 Proof Calculus

The proof calculus for the partial λ-calculus is given in Fig. 3.18. By the translation of HasCasl
to the partial λ-calculus given in Sect. 3.4.5, it applies to HasCasl as well.

3.4.10 Amalgamation in HasCasl

The HasCasl signature category fails to be cocomplete; this is due to the possibility to map type
constructors to type aliases; two such mappings may be contradictory and hence in general cannot
be unified in a pushout signature. However, it not hard to show:

Proposition 3.44 The subcategory of HasCasl signatures and signature morphisms not involv-
ing type aliases is cocomplete.

HasCasl fails to be semi-exact:

Example 3.45 Let Σ1 consist of a nullary type constructor s, and Σ2 consist of a nullary type
constructor t.

∅ Σ2

Σ1 Σ′

Then Σ′ exhibits the type s→ t; however, due to Henkin semantics, its interpretation is not uniquely
determined by the interpretations of s and t.

Example 3.46 Let Σ1 consist of a nullary type constructor s, and Σ2 consist of a unary type
constructor t.

∅ Σ2

Σ1 Σ′

Then Σ′ exhibits the type t(s); however, its interpretation is not constrained at all.

Luckily, we still have the following:

Proposition 3.47 First-level HasCasl admits finite weak amalgamation.

Proof: Clearly, the initial (=empty) signature has a model. Since finite colimits can be obtained
via pushouts and initial objects, it remains to show semi-exactness.

Let a pushout

Σ Σ1

Σ2 〈Σ′,Ψ〉

of HasCasl derived signature morphisms be given, and translate this diagram into the category of
partial λ-theories:

Th Th1

Th2 Th′
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This diagram need not be a pushout, but by the universal property of the pushout

Th Th1

Th2 Thho

there is a morphism k:Thho−→Th′ of partial λ-theories.
By the results of [Sch], HasCasl Henkin models (here: M1 and M2) are equivalently described

as first-order functors from classifying categories of theories into Set. Since Hom-functors preserve
limits, we have an amalgamated model Mfo for the pushout Thfo of first-order finitary partial
theories. Now by the pushout property, the is a morphism h of the pushout of first-order finitary
partial theories into the pushout Thho of higher-order partial λ-theories. Since the latter also is a
first-order finitary partial theory, and these admit free extensions along theory morphisms, Mfo has
a free extension M ′ along k ◦ h, and this is a suitable amalgamation of M1 and M2.

Th Th1

M1Th2

M2

Thfo

h

Mfo

Thho

k

Th′

M ′

Set

2

Unfortunately, this result does not carry over to second-level (i.e. polymorphic) HasCasl; here,
even weak semi-exactness fails, because two extended models need to carry identical ordinary models
in order to be amalgamable. Thus, the satisfactory institutional treatment of polymorphism under
the requirement of weak semi-exactness remains an open research problem.

3.4.11 HasCasl Language Constructs

A HasCasl specification is essentially a convenient way to determine the signature and axioms of
a partial λ-theory. The only actual additional language feature is that HasCasl has shallow type
class polymorphism, which however is semantically coded out by collections of instances (w.r.t. the
generic framework of Casl structured and architectural specifications, this has the effect that one
obtains a so-called rps pre-institution rather than an institution; however, this is not relevant for
the results presented here).

HasCasl signatures are written as follows. Basic types are introduced by means of the keyword
type. Types may be parameterized by type arguments; e.g., we may write

var a : Type
type List a

and obtain a unary type constructor List. There are built-in type constructors (with fixed inter-
pretations) ∗ for product types, − >? and − > for partial and total function types,
respectively, Pred for predicate types, and a unit type Unit. A type is, then, anything that can be
formed from the basic types and the existing type constructors.

Next, an operator is a constant f of some type t. The type t may contain type variables, making
f an ML-style polymorphic operator. An operator is declared by
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op f : t
From the given operators, we may form higher order terms in the usual way: a term is either a
variable, an application, a tuple, or a (multi-argument) λ-abstraction. Such terms may then be
used in axioms which may be formulated in the internal logic described in the preceding sections.
Axioms may be explicitly or implicitly universally quantified over type variables at the outermost
level.

Classes are declared in the form

class C

and are to be understood as subsets of the syntactical universe of all types. Types as well as type
variables can be restricted to belong to an assigned class, e.g. by writing

type t : C

In particular, axioms and operators may be polymorphic over classes. Classes may be subclasses of
each other, and they may have generic instances. By attaching polymorphic operators and axioms
to a class, one achieves a similar effect as with Haskell’s type classes.

More generally, one also has constructor classes, i.e. classes of polymorphic types such as List .
They are interpreted as predicates on the syntactical universe of abstracted type expressions (also
called pseudotypes), e.g.

λ a : Type • a→? List a

Constructor classes may have subclasses; types, operators, and axioms may be polymorphic over
constructor classes. A typical example of a constructor class is the class of monads.

The semantics of a HasCasl specification is then given by a translation into a partial λ-theory,
where polymorphism of types, operators, and axioms is coded out by means of collections of in-
stances; for definiteness, the chosen notion of model is that of intensional Henkin model — however,
we will more often think of models as living in suitable pccc’s.

By means of the internal logic, one can specify a class of complete partial orders and fixed point
recursion in much the same style as in HOLCF [Reg95]. On top of this, syntactical sugar is provided
that allows recursive function definitions in the style used in functional programming, indicated by
the keyword program.

Moreover, HasCasl provides syntactic sugar for monads much in the same way Haskell does.
Monads have been recognized by Moggi as an elegant device for dealing with stateful computation
in functional programming languages. In addition to the Haskell “do”-notation, HasCasl provides
a Hoare calculus for partial and total correctness of monadic programs and a dynamic logic. All
this has been done in an entirely monad-independent way, on top of the HasCasl institution.

In summary, HasCasl is a language that allows both property-oriented specification and func-
tional programming; executable HasCasl specifications may easily be translated into Haskell pro-
grams. As to the generality of the results obtained, one should keep in mind that HasCasl is just
syntactical sugar for a standard intuitionistic higher order logic of partial functions (the internal
logic of pccc’s with equality).

3.4.12 Functional Programs: Haskell

The development of an institution for Haskell is subject of current research. Basically, Haskell
signatures will be similar to HasCasl signatures, with additional constructs for declaring algebraic
datatypes. The semantics of non-polymorphic Haskell will be given by a translation into the meta-
language FPC, based on previous work by David Aspinall [Asp97]. However, we will probably
refrain from adding a second level type system for specification purposes to Haskell, as Aspinall has
done in his framework. Instead, we will try to institutionalize the P-logic [Kie03], a logic that has
been built on top of Haskell and is the main logic of the Programatica project [Hal03], and that
already has been (via a cooperation with Programatica) integrated into the Heterogeneous Tool Set.
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3.5 Csp-Casl

Csp-Casl [Rog] is a combination of the process algebra Csp with Casl. The alphabet of Csp
actions is obtained by the carrier sets of Casl models. The interest in formalizing Csp-Casl as
an institution is that the semantics of Casl structured and architectural specifications carries over
to Csp-Casl. It has been doubted if the latter have a meaning at all for Csp-Casl. However, it
seems to be interesting that arbitrary Csp-Casl specifications can be used as formal parameters of
specifications. On the CSP side, this leads to the possibility to use formal process names that are
instantiated later on with actual processes. Moreover, while Csp has a program-like fixed one-model
semantics for a given specification, Csp-Casl offers the possibility to mix this with loose semantics.

For simplicity, we equip Csp with an operational semantics based on labelled transition systems.
Note that the other semantics used for Csp, like trace semantics, failure/divergence semantics and
stable failures semantics can be derived from the operational one. Indeed, the main reason to have
these different semantics are different notions of refinement. But then, one can equally well use
just one semantics (labelled transition systems), plus a set of notions of refinement between LTS to
capture these various semantics.

The definition of an institution for Csp-Casl is still ongoing work. Here, we only can provide a
snapshot. The formal definition is based on an institution comorphism (Φ, α, β):PFOL=−→FOL=

that codes out partiality by adding a bottom value to carriers, very similar to our comorphism (4a)
in Sect. 4.1.1 below. The details are described in [Rog].

Signatures Csp-Casl-Signatures (Σ, N) consist of a Casl signature Σ enjoying the local top sort
property (i.e. any two sorts with a common lower bound have a common upper bound),
together with a set N of process names.

Signature morphisms Csp-Casl-Signature morphisms (σ, f): (Σ1, N1)−→ (Σ2, N2) consist of a
data-logic signature morphism σ: Σ1 −→ Σ2 in the sense of [Rog], i.e. σ is Casl signature
morphisms that reflects and does not extend the subsort relation, together with a function
f :N1−→N2.

Models A (Σ, N)-model (M,T ) consists of a Casl Σ-model M and a function T from N into the
set of labelled transition systems over the alphabet A(β(M)) ] {τ, τ̇}. Recall from [Rog] that
β(M)7 extends the carriers by an additional element ⊥ and that A(M) = (

⊎

s∈S Ms)/∼, where
∼ is an equivalence identifying non-⊥ elements that are equal when injected into common
supersorts, as well as ⊥-elements of sorts having a common supersort.

There are several notions of model for Csp-Casl. We here choose the most informative one,
based on labeled transition systems (LTS) [Ros97]. Thus, models are Casl-models, possibly
equipped with an LTS being labeled in the disjoint union of all carriers. On the Casl-part,
reducts are as in Casl. If a model is not equipped with an LTS, neither is its reduct. If
a model is equipped with an LTS, and the LTS is labeled only with labels from carriers of
the Casl-reduct, it is quite straightforward to construe the LTS as an LTS for the Casl-
reduct (injectivity of signature morphisms on sorts ensures that carrier sets are not doubled).
Otherwise, the LTS is deleted.

Sentences are either Casl sentences, or CSP process terms [Hoa85, Ros97] involving Casl-
terms in place of alphabet letters. Sentence translation is straightforward.

Satisfaction for Casl sentences is as in Casl. A CSP process term P is evaluated using the
Casl-part a model M , leading to an LTS L with labels in the disjoint union of all carriers.
Now M satisfies P iff M is equipped with L. Details can be found in [Rog].

Model homomorphisms A (Σ, N)-model homomorphism h: (M1, T1)−→(M2, T2) is a Σ-homomorphism
h:M1−→M2 in Casl such that h(T1(n)) = T2(n) for each n ∈ N (where h extends to labelled
transition systems in a component wise manner).

7β is also called ext in [Rog].
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Model reducts The way of defining model reducts is crucial for obtaining the satisfaction condi-
tion. The central problem is what to do with labels that are lost, because the carrier set they
stem from is forgotten while taking the reduct. The idea is to replace any alphabet letter that
is not available in the reduct with an invisible action τ̇ that does not occur in the Csp semantics
itself. Formally, given a signature morphism (σ, f): (Σ1, N1) −→ (Σ2, N2), a (Σ2, N2)-model
(M2, T2) is reduced along (σ, f) to the (Σ1, N1)-model (M1, T1) = (M2, T2)|(σ,f) given by
M1 = M2|σ and T1 = σ̂ ◦T2◦f . Here, σ̂ maps an LTS for M2 into an LTS for M1 by extending
the corresponding map between the alphabets, which by abuse of notation we also denote by
σ̂. σ̂:A(β(M2)) ] τ̇−→A(β(M1)) ] τ̇ is defined by

σ̂(τ̇ ) = τ̇

σ̂([(s, a)]) =

{

[(s′, a)], if σ(s′) = s
τ̇ , if s is not in the image of σ

Well-definedness, i.e. independence on the choice of s, a and s′, can be shown as follows.
Let (s1, a1) ∼ (s2, a2), σ(s′1) = s1 and σ(s′2) = s2. We need to show (s′1, a1) ∼ (s′2, a2). If
(s1, a1) ∼ (s2, a2) because a1 = a2 = ⊥ and s1 and s2 have a common supersort, then by
non-extension of σ, s′1 and s′2 have a common supersort as well, and we are done. Otherwise,
a1 6= ⊥ 6= a2, s1 and s2 have a common supersort, and a1 and a2 are equalized by injections
into common supersorts of s1 and s2. By non-extension of σ, this carries over to s′1 and s′2.

Homomorphism reducts are inherited from Casl.

Sentences A (Σ, N)-sentence is either a Casl Σ-sentence or a system of equations (ni = Pi)i=1,...,n,
where for each i = 1, . . . , n, ni ∈ N and Pi is a CSP-process term over Σ involving process
names from N , where Σ-terms are used as communications, Σ-sorts denote sets of communi-
cations, relational renaming is described by a binary Σ-predicate and Σ-formulae occur in the
conditional (cf. Section 2.3 of [Rog]).

Sentence translation Translation of Casl sentences is as in Casl. An equation system (ni =
Pi)i=1,...,n is translated via (σ, f) to (f(ni) = (σ, f)(Pi))i=1,...,n, where (σ, f)(P ) is obtained
by renaming the components of P according to σ and process names according to f .

Satisfaction A model (M,T ) satisfies a Casl sentence ϕ iff M |= ϕ in the Casl institution. It sat-
isfies a sentence (ni = Pi)i=1,...,n iff T (n) = [[[[P ]]∅:∅−→β(M),T ]]CSP , and with [[[[P ]]∅:∅−→β(M),T ]]CSP

being the LTS semantics of CSP, while process names from N interpreted via T (hence the
additional dependence on T ). This is similar to the trace semantics [[[[P ]]∅:∅−→β(M)]]CSP in [Rog],
but needs to be adapted to the LTS semantics [Ros97].

The satisfaction condition for Casl sentences follows from that of the Casl institution. The
satisfaction condition for sentences of form n = P , based on [Rog] is seen as follows: Given a
signature morphism (σ, f): (Σ1, N1)−→(Σ2, N2) and a (Σ2, N2)-model (M2, T2),

(M2, T2) |= (σ, f)(n = P )
iff (M2, T2) |= f(n) = (σ, f)(P )
iff T2(f(n)) = [[[[(σ, f)(P )]]∅:∅−→β(M2),T2

]]CSP

iff σ̂(T2(f(n))) = σ̂([[[[(σ, f)(P )]]∅:∅−→β(M2),T2
]]CSP ) (Lemma 3.49)

iff σ̂(T2(f(n))) = [[[[P ]]∅:∅−→β(M2|σ),σ̂◦T2◦f ]]CSP (Lemma 3.48)
iff (M2|σ , σ̂ ◦ T2 ◦ f) |= n = P
iff (M2, T2)|(σ,f) |= n = P.

Again, this needs to be adapted to the LTS semantics.

Lemma 3.48 σ̂([[[[(σ, f)(P )]]∅:∅−→β(M2),T2
]]CSP ) = [[[[P ]]∅:∅−→β(M2|σ),σ̂◦T2◦f ]]CSP

Proof: Straightforward induction over the structure of P . 2
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Lemma 3.49 If σ̂(T ) = σ̂([[[[(σ, f)(P )]]∅:∅−→β(M2),T2
]]CSP ),

then T = [[[[(σ, f)(P )]]∅:∅−→β(M2),T2
]]CSP ,

Proof: Since σ̂ is extended pointwise to trace sets, it suffices to consider its action on
alphabet letters. Since [[[[(σ, f)(P )]]∅:∅−→β(M2)]]CSP only involves sorts in the image of σ, we never
enter the case that σ̂ yields τ̇ . Hence, it suffices to show that σ̂([(a1, s1)]) = σ̂([(a2, s2)]) 6= τ̇
implies [(a1, s1)] = [(a2, s2)]. Assume σ̂([(a1, s1)]) = σ̂([(a2, s2)]) 6= τ̇ , i.e. [(a1, s

′
1)] = [(a2, s

′
2)]

for some s′1, s
′
2 with σ(s′1) = s1 and σ(s′2) = s2. The rest of the argument is analogous to that

showing well-definedness of σ̂ in the definition of reducts above (note that here we do not even
need non-extension of σ, but only the trivial fact that σ preserves common supersorts). 2

3.6 Bibliographical Notes

3.6.1 Casl

“Casl, the Common Algebraic Specification Language, has been designed by an open collaborative
initiative called the The Common Framework Initiative, CoFI.8 The rationale behind this initiative
was that the lack of a common framework for algebraic specification and development of software
was a major hindrance for the dissemination and application of algebraic specification techniques.
In particular, there was a proliferation of specification languages – some differing in only quite minor
ways from each other. The major languages include Act One/Act Two [CEW93], ASF [BHK89],
ASL [Wir86], Clear [BG80], Extended ML [KST97], Larch [GH93], Obj3 [GWM+92], Pluss [BGM89],
and Spectrum [BFG+93]. This abundance of languages was an obstacle for the adoption of alge-
braic methods for use in industrial contexts, making it difficult to exploit standard examples, case
studies and training material.” [BM04]

The outcome of this effort has been the design of the language Casl, and documented in a
survey paper [ABK+], the Casl user manual [BM04] and reference manual [CoF04].

The Casl institution has been designed by the CoFI language task group during various meet-
ings, based on numerous study notes and discussions. The subsorted institution has been reported
in [CHKBM97, Mos02]. Cocompleteness of the Casl signature category has been proved by the
author in [Mos98]. Failure of amalgamation for the Casl institution has been discovered by Maura
Cerioli and was first reported in [SMT01a].

3.6.2 ModalCasl

ModalCasl has been designed by the author, following the literature about multi-modal and
temporal logics [CH95, Sch04, Pop94, BRV01, AGM92]. The notation [∗] is due to [BRV01] (they
call it “master modality”). The way of combining multi-modal logic with first-order logic and CTL∗

seems to be new and is (even in its CTL-fragment) more expressive than first-order CTL as studied
e.g. in [BDG+98]. Note that we do not assume a special program syntax for the generation of Kripke
structures as e.g. in first-order dynamic logic [Har79] — which does not preclude the specification
of such programs. However, we also want to open to generation of Kripke structures by completely
different institutions, like CCS or CSP (see also Sect. 3.5).

We have chosen constant domains in ModalCasl. We do not allow for cumulative domains (the
latter are used e.g. in [Tha00]): firstly, we could not identify constant domains as a sublanguage
(e.g. the Barcan formulae etc. are too weak to characterize this), and secondly, constant domains
are more expressive (cumulative domains can be simulated using an existence predicate).

It would be nice to include non-normal modal logics as well, which requires replacing Kripke
semantics by e.g. neighbourhood semantics, but at present it is not entirely clear how this is best
integrated with the path formulas of CTL∗.

8CoFI is pronounced like ‘coffee’.
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Casl-Lt [RAC00] is a Casl extension that is also based on CTL∗. However, its syntax deviates
much from the usual CTL∗ syntax, and the Kripke transition relation is made explicit through a
ternary predicate. We leave transition relation implicit as standard in modal logic, but can make
it explicit, if needed, by translation to Casl (see Sect. 4.2). Moreover, since we work with natural
numbers as paths indices (in contrast the semantics of Casl-Lt, where paths are cut down), we
can include past temporal operators quite naturally. Although in principle, past operators are
not necessary, their omission may lead to an exponential blow up for the size of formulas [Sch04].
The Casl-Lt formulas first state(x, ϕ) and first label (x, ϕ) involving a binding structure can be
simulated in ModalCasl.

Craig interpolation for various logics, including modal logics, is discussed in the forthcoming
book [GM]. This book should also make clear how much simpler it is to rely on amalgamation
instead of interpolation properties, as we do in Chaps. 5 and 6.

3.6.3 CoCasl

The relatively young field of coalgebra has successfully dualized9 many notions and results of classical
universal algebra. This has been applied to the specification of reactive and object oriented systems.
See [JR97, Rut00, Jac02, Rei95, Kur01a] for an introduction and further references. CoCasl is
a combination of algebraic and coalgebraic specification. The presentation here follows largely
[MSRR], which provides more details and further examples.

A modal logic for coalgebra has been developed in the seminal paper [Mos99]. However, it
is not immediately suitable for use in a specification language due to the presence of infinitary
conjunction and the complex nature of its modal operator. The syntax chosen here is largely in the
spirit of [Jac00, Kur01b] in that modalities are indexed by observer terms. The syntax of [Jac01],
inherited from [Rößi00], differs in that it uses instead modal operators built along the structure of
the signature functor, plus a single modality for the coalgebra structure. For the functors covered
in [Jac01], this choice does not affect expressivity at the level of state formulae. (The syntax of
[Jac01] allows formulating modal statements also at the level of the functor ingredients such as
products and sums; however, the main interest is still in state formulae.) The syntax of the modal
operators in CCSL [RTJ01], in turn, deviates from the others in that state variables are kept explicit;
moreover, CCSL has an explicit bisimilarity relation (which can be emulated in CoCasl using
cogeneratedness constraints). Among the pre-existing modal logics for coalgebra, [Jac01] is unique
(along with CoCasl, of course) in admitting several non-observable sorts. Iterative modalities as
in CoCasl are otherwise found only in CCSL.

CoCasl is more expressive than other algebra-coalgebra combinations in the literature: [Ĉır02]
uses a simpler logic, CCSL [RTJ01] has fewer datatypes available, while hidden algebra such as
in BOBJ [Roş00] and reachable-observable algebra such as in COL [BHb] do not support cofree
types. If, for example, streams are not specified as the final (=cofree) model, then there are stream
models which do not contain all corecursively definable functions (like the flipping of streams), so
that corecursive definitions fail to be conservative.

By contrast, cofree cotypes in CoCasl support a style of specification separating the basic
process type (with its data sorts, observers and other operations) from further, derived operations
defined on top of this in a conservative way. Note that this is not a purely theoretical question:
programming languages such Charity [CF92] and Haskell [PJ03] support infinite data structures
that correspond to the infinite trees in the behaviour algebras, and one should be able to specify
that as many infinite trees as needed for all programs over some data structure expressible in these
languages are present in the models of a specification. The Haskell semantics for lazy data structures
(at least for the non-left-→-recursive case) indeed comprises all infinite trees, i.e. is captured exactly
by a behaviour algebra.

The institution of Constructor-based Observational Logic (COL) [BHb] combines reachability
induced by constructors with observational equality induced by observers. CoCasl does not di-
rectly support observational equality or bisimilarity, but full abstractness (‘bisimilarity is equality’)

9in the category-theoretic sense
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can be expressed via cogeneration constraints, as shown in the process algebra examples. In COL,
observability is a global notion and required to be preserved and reflected by signature morphisms.
CoCasl’s local notion of observability provides an extra degree of flexibility — in particular, it al-
lows instantiating observable sorts with non-observable ones. Unlike COL, CoCasl does not simul-
taneously support a glass-box and a black-box view on a specification. However, we plan to develop
a notion of behavioural refinement between CoCasl specifications. Then, the black-box/glass-box
view of [BHb] could be expressed in CoCasl as a refinement of a black-box specification into a
glass-box one, thus also providing a clear separation of concerns.

The Coalgebraic Class Specification Language CCSL [RTJ01], developed in close cooperation
with the LOOP project [vdBJ01], is based on the observation of [Rei95] that coalgebras can give a
semantics to classes of object-oriented languages. CCSL provides a notation for parameterized class
specifications based on final coalgebras. Its semantic is based on a higher-order equational logic and
it provides theorem proving support by compilers that translate CCSL into the higher-order logic
of PVS and Isabelle. In its current version, CCSL does not support data type specifications with
partial constructors, axioms or equations, i.e. it only supports free types without axioms in the
sense of Casl.

3.6.4 HasCasl

The language HasCasl has been introduced in [SM02, SMM] as a higher order extension of Casl,
based on the partial λ-calculus [Mog86, Mog88, Ros86]. For more details on both syntax and
semantics, see [SM02, SMM].

Support for reasoning about side-effects encapsulated via monads has been introduced in [SM,
SM03] by providing a monad-independent Hoare calculus and a monad-independent dynamic logic;
this work is extended in [SM04] to cover partial and total correctness of abruptly terminating
programs. For all these results, the logic of HasCasl is used as a background formalism.

3.6.5 CspCASL

Csp [Hoa85, Ros97] is a process algebra that has been studied now for 25 years. Still, a formal
integration with datatypes has been provided only recently: The foundations of Csp-Casl have
been laid out in [Rog]. Very promising is the recent encoding of Csp in Isabelle/HOL [IM05], which
improves an existing encoding and will be the basis for proof support for Csp-Casl.

Future work will also consider combinations of Casl and CCS [All01].
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Chapter 4

An Initial Logic Graph

In this chapter, we define a variety of translations (formalized as institution morphisms, comor-
phisms, etc.) between the institutions defined in the previous chapter, thus obtaining a logic graph.
The logic graph will also consists of modifications between the translations, expressing that some
(composites of) translations are the same. It is expected that this initial logic graph will be extended
with more and more logics, translations and modifications as time goes by. We think that the best
strategy is to integrate the needed logics into one big graph, instead of having several ones (and
therefore also several resulting heterogeneous languages).

4.1 Comorphisms Among Subinstitutions of Casl

In order to relate subinstitutions of Casl, we relate their underlying institutions. We therefore
use the notion of institution comorphisms (also called simple maps of institutions) [Mes89b, Tar96]
introduced in Sect. 2.

4.1.1 The First-Order Level

The diagram in Fig. 4.1 shows that the first-order subinstitutions of Casl have all the same expres-
siveness, except from FOL, which is a bit weaker (FOL= can be represented in FOL only with a
comorphism admitting model expansion, but not as a subinstitution). Some of the arrows are labeled
with numbers in brackets; this refers to later subsections where the corresponding comorphisms are
described in detail. Obvious subinstitution comorphisms are not labeled.

Another diagram, shown in Fig. 4.2, can be obtained by adding a “C” to each institution in
Fig. 4.1.

(1): Mapping FOL= to FOL

The idea here is simply to replace equality by a congruence relation.

Signatures A FOL=-signature Σ is mapped to the FOL−presentation Φ(Σ) that extends Σ by
adding predicate symbols ≡: s × s (overloaded for each sort s) that are axiomatized to be a
congruence (also w.r.t. the predicates).

Models A model M is translated by factoring its carriers w.r.t. ≡. The functions and predicates
can act on the equivalence classes because ≡ is a congruence. A homomorphism h:M−→M ′ is
translated to h̄ with h̄([a]) = [h(a)] (where [a] is the congruence class of a). This is well-defined
since a ≡M a′ implies h(a) ≡M ′ h(a′) (predicates are preserved by homomorphisms).

Sentences Sentence translation is done by replacing = by ≡.
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FOL FOAlg=

SOL= FOL=

(1)
(2)

SubFOL=

(6)

PFOL=

(4)(4a)

SubPFOL=

(3)

(5)(5a)(5b)

Index for arrow types:
1. Admits model expansion
2. Strongly persistently liberal
3. Model-bijective
4. Subinstitution

Figure 4.1: The first-order level

CFOL CFOAlg=

SOL= CFOL=
(7)

(2′)

SubCFOL=

(6′)

PCFOL=

(4′)(4a′)

SubPCFOL =
(3′)

(5′)(5a′)(5b′)

Figure 4.2: The first-order level with sort generation constraints (index: see Fig. 4.1).

107



Satisfaction To prove the satisfaction condition, define a mapping on valuations as follows: Given
a Φ(Σ)-model M ′ and a valuation ν:X−→M ′, define β(ν):X−→βΣ(M ′) by

β(ν)s(x) := [ν(x)] for x ∈ Xs.

We then have
β(ν)#(t) = [ν#(t)],

which can be easily proved by induction over t, using the congruence axioms. By induction
over ϕ ∈ Sen(Σ), we can now show that

ν `̀ αΣ(ϕ) iff β(ν) `̀ ϕ.

Concerning e.g. strong equations, we have ν `̀ αΣ(t1 = t2) iff ν `̀ t1 ≡ t2 iff ν#(t1) ≡M ′

ν#(t2) iff [ν#(t1)] = [ν#(t2)] iff β(ν)#(t1) = β(ν)#(t2) iff β(ν) `̀ t1 = t2.

Concerning predicate applications, ν `̀ αΣ(p(t1, . . . , tn)) iff ν `̀ p(t1, . . . , tn) iff (ν#(t1), . . . , ν
#(tn)) ∈

PM ′ iff (by the congruence axiom for p) ([ν#(t1)], . . . , [ν
#(tn)]) ∈ PβΣ(M ′) iff ((β(ν))#(t1), . . . , (β(ν))#(tn)) ∈

PβΣ(M ′) iff β(ν) `̀ p(t1, . . . , tn).

Concerning quantification, ν `̀ ∀x : s • αΣ(ψ) iff for all ξ:X ∪ {x : s}−→M ′ extending ν on
X \ {x : s}, ξ `̀ αΣ(ψ) iff (by induction hypothesis) for all ξ:X ∪ {x : s}−→M ′ extending ν
on X \ {x : s}, β(ξ) `̀ ϕ iff for all ρ:X ∪ {x : s}−→βΣ(M ′) extending β(ν) on X \ {x : s},
ρ `̀ ϕ iff β(ν) `̀ ∀x : s • ϕ.

The other cases are treated similarly. The satisfaction condition now follows by noting that β
is surjective on valuations. 2

The comorphism can be seen to admit model expansion as follows: Given a Σ-model M in
FOL=, turn it into a Φ(Σ)-model by letting ≡ be interpreted as the identity relation. This model is
a pre-image of M under the model translation. However, the comorphism is not persistently liberal:
for example, let Σ consist of just one sort, let M be the Σ-model consisting of two points, and let
M ′ be the Φ(Σ)-model consisting of two equivalent points. Then there is just one homomorphism
from M to βΣ(M ′). If the comorphism were persistently liberal, there would have to be just
one homomorphism from γΣ(M) to M ′ as well. But this is impossible, since then γΣ(M) would
have to be empty (even if empty carriers were allowed, this still would contradict the requirement
βΣ(γΣ(M)) = M).

Note that the comorphism cannot be generalized to the level of sort generation constraints in
a straightforward way, because these are not preserved along taking quotients: Let Nat be the
signature consisting of a sort Nat and two total function symbols 0 : Nat and suc:Nat−→Nat.
Let M ′ be the Φ(Nat)-model consisting of two copies of the natural numbers, which are identified
by the congruence relation. Since the constant 0 yields the zero only of one copy of the naturals,
M is not term-generated. However βΣ(M) consist of just one copy of the naturals and therefore is
term-generated.

(2) and (2′): Mapping (C)FOL= to (C)FOAlg=

Here, the idea is to replace predicates by Boolean-valued functions. Note that the Booleans can be
axiomatized monomorphically in FOAlg=.

Signatures A signature is mapped by adding the presentation Bool and replacing each predicate
symbol p : w by a total function symbol fp:w−→Bool

spec Bool =
sort Bool
ops True,False : Bool
forall b : Bool
• b = True ∨ b = False
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• ¬ True = False
end

Strictly speaking, Bool has to be renamed in order to become disjoint with the signature.

Models A model is translated by replacing each Bool-valued function by the corresponding predi-
cate.

Sentences Sentence translation is done by replacing atomic formulas

pw(t1, . . . , tn)

by
(fp)w,Bool(t1, . . . , tn) = TrueBool.

Sort generation constraints are left unchanged.

Satisfaction The satisfaction condition is proved in a straightforward way. 2

It is also straightforward to show that this gives a model-bijective institution comorphism. Note,
however, that we do not get a subinstitution comorphism. This is because homomorphisms in
FOL= need to preserve just truth (but not falsehood) of predicates, while homomorphisms in the
comorphism in FOAlg= need to preserve both truth and falsehood of (represented) predicates.

Indeed, we conjecture that there cannot be a subinstitution comorphism from FOL= to FOAlg=

since FOL= is strictly more expressive than FOAlg= w.r.t. a construct that actually exploits the
homomorphisms: with the free construct, it is possible to express the transitive closure of an
arbitrary (parameter) relation, while we conjecture that this is not possible in FOAlg=.

(3) and (3′): Mapping SubP (C)FOL= to P (C)FOL=

The translation of SubP (C)FOL = to P (C)FOL = is trivial, since SubPCFOL= is defined in
terms of PCFOL=:

Signatures A signature Σ is mapped to the presentation (Σ̂, Ĵ(Σ)).

Models Model translation is the identity.

Sentences Sentence translation is the identity.

Satisfaction The satisfaction condition follows immediately. 2

This trivially gives a subinstitution comorphism.

(4) and (4a): Mapping PFOL= to FOL=

A translation of PFOL= into FOL= is described in [CMR99]. We refine this translation here. The
main idea is to use a definedness predicate to divide each carrier into “defined” and “undefined”
elements. The “defined” elements represent ordinary values, while the “undefined” elements all
represent the undefined. Partial functions thus can be totalized: they possibly yield an “undefined”
element. We specify that there is at least one “undefined” element ⊥; however, it may be not the
only one.

Signatures A PFOL=-signature Σ = (S, TF, PF, P ) is translated to a FOL=-presentation having
the signature

Sig(Φ(Σ)) = (S, TF ] PF ] {⊥ : s | s ∈ S}, P ] {D : s | s ∈ S})
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and the set of axioms Ax (Φ(Σ)):
∃x : s •Ds(x) s ∈ S (1)
¬Ds(⊥s) s ∈ S (2)
Ds(f(x1, . . . , xn)) ⇔

∧

i=1..nDsi
(xi) f : s1, . . . , sn → s ∈ TF (3)

Ds(g(x1, . . . , xn)) ⇒
∧

i=1..nDsi
(xi) g : s1 . . . sn →? s ∈ PF (4)

p(x1, . . . , xn) ⇒
∧

i=1..nDsi
(xi) p: s1 . . . sn ∈ P (5)

D plays the role of a definedness predicate: the elements inside D are called “defined”, those
outside D are called “undefined”. The axioms in the signature translation state that there is
at least one “defined” element (1), that ⊥ is an “undefined” element (2), total functions are
indeed total (3) and all functions ((3), (4)) and predicates (5) are strict.

A signature morphism σ is translated to a presentation morphism Φ(σ) which acts as σ on
those parts of Φ(Σ) being included from Σ, while it maps the added structure for a signature
component to the added structure for a mapped component.

Models A Φ(Σ)-structure M (in FOL=) is translated to the partial Σ-structure βΣ(M) = M ′ (in
PFOL=) with

• M ′
s = (Ds)M for s ∈ S,

• fM ′ is fM restricted to M ′
w for f : w → s ∈ TF (this is a total function by (3)),

• gM ′(a1, . . . , an) =

{

gM (a1, . . . , an), if gM (a1, . . . , an) ∈ M ′
s

undefined, otherwise
for g : w →? s ∈ PF ,

• pM ′ = pM ∩M ′
w for p:w ∈ P .

Homomorphisms are translated by restricting them to the carriers of M ′. This is well-defined
since predicates are preserved by homomorphisms.

Sentences The sentence translation keeps the structure of the sentences and maps strong and exis-
tential equality to appropriate circumscriptions using the definedness predicateD. Definedness
is mapped to D, and quantifiers are relativized to the set of all defined elements.

Formally, a Σ-sentence ϕ (in PFOL=) is translated to the Φ(Σ)-sentence αΣ(ϕ):
αΣ(def (t)) = Ds(t) αΣ(t1 = t2) = ((Ds(t1) ∨Ds(t2)) ⇒ t1 = t2)

αΣ(ϕ ∧ ψ) = αΣ(ϕ) ∧ αΣ(ψ) αΣ(t1
e
= t2) = t1 = t2 ∧Ds(t1)

αΣ(p(t1, . . . , tn)) = p(t1, . . . , tn) αΣ(F ) = F
αΣ(ϕ ⇒ ψ) = αΣ(ϕ) ⇒ αΣ(ψ) αΣ(∀x : s•ϕ) = ∀x : s•Ds(x) ⇒ αΣ(ϕ)

Satisfaction To prove the satisfaction condition, we need to talk about partial variable valuations.
This is necessary since a valuation in a Φ(Σ)-model M ′ may assign an “undefined” element to
a variable. In the Σ-model M = βΣ(M ′), this should correspond to a truly undefined variable.
Thus, we consider partial variable valuations ν:X →? M . The evaluation ν# of terms and
the satisfaction ν `̀ of formulas is defined as before (see Sect. 3.1.1), with the following two
exceptions:

• ν#
s (x) =

{

ν(x), if this is defined
undefined, otherwise

for all x ∈ Xs and all s ∈ S;

• ν `̀ Σ (∀x : s •ϕ) iff for all valuations ξ:X ∪ {x : s}−→M which extend ν on X \ {x : s}
and are defined on x : s, we have ξ `̀ Σ ϕ.

Note that the new definitions of ν# and `̀ coincide with the old ones for total valuations. To
achieve this, it is crucial to require the extended valuation ξ to be defined on x in the clause
for satisfaction of quantified formulas above.

We now have the following lemma:
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Lemma 4.1 For each Σ-formula ϕ and each (total) valuation ν:X−→M ′ into a Φ(Σ)-model
M ′, define the partial valuation ρ:X−→βΣ(M ′) to be

ρ(x) =

{

ν(x), if ν(x) ∈ (Ds)M ′

undefined, otherwise
(x ∈ Xs)

Then we have

(a) ρ#(t) is defined iff ν#(t) ∈ (Ds)M ′ for all Σ-terms t of sort s.

(b) In the case that one of the sides of (1) holds, we have

ρ#(t) = ν#(t).

(c) ρ `̀ PFOL=

Σ ϕ iff ν `̀ FOL=

Sig(Φ(Σ)) αΣ(ϕ).

Proof: (a) and (b): By induction over the structure of t. For variables, we need just use
the definition of ρ. For applications of total or partial function symbols, use axioms (3) or (4)
in Φ(Σ).

(c): By induction over the structure of ϕ. Considering existence equations, we have

ρ `̀ PFOL=

Σ t1
e
= t2

iff ρ#(t1) and ρ#(t2) are defined and equal
iff ν#(t1) ∈ (Ds)M and ν#(t2) ∈ (Ds)M and ν#(t1) = ν#(t2)
iff ν `̀ FOL

Sig(Φ(Σ)) t1 = t2 ∧Ds(t1)

iff ν `̀ FOL
Sig(Φ(Σ)) αΣ(t1

e
= t2).

Considering universally quantified formulas, we have

ρ `̀ PFOL
Σ ∀x : s • ϕ

iff for all ξ:X ∪ {x : s}−→βΣ(M ′) extending ρ on X \ {x : s} and being defined
on {x : s}, ξ `̀ PFOL

Σ ϕ
iff for all τ :X ∪ {x : s}−→M ′ extending ν on X \ {x : s} for which x ∈ (Ds)M ′ ,

τ `̀ FOL
Sig(Φ(Σ)) αΣ(ϕ)

iff ν `̀ FOL
Sig(Φ(Σ)) ∀x : s •Ds(x) ⇒ αΣ(ϕ)

iff ν `̀ FOL
Sig(Φ(Σ)) αΣ(∀x : s • ϕ).

The other cases are treated similarly. 2

The satisfaction condition can now be shown as follows. Let ϕ be a Σ-sentence and ν: ∅−→M ′

and ρ: ∅−→βΣ(M ′) be the unique empty valuations. Then

βΣ(M ′) |=PFOL=

Σ ϕ
iff ρ `̀ PFOL=

Σ ϕ
iff ν `̀ FOL=

Sig(Φ(Σ)) αΣ(ϕ)

iff M ′ |=FOL=

Sig(Φ(Σ)) αΣ(ϕ). 2

The model translation can be easily shown to be surjective: For a partial Σ-structure M , form
its one-point completion by just adding one element, ∗, to all carriers, which is the interpretation
of ⊥. The functions map ∗ to itself and behave as in M otherwise, where undefinedness of partial
functions is mapped to ∗. Predicates are false on ∗. The predicate D is true everywhere except
on ∗. Thus, our institution comorphism admits model expansion. Moreover, with the argument of
Example 2.23, the comorphism also has the weak D-amalgamation property, where D is the class of
all injective signature morphisms.

Proposition 4.2 The above constructed institution comorphism is strongly persistently liberal.

Proof: Define γ as follows. Put (γΣ(M))s := Ms ] M̄s, where
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• M̄ ⊆ TSig(Φ(Σ))(|M |)) is the least sorted set satisfying

– ⊥ ∈ M̄s

– f(a1, . . . , an) ∈ M̄s for f ∈ TF w,s ∪ PFw,s, w = s1 . . . sn,
(a1 . . . an) ∈ (Mw ] M̄w) \ domfM

• (Ds)γΣ(M) := Ms,

• (⊥s)γΣ(M) := ⊥,

• fγΣ(M)(a1, . . . , an) :=

{

fM (a1, . . . , an), if (a1, . . . , an) ∈ domfM

f(a1, . . . an), otherwise
for f :w−→s ∈ TF ∪ PF ,

• pγΣ(M) = pM for p : w ∈ P .

Now (1) of Φ(Σ) above is satisfied since the carriers of M are non-empty. (2) holds by definition of
(DγΣ(M))s, and (3) and (4) hold by definition of fγΣ(M). (5) holds by definition of pγΣ(M).

Clearly, we have βΣ(γΣ(M)) = M . To show the universal property of

M
id

βΣ(γΣ(M)) ,

let h:M−→βΣ(N) be a homomorphism. Since βΣ(N)s ⊆ Ns, we can define h#: γΣ(M)−→N by

h#
s (a) =

{

h(a), if a ∈Ms

ν#(a), if a ∈ M̄s

where ν: |M |−→N is defined by ν(a) = h(a). The first case is determined by the requirement that
βΣ(h#) = h, while the second case is determined by the requirement that h# is a homomorphism.
Thus, h# is the unique homomorphism from γΣ(M) to N that is mapped to h under βΣ. 2

Concerning model-bijectivity, by adding to Φ(Σ) the sentences ¬ x = ⊥s ⇒ Ds(x) (for each
s ∈ S), ⊥ becomes the unique “undefined” element. With this, we get an institution comorphism
(4a) that is model-bijective. Moreover, the translation of strong equations can be simplified by
translating them just to ordinary equations. However, the comorphism then is no longer persistently
liberal.

(4′), (4a′) and (4b′): Mapping PCFOL= to CFOL=

The comorphism (4a′) extends the model-bijective institution comorphism (4a) described above.
Due to the need to translate sort generation constraints, we must be able to generate also the
“undefined” elements in the CFOL=-models. In order to be able to correctly model generatedness
w.r.t. to partial functions, we have to ensure generatedness of the “undefined” elements. This is
ensured by the axioms ¬ x = ⊥s ⇒ Ds(x) (for each s ∈ S). Since then there is just one “undefined”
element, namely ⊥, the “undefined” elements are now term generated. However, this method leads
to a loss of the persistent liberality of the comorphism.

Signatures Signatures are translated as in (4a).

Models Models are translated as in (4a).

Sentences First-order sentences are translated as in (4a). A Σ-sort generation constraint (
•
S,

•
F

, θ: Σ̄−→Σ) is translated to (
•
S,

•
F ∪{⊥s : s|s ∈ S}, θ′), where θ′: Φ(Σ̄)−→Φ(Σ) is the extension

of θ to Φ(Σ̄) that is defined by mapping the added symbols in Φ(Σ̄) to the corresponding added
symbols in Φ(Σ).
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Satisfaction The satisfaction condition for formulas is proved as in (4a). Concerning sort gen-
eration constraints, note that model translation just removes the interpretation of ⊥ from

the carriers. Since ⊥ cannot occur in
•
F and moreover all functions are strict, generatedness

w.r.t.
•
F in the model βΣ(M ′) (where interpretations of ⊥s have been removed) is the same as

generatedness w.r.t.
•
F ∪{⊥s : s|s ∈ S} in the model M ′ (where interpretations of ⊥s are not

removed). 2

If one wants to have a strongly persistently liberal comorphism (call it (4′), since it extends (4))
also translating sort generation constraints, one can restrict sort generation constraints in PCFOL=

to those including total function symbols only: in this case, the introduction of a unique undefined
element is not necessary.

The same restriction of sort generation constraints in PCFOL= also has to be done if we want
to extend (4b) to (4b′): sort generation constraints can just be left as they are in this case.

(5) and (5a): Mapping SubPFOL= to SubFOL=

These are the same comorphisms as (4) and (4a), except that the subsorting relation (and the
corresponding injection and projection functions and membership predicates in the models and
sentences) have to be mapped as well; we can take the identity mapping in all cases.

Also, by modifying (5) (similar to the passage from (4) to (4a)), we get a comorphism (5a) that
is model-bijective.

(5′) and (5a′): Mapping SubPCFOL= to SubCFOL=

Again, the translation (5a′) is very similar to that of the previous section. As in (4a′), due to the
need to translate sort generation constraints, we must be able to generate also the “undefined”
elements in the SubCFOL=-models. In order to be able to do this, we again restrict the models
to those with exactly one “undefined” element. This leads to a loss of persistent liberality of the
comorphism.

As in (4′), we can restore strongly persistent liberality by a restriction of sort generation con-
straints in SubPCFOL= to those not involving partial function symbols: in this case, the extra
axioms for the ⊥ functions are not needed. We thus get a comorphism (5′).

(6) and (6′): Mapping Sub(C)FOL= to (C)FOL=

Here we can use a restriction of the translation of Sub(C)PFOL= to P (C)FOL= described in
Sect. 4.1.1 above, which leaves out the partial projection symbols and those axioms from Ĵ(Σ)
involving these. There is one problem connected with this: the membership predicate was originally
axiomatized using partial projections and definedness:

∀x : s′• ∈s
s′ (x) ⇔ def pr(s′,s)(x)

for s ≤ s′. Now we cannot just leave out these axioms, since then the membership predicates could
be interpreted in an unintended way. Therefore, these axioms have to be replaced by

∀x : s′• ∈s
s′ (x) ⇔ ∃y • inj(s,s′)(y) = x

(7): Mapping CFOL= to SOL=

CFOL= adds sort generation constraints to FOL=. These cannot be expressed within FOL=, but
can be translated to induction schemes, which can be expressed in second-order logic with equality
(SOL=) by second-order quantification over predicates.

Signatures Signatures and signature morphisms are translated identically.
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Models Models, model homomorphisms and reducts are translated identically.

Sentences First-order sentences are translated identically. For a sort generation constraint

(
•
S,

•
F , θ: Σ̄−→Σ)

we assume without loss of generality that all the result sorts of function symbols in
•
F occur

in
•
S (see the corresponding remark in Sect. 3.1.1 where sort generation constraints have been

introduced). Let

•
S= {s1; . . . ; sn},

•
F= {f1: s

1
1 . . . s

1
m1

−→s1; . . . ; f1: s
k
1 . . . s

k
mk

−→sk}

The sort generation constraint is now translated to the SOL=-sentence

∀Ps1 : pred(θ(s1)) . . . ∀Psn
: pred(θ(sn))

• (ϕ1 ∧ · · · ∧ ϕk) ⇒
∧

j=1,...,n ∀x : θ(sj) • Psj
(x)

where

ϕj = ∀x1 : θ(sj
1), . . . , xmj

: θ(sj
mj

)

•

(

∧

i=1,...,mj ; sj
i∈

•
S
Psj

i
(xi)

)

⇒ Psj

(

θ(fj)(x1, . . . , xmj
)
)

Satisfaction To prove the satisfaction condition, let a Σ-model M and a Σ-sort generation con-

straint (
•
S,

•
F , θ: Σ̄ −→ Σ) be given. Call an S̄-sorted set P̄ ⊆ |M |θ| (

•
S,

•
F , θ)-closed iff it is

closed under the application of functions θ(f)M with f ∈
•
F and the filling in of arbitrary

values of Mθ(s) for s 6∈
•
S.

Lemma 4.3 Let X be the variable system {Ps1 : pred(θ(s1)), . . . , Psn
: pred(θ(sn))}. Given

an assignment ξ:X−→M , consider the S̄-sorted set P̄(ξ) consisting of ξ(Ps) for s ∈
•
S and of

Mθ(s) for s 6∈
•
S.

Then we have

ξ `̀ ϕ1 ∧ · · · ∧ ϕk iff P̄(ξ) is (
•
S,

•
F , θ)-closed.

Proof: This directly follows from the form of the ϕj . Note that the filling in of arbitrary

values of Mθ(s) for s 6∈
•
S is captured by the condition sj

i ∈
•
S in the conjunction in the premise

of ϕj : for sj
i 6∈

•
S, nothing is required. 2

Now M satisfies the sort generation constraint (
•
S,

•
F , θ: Σ̄−→Σ)

iff the smallest (
•
S,

•
F , θ)-closed set is |M |θ|

iff for all ξ:X−→M , P̄(ξ) is (
•
S,

•
F , θ)-closed implies P̄(ξ) = |M |θ|

iff for all ξ:X−→M ,
ξ `̀ ϕ1 ∧ · · · ∧ ϕk implies ξ `̀

∧

j=1,...,n ∀x : θ(sj) • Psj
(x)

iff M satisfies the translation of the sort generation constraint. 2

4.1.2 The Positive Conditional Level

At the positive conditional level (see Fig. 4.3), we have used generalized conditional logic (GCond=,
GHorn= etc.). The reason for this is that we want to be able to use equivalences (and not just im-
plications) in the translations of sentences, which would not be possible within ordinary conditional
logic (Cond=, Horn= etc.). However, note that there is a conjunctive subinstitution comorphism
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MEqtl
fun-CafeOBJ

Eq= COSA

[Mos02]

COSASC⊗

OBJ3

[Mos02]

GCond=
ACT ONE, ASF

SubGCond=

(12)

GHorn

Prolog

GHorn=

Eqlog

(4)

[Mes98a]

SubGHorn=

(3)

(11)

PGCond=

(8)

SubPGCond=

(10)

(7)

PGHorn=

(6)

(2)

SubPGHorn=

Conditional Casl

(9)

(5) (1)

HEP

[Mos02]

COSASC⊗

OBJ3

Index for arrow types:
1. Admits model expansion
2. Strongly persistently liberal
3. Model-bijective
4. Subinstitution

Figure 4.3: The positive conditional level
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from any of the generalized conditional logics to the corresponding ordinary conditional logic. Note
also that in most cases, the diagram remains the same if the G is deleted everywhere (only a few
arrows become conjunctive comorphisms).

MEqtl denotes Meseguer’s Membership Equational Logic, see [Mes98a], where also the arrows to
and from MEqtl are described. Also, Equational Type Logic [MSS90] and Unified Algebras [Mos89]
and similar frameworks could be added at the same corner of the diagram (however, the arrow from
GHorn= will not be persistently liberal in all these cases).

At the positive conditional level, we have the following levels of expressiveness:

1. The institutions SubPGHorn=, PGHorn=, SubPGCond= and PGCond= (all involving par-
tiality) are all subinstitutions of each other. They form the strongest level of expressiveness.
By using more complicated comorphisms, one also can count SubGHorn= and SubGCond=

to belong to this level, see [Mos96a]. We have not included these comorphisms here, since
they are based on a weaker notion of embedding, which is too weak to be practically useful
for borrowing.

2. The next level of expressiveness is GHorn=. Here, we lose the ability of specifying conditional
generation of data using partial functions within free specifications, as shown in [Mos95].

3. Then comes GCond=. As shown in [Mos95], due to lack of predicates, we cannot specify
conditional generation of relations using free, as in the transitive closure example (see Exam-
ple C.2).

4. The lowest level is Eq=, where we have no conditional axioms.

All these levels are separated from each other in [Mos02].
We now come the the description of the comorphisms.

(1): Mapping SubPGHorn= to SubPGCond=

Here, we cannot directly use the idea of comorphism (2) from the first-order level of replacing
predicates by Boolean functions, since the set of Booleans cannot be axiomatized monomorphically
in positive conditional logic.1 However, what we can do is to axiomatize a single-valued set Bool1
of truth-values and map predicates to partial functions into Bool1.

Signatures A signature is translated by adding disjointly to it the presentation

spec Bool1 =
sort Bool
op True1 : Bool1
• ∀x , y : Bool1 • x = y

end

and replacing each predicate symbol p : w by a partial function symbol p : w −→?Bool1.

Models A model M is translated by replacing each partial function (pw,Bool1)M by its domain,
considered as a predicate. Note that model homomorphisms can be translated identically,
since they behave in the same way for domains of partial functions and for predicates.

Sentences A sentence is translated by replacing each occurrence of a predicate symbol application
pw(t1, . . . , tn) by the equation pw,Bool1(t1, . . . , tn) = True1.

Satisfaction The satisfaction condition is straightforward to show. 2

It is easy to show this comorphism is a subinstitution comorphism.

1Actually, since positive conditional logic is closed under products by the well-known Mal’cev theorem, any theory
having a model with a two-valued Boolean carrier set has also models where the Boolean carrier set exceeds any given
cardinality.
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(2): Mapping PGHorn= to PGCond=

Here, we can use the same comorphism as in (1), just restricted to signatures with trivial subsort
relation.

(3): Mapping SubGHorn= to SubGCond=

Here, we can use a comorphism similar to that in (1). The only difference is that predicate symbols
p : w are translated to total function symbols p : w −→ Bool1. (Note that we cannot represent
predicates by subsorts, since predicates may be empty, while subsorts may not.) This leads to a loss
of the subinstitution property, but we still have a strongly persistently liberal comorphism, which
can be seen as follows: Let Σ = (S,TF , P,≤) be a signature in SubGHorn=. Given a Σ-model M ,
γΣ(M) extends M by interpreting Bool1 as

{true} ] {pw(a1, . . . , an) | p : w ∈ P, a1, . . . , an ∈ Mw \ pM}

True1 is interpreted with true, and

(pw)γΣ(M)(a1, . . . , an) =

{

true, if (a1, . . . , an) ∈ pM

pw(a1, . . . , an), otherwise

Clearly, βΣ(γΣ(M)) = M . Now let h:M−→βΣ(N) be a Σ-homomorphism. Then h can be uniquely
extended to a Φ(Σ)-homomorphism h#: γ(M)−→N with βΣ(h#) = h by putting

(h#)Bool1(true) = True1N

(h#)Bool1(pw(a1, . . . , an)) = (pw)N (h(a1), . . . , h(an))

(4): Mapping GHorn= to GCond=

Here, we can use the same comorphism as in (3), just restricted to signatures with trivial subsort
relation. Again, the comorphism is strongly persistently liberal.

(5): Mapping SubPGHorn= to SubGHorn=

This strongly persistently liberal comorphism works like the comorphism (5) from the first-order
level, except that the constants ⊥ and their axiomatizations are omitted: then, all axioms in Φ(Σ)
are in Horn form. The omission of ⊥ leads to a loss of the weak (injective)-amalgamation property.

(6): Mapping PGHorn= to GHorn=

This comorphism works similar to the comorphism (4) from the first-order level. As in (5), we have
to remove the constants ⊥ and their axiomatizations which are not in Horn form (thereby losing
the weak (injective)-amalgamation property). Moreover, the axioms ∃x : s •Ds(x) are not in Horn
form either. These axioms have to be replaced by the introduction of new constants cs : s (for
each s ∈ S). The new constant has essentially the same effect as the existential axiom, except
that homomorphisms have to preserve it, which leads to a loss of persistent liberality (but the
comorphism still admits model expansion).

(7): Mapping SubPGCond= to SubGCond=

This works like the (strongly persistently liberal) comorphism (5) above.
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(8): Mapping PGCond= to GCond=

Here, we cannot restrict (4) from the first-order level, since we need to eliminate the definedness
predicates. Therefore, we use the composition

PGCond= PGHorn=
(6)

GHorn=
(4)

GCond=

which is a comorphism admitting model expansion.

(9): Mapping SubPGHorn= to PGHorn=

This subinstitution comorphism works exactly as the comorphism (3) from the first-order level: all
axioms in Φ(Σ) are already in Horn form.

(10): Mapping SubPGCond= to PGCond=

This comorphism works similar to (9). The difference it that the membership predicates have to be
deleted, Now when looking at the axioms in Ĵ , one can see that the membership predicates are just
the domains of the partial projections. Thus, all occurrences of

t ∈ s

in sentences have to be translated to
def pr(s′,s)(t).

(11): Mapping SubGHorn= to GHorn=

When setting up this comorphism, we encounter the difficulty to axiomatize the membership pred-
icates. In Ĵ , they are axiomatized as the domains of the partial projections. Now we do not have
partial functions at hand. In the comorphism (6) at the first-order level this problem is solved by
the axiomatization

∀x : s′• ∈s
s′ (x) ⇔ ∃y • inj(s,s′)(y) = x

But this axiom is not in Horn form. The best that we can do at the moment instead of this is just
to use the composition

SubGHorn= SubPGHorn=
(9)

PGHorn=
(6)

GHorn=

which is a comorphism admitting model expansion.

(12): Mapping SubGCond= to GCond=

For the same reasons as for (11) above, we use the composition

SubGCond= SubPGCond=
(10)

PGCond=
(8)

GCond=

which again is a comorphism admitting model expansion.

4.2 Relating modal logics and Casl

It is not obvious how to obtain a forgetful institution morphism from ModalCasl to Casl: on
the signature level, it is easy to forget modalities and information about flexibility and rigidity of
symbols. However a given ModalCasl model generally consists of many Casl models Mw, and
the only way to obtain a Casl model seems to take their product. While this works for the Horn
fragment SubPHorn=, it does not work for the whole of Casl: e.g. a sentence expressing that there
are exactly two carrier elements is not preserved under products.
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4.2.1 The standard translation

Casl is obviously a subinstitution of ModalCasl: each Casl signature Σ is turned into a Modal-
Casl signature Φ(Σ) by equipping it with the empty set of modalities and modality sorts and making
all operation and predicate symbols rigid. This easily extends to signature morphisms. A Φ(Σ)-
model is then turned into a Σ-model by just forgetting the set of worlds. A Σ-sentence naturally
can be considered to be a Φ(Σ)-sentence.

The following comorphism from the Modal sublanguage of ModalCasl to Casl itself is usually
called the “standard translation”:

Signatures A modal signature Σ is mapped to a Casl signature Φ(Σ) by adding a sort W (for
the set of worlds), a binary relation symbol Rm : W ×W for each modality m and a ternary
relation symbol Rs : s×W ×W for each modality sort s. While rigid symbols are just kept,
flexible operation and predicate symbols get the sort W as additional (first) argument. This
is easily extended to signature morphisms.

Models A Φ(Σ)-model M is turned into a Σ-Kripke model by taking W as set of worlds, Rm and
Rs as accessibility relations, and forming Mw by fixing the first argument of flexible operations
and predicates in M to w.

This is easily seen to be model-expansive.

Sentences A Σ-sentence is inductively translated to a Φ(Σ)-sentence as follows:

αΣ(w, x : s) = x : s if x is a variable
αΣ(w, f(t1, . . . , tn)) = f(αΣ(t1), . . . , αΣ(tn)) if f is a rigid operation symbol
αΣ(w, f(t1, . . . , tn)) = f(w,αΣ(t1), . . . , αΣ(tn)) if f is a flexible operation symbol
αΣ(w, p(t1, . . . , tn)) = p(αΣ(t1), . . . , αΣ(tn)) if p is a rigid predicate symbol
αΣ(w, p(t1, . . . , tn)) = p(w,αΣ(t1), . . . , αΣ(tn)) if p is a flexible predicate symbol
αΣ(w, def t) = def αΣ(w, t)
αΣ(w, t1 = t2) = αΣ(w, t1) = αΣ(w, t2)

αΣ(w, t1
e
= t2) = αΣ(w, t1)

e
= αΣ(w, t2)

αΣ(w, false) = false
αΣ(w,ϕ ∧ ψ) = αΣ(w,ϕ) ∧ αΣ(w,ψ)
αΣ(w, ∀x : s . ϕ) = ∀x : s . αΣ(w,ϕ)
αΣ(w, [m]ϕ) = ∀w′ : W . Rm(w,w′) ⇒ αΣ(w′, ϕ)if m a modality
αΣ(w, [m : s]ϕ) = ∀w′ : W . Rs(αΣ(w,m), w, w′) ⇒ αΣ(w′, ϕ)if s a modality sort

Finally, for a sentence ϕ, we set αΣ(ϕ) = ∀w : W . αΣ(w,ϕ).

Satisfaction By a straightforward induction, we can prove

ν, w `̀ ϕ iff ν[x 7→ w] `̀ α(x, ϕ)

From this, the satisfaction condition follows.

When translating a signature from Casl to ModalCasl and back, we do not get the original
signature, but rather its extension by an additional sort W . However, the original signature can be
embedded into the extended one, and this gives rise to a comorphism modification from the identity
comorphism on Casl to the composite:

Casl
id

Casl

ModalCasl
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4.2.2 Indexed Propositional Modal Logic

For indexed propositional modal logic, we can use the standard translation, but also a reduction to
propositional modal logic. Consider the following graph of institutions resp. logics and comorphisms:

Prop
inclusion

inclusion

PropModal

inclusion

IndexedPropModal
make worlds

explicit

forget
arguments

FOL

The institution comorphisms shown in the above graph are all trivial inclusions, except the
comorphisms from IndexedPropModal into FOL and PropModal. We now describe the latter ones.

The comorphism from IndexedPropModal into FOL is just the standard translation of the pre-
vious section.

The comorphism from IndexedPropModal to PropModal maps an IndexedPropModal-signature
to a PropModal-signature by just forgetting the sorts and the arguments of the predicate symbols,
ending up with a set of propositional constants. Similarly, sentences are mapped by forgetting the
argument variables for the predicate symbols. Finally, a PropModal-model can be extended to an
IndexedPropModal-model by interpreting all carrier sets a singletons; the predicates then actually
degenerate to propositional constants, and these are obtained from the PropModal-model. Again,
the satisfaction condition is straightforward.

4.3 Relating Casl and CoCasl

Here, we have the following comorphisms:

Casl PlainCoCasl ModalCoCasl SOL=

The first two arrows from left to right are straightforward inclusions. The last one, an encoding of
ModalCoCasl into SOL, uses comorphism (4a) ◦ (3), composed with the embedding into SOL=,
from in Sect. 4.1.1. For the cogenerated cotypes, the corresponding second-order coinduction
principle is generated. The infinite trees needed for cofree cotypes can be specified in SOL= as
well; actually, Isabelle/HOL [Pau94] already comes with such trees.

Finally, the observation that modal formulae can be regarded as syntactical sugar now becomes
the formal statement that the modal CoCasl institution can be encoded in the plain CoCasl insti-
tution. Φ takes a ModalCoCasl signature to its underlying Casl (i.e. plain CoCasl) signature,
model reduction does nothing, and sentence translation is the encoding of modal logic formulae
described in Sect. 3.3.3.

Of course, CoCasl specifications containing modal formulae need to be interpreted in the modal
CoCasl institution, while for CoCasl specifications without modal formulae, it does not really
matter which of the two institutions is chosen.

The first two comorphisms come with adjoint morphisms: for PlainCoCasl → Casl, the sees
and sibling relations are forgotten, and ModalCoCasl →PlainCoCasl has the identity signature
translation.
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4.4 Relating Casl into HasCasl

There is an obvious institution morphism from HasCasl to Casl that keeps just the nullary type
constructors (as sorts) and the first-order functions and predicates in the signatures, and their
respective interpretations in the models.

The embedding of Casl into HasCasl is a slightly more involved:

Example 4.4 The standard embedding comorphism µ = (Φ, α, β): I −→ J from the Casl insti-
tution without sort generation constraints to the HasCasl institution is defined as follows. The
functor Φ sends a Casl signature Σ to the HasCasl signature introducing the same sorts as Σ,
while operations and predicates of Σ are turned into constants of appropriate higher-order types.
(Recall that predicates in the HasCasl institution are partial functions into the unit type.) Also,
the classicality axiom

∀p : Logical . p ∨ ¬p

is added. The sentence component αΣ is the obvious inclusion (using HasCasl’s internal logic).
The model component βΣ just forgets the interpretations of higher types.

4.4.1 Liberality

We now show that the comorphism from Casl into HasCasl satisfies some properties that lead to
a good interaction with structured specifications.

Example 4.5 The comorphism from Example 4.4 is strongly persistently bi-liberal (in the sense
of Def. 2.25), even with natural γ and δ when restricted to Casl without subsorting:

• γΣ constructs the interpretation of higher types by freely extending a Casl model; this
amounts to interpreting the carriers with λ-terms modulo βη equivalence. This is a per-
sistent free construction by the persistent extension theorem in the applications section of
[Sch]. Moreover, γ is even natural in Σ: Given a Casl signature morphism σ: Σ1 −→Σ2 and
a Σ2-model M , we have to show

γΣ2(M)|Φ(σ) = γΣ1(M |σ)

We show a more general result, namely that for each higher type t in Σ1, terms u : t in context
Γ over M |σ are in one-one correspondence with terms u : σ(t) in context σ(Γ) over M . We
proceed by induction over the (higher) types in Φ(Σ2). For terms of base types, we are done
since γ is persistent. For terms of higher higher types u : s̄ → t, we have two cases: either
u = λx̄ . v, and we can apply the induction hypothesis, or u is a variable, and we are done.

In a setting without subtypes, this implies that the equation displayed above holds, since
equality of the freely generated elements of function types is determined only by the rules of
higher order logic and hence is the same on both sides.

• δΣ extends a Casl model to the corresponding standard model in HasCasl (i.e. all higher
types are interpreted by the full function space). This is obviously strongly persistent. We
need to show that δΣ is right adjoint to βΣ: The counit is just the identity. Given a homomor-
phism h:βσ(M ′)−→M from a HasCasl Φ(Σ)-model M ′ into a Casl Σ-model M , its unique
extension h#:M ′ −→ δΣ(M) to the higher types is just given by mapping (inductively over
the types) any value of functional type in the intensional Henkin model M ′ to its behaviour
function, which is in δΣ(M) because the latter is a standard model. δ is obviously natural in
Σ.

For naturality of γ, absence of subsorting is really needed: if σ is the extension of a signature Σ1

with sorts s, t, u, v and operations f : s→ u, f : t→ u, g : v → s, g : v → t to a signature Σ2 which
differs from Σ1 only by having s < t, then the terms λx : v • f((g x) : s) and λx : v • f ((g x) : t)
are equal in γΣ2(M) and hence in γΣ2(M)|Φ(σ), but in general different in γΣ1(M |σ).
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Proposition 4.6 The embedding of Casl to HasCasl preserves the semantics of structured spec-
ifications, including free specifications when restricted to Casl without subsorting (but excluding
sort generation constraints), in the sense that the set of HasCasl models of a Casl specification,
when restricted to the basic types, coincides with the original model semantics in Casl.

Proof: See Prop. C.9. 2

4.4.2 Sort generation constraints

Due to the flexibility of interpretation of higher types in Henkin models, the higher-order reformu-
lation of a sort-generation constraint is weaker than the original constraint in Casl. In particular,
not all non-standard models are excluded, and it is impossible to do so. Otherwise, one would need
to equip as least some parts of HasCasl with a standard semantics. Since the Henkin semantics
has very pleasant properties ([Sch] and [SMM] above), we have deliberately refrained from doing so.

Concerning unstructured and structured free types, this leads to the following situation:

ModCasl(free types DD) ⊂ β(ModHasCasl(free types DD))

= ⊂

ModCasl(free {types DD}) = β(ModHasCasl(free {types DD}))

where the inclusion from the top right to the bottom right corner also holds inside the β(. . .).
Hence, unstructured free types (and in general, the translation of sort generation constraints)

have more models in HasCasl than in Casl. Still, this does not violate conservativity: any semantic
consequence of an embedding of a Casl specification into HasCasl is also a semantic consequence
of the original Casl specification. The latter specification may have more semantic consequences.
But even this difference disappears w.r.t. to proof theory — at least if the standard Casl proof
system with the usual finitary induction rule is used. Only if stronger (e.g. infinitary) forms of
induction are used, the difference becomes relevant. It also becomes relevant for monomorphicity:
due to possible non-standard interpretations of higher types, the usual free datatypes are no longer
monomorphic in HasCasl.

4.5 Csp-Casl

There is an obvious subinstitution comorphism from Casl to Csp-Casl, adding the empty set
of process names to Casl signatures. However, since Csp-Casl has restrictions on the signature
category (only sort-injective signature morphisms are allowed), this comorphism actually starts from
a subinstitution of Casl. Dually, there is an obvious morphism from Csp-Casl to Casl, forgetting
the set of process names in the signatures and the processes in the models.

Interestingly, there is also a simple theoroidal semi-comorphismLTL:Csp-Casl−→ModalCasl.
A signature is extended by a sort lab, and injection operations inj: s−→ lab for each sort s. These
are axiomatized to be injective and to jointly generate lab. Signature morphisms are just extended
to map the extra structure on the nose in the obvious way.

A ModalCasl-model is translated to a Csp-Casl-model by forgetting the interpretation of
the Kripke structure part to get a Casl-model, and equipping it with the LTS determined by the
transition relation of the ModalCasl model.

A part of the graph(s) of logics developed so far is shown in Fig. 4.4: namely those logics that
are part of the Heterogeneous Tool Set.
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Figure 4.4: Graph of logics.
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4.6 Bibliographical Notes

The translation among Casl sublanguage have been described in [Mos02]. The translations for
CoCasl are from [MSRR]. The standard translation for modal logic can be found e.g. in [AGM92].
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Chapter 5

Structured Specification and
Development Graphs

As a preparation for the discussion of heterogeneous (structured) specification, in this chapter we
will introduce homogeneous structured specifications over an arbitrary institution. We first recall
a popular kernel language for structured specifications, and then propose development graphs as a
kernel formalism for structured theorem proving. In Chap. 6, we then will realize heterogeneous
specification by just considering structured specification over a so-called Grothendieck institution.

5.1 Specifications Over an Arbitrary Institution

In this section we recall a popular set of institution-independent structuring operations, which seems
to be quite universal and which can also be seen as a kernel language for the Casl structuring
constructs.

In the sequel, let us fix an arbitrary institution I = (Sign,Sen,Mod, |=). Based on an arbitrary
such I , the following kernel language for specifications in an arbitrary institution has been proposed
[ST88b]. Simultaneously with the notion of specification, we define functions Sig and Mod yielding
the signature and the model class of a specification.

presentations: For any signature Σ ∈ |Sign| and finite set Ψ ⊆ Sen(Σ) of Σ-sentences, the
presentation 〈Σ,Ψ〉 is a specification with:

Sig(〈Σ,Ψ〉) := Σ
Mod(〈Σ,Ψ〉) := {M ∈ Mod(Σ) |M |= Ψ}

union: For any signature Σ ∈ |Sign|, given Σ-specifications SP1 and SP2, their union SP1 ∪ SP2

is a specification with:

Sig(SP1 ∪ SP2) := Σ
Mod(SP1 ∪ SP2) := Mod(SP1) ∩ Mod(SP2)

translation: For any signature morphism σ: Σ −→ Σ′ and Σ-specification SP , translate SP by σ
is a specification with:

Sig(translate SP by σ) := Σ′

Mod(translate SP by σ) := {M ′ ∈ Mod(Σ′) |M ′|σ ∈ Mod(SP)}

hiding : For any signature morphism σ: Σ −→ Σ′ and Σ′-specification SP ′, derive from SP ′ by σ
is a specification with:

Sig(derive from SP ′ by σ) := Σ
Mod(derive from SP ′ by σ) := {M ′|σ |M ′ ∈ Mod(SP ′)}
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The above specification-building operations, although extremely simple, already provide flexible
mechanisms for expressing basic ways of putting specifications together and thus building specifica-
tions in a structured manner. Hence, they can be considered to be a kernel language for structured
specification. The specification language Casl provides more sophisticated structuring constructs,
but it is possible to translate the Casl constructs (except the free construct, which will be examined
in Appendix C) to the above kernel language, see [Mos00].

A specification SP is said to be consistent, if Mod(SP ) is not empty.
Given two structured specifications SP1 and SP2, a specification morphism σ:SP1 −→SP2 is a

signature morphism σ:Sig(SP1)−→Sig(SP2) such thatM |σ ∈ Mod(SP1) for eachM ∈ Mod(SP2).
For presentations, this boils down to presentation morphisms σ: 〈Σ,Ψ〉−→〈Σ′,Ψ′〉, which are just
signature morphisms σ: Σ −→ Σ′ for which Ψ′ |=Σ′ σ(Ψ), that is, axioms are mapped to logical
consequences.

A structured Σ-specification SP2 refines a structured Σ-specification SP1 (written SP1 SP2),
if Mod(SP2) ⊆ Mod(SP1).

5.2 Borrowing

Often, an institution does not have an entailment system itself, but can be encoded (via a comor-
phism) into another institution that has one. The borrowing technique allows for re-using entailment
systems via comorphisms. This works not only for entailment between flat specifications, but also
for structured specifications. Here, we introduce a semantic version of borrowing, relating the se-
mantic consequence relations of two institutions, but using the results of the previous section, it
should be clear that this carries over to entailment as well.

Definition 5.1 Let µ = (Φ, α, β): I −→ J be an institution comorphism and SP a class of I-
specifications. We say that µ admits borrowing of entailment for SP , if for any Σ-specification
SP ∈ SP and any Σ-sentence ϕ in I , we have

SP |=I
Σ ϕ iff µ̂(SP ) |=J

Sig(Φ(Σ)) αΣ(ϕ).

Moreover, we say that µ admits borrowing of refinement for SP , if for any Σ-specifications SP1, SP2 ∈
SP , we have

SP1 SP2 iff µ̂(SP1) µ̂(SP2).

2

The importance of this definition lies in the following: If we have a sound proof calculus for
entailment in J , and if we have an institution comorphism µ: I−→J admitting borrowing of entail-
ment for SP , we can use the proof calculus also for proving entailment concerning I-specifications
in SP : we just have to translate our proof goals using µ̂ and α. If, moreover, the proof calculus is
complete for proving entailment in J , then also its re-use for proving entailment in I is complete.
A similar remark holds for proof calculi for refinement.

Since
SP |=Σ ϕ iff 〈Σ, {ϕ}〉 SP,

µ admits borrowing of entailment for SP if µ admits borrowing of refinement for SP (provided that
SP contains all specifications of form 〈Σ, {ϕ}〉).

Proposition 5.2 Let µ = (Φ, α, β): I −→ J be an institution comorphism and SP a class of
I-specifications.

1. Assume that for each SP ∈ SP , ModI (SP ) = βSig(SP )(ModJ(µ̂(SP )))1. Then µ admits
borrowing of entailment for SP .

1This includes the condition that βSig(SP ) is defined on ModJ (µ̂(SP )).
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2. Assume that µ admits model expansion and that for each SP ∈ SP , β−1
Sig(SP )(ModI(SP )) =

ModJ (µ̂(SP ))2. Then µ admits borrowing of entailment and of refinement for SP .

3. The assumption in (1) can be weakened to βSig(SP )(ModJ(µ̂(SP ))) ⊆ ModI(SP ), if addi-

tionally the simultaneous restriction and corestriction βSig(SP ):ModJ(µ̂(SP ))−→ModI(SP )
is isomorphism-dense, and satisfaction in I is closed under isomorphism.

4. The assumption of model expansion in (2) can be replaced by assuming that β is pointwise
isomorphism-dense and for each SP ∈ SP , ModI(SP ) is isomorphism-closed.

Proof: (1) Let SP ∈ SP be a Σ-specification and ϕ be a Σ-sentence. Then

SP |=I
Σ ϕ

iff (by definition) M ∈ ModI(SP ) implies M |=I
Σ ϕ

iff (by the assumption) M ′ ∈ ModJ (µ̂(SP )) implies βΣ(M ′) |=I
Σ ϕ

iff (by the satisfaction condition)

M ′ ∈ ModJ(µ̂(SP )) implies M ′ |=J
Sig(Φ(Σ)) αΣ(ϕ)

iff (by definition) µ̂(SP ) |=J
Sig(Φ(Σ)) αΣ(ϕ).

(2) Concerning borrowing of entailment, by surjectivity of βΣ, we obtain βΣ(β−1
Σ (M)) = M for

any M ⊆ ModI(Σ). Thus, we obtain that the assumption of (1) is fulfilled, and the result follows.
Concerning borrowing of refinement, let SP1, SP2 ∈ SP be Σ-specifications. Assume that

SP1 SP2. If now M ′ ∈ ModJ (µ̂(SP2)), by the assumption of the proposition, we get βΣ(M ′) ∈
ModI(SP2) and therefore βΣ(M ′) ∈ ModI (SP1). Again by the assumption of the proposition, we
obtain M ′ ∈ ModJ (µ̂(SP1)). Hence, µ̂(SP1) µ̂(SP2).

Conversely, assume that µ̂(SP1) µ̂(SP2). If now M ∈ ModI(SP2), by the assumptions
of the proposition, we get some M ′ ∈ ModJ (µ̂(SP2)) with βΣ(M ′) = M . Since then also M ′ ∈
ModJ(µ̂(SP1)), by the assumption of the proposition also βΣ(M ′) = M ∈ ModI(SP1). Hence,
SP1 SP2.

(3) In the step of the proof of (1) where we use the assumption, we now only get some M ′ ∈
ModJ(µ̂(SP )) with βSig(SP )(M

′) ∼= M , instead of βSig(SP )(M
′) = M . But this does no harm since

satisfaction in I is closed under isomorphism.
(4) Similarly as (3). 2

Borrowing of entailment is strictly weaker than borrowing of refinement, see [Bor02] for an
example.

5.2.1 Borrowing For Structured Specifications

An important use of institution comorphisms is the re-use (also called borrowing) of proof calculi and
theorem provers. Hence, we will study conditions under which an institution comorphism admits
borrowing.

For comorphisms admitting model expansion, the well-known “Borrowing theorem” [CM97,
Tar96] holds:

Theorem 5.3 Let I and J be two institutions and ρ = (Φ, α, β): I −→ J be an institution co-
morphism admitting model expansion. Then ρ admits borrowing of entailment and refinement for
theories.

Proof: Let SP = 〈Σ,Ψ〉 be a theory. Then βΣ(M ′) is defined and satisfies SP iff βΣ(M ′) is
defined and satisfies Ψ iff (by the satisfaction condition)M ′ satisfies Ax(Φ(Σ))∪αΣ(Ψ) iffM ′ satisfies
ρ̂(SP ). Thus β−1

Σ ModI(SP ) = ModJ (ρ̂(SP )). The result now follows from Proposition 5.2 (2).
2

2This precisely means βSig(SP )(M
′) is defined and a member of ModI(SP ) if and only if M ′ ∈ ModJ (µ̂(SP )).
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That is, if we have a sound (and complete) theorem prover for theories in the target institution of
an institution comorphism admitting model expansion, we can re-use it as a sound (and complete)
theorem prover for theories in the source institution. In a word:

Institution comorphisms admitting model expansion also admit borrowing of entailment
and refinement for theories.

The following proposition has been proved in [Bor02]:

Proposition 5.4 Let I and J be two institutions, let D be a class of signature morphisms in I ,
and let µ = (Φ, α, β): I−→J be an simple theoroidal institution comorphism. Let SP be the set of
structured specifications in I containing derives only along morphisms in D. Then

1. For any specification SP ,

βSig[SP ](ModJ (µ̂(SP ))) ⊆ ModI(SP ).

2. If µ has the weak D-amalgamation property, then for SP ∈ SP ,

(βSig [SP ])
−1(ModI(SP )) = ModJ(µ̂(SP )).

3. If µ admits model expansion and has the weak D-amalgamation property, then for SP ∈ SP ,

βSig[SP ](ModJ (µ̂(SP ))) = ModI(SP ).

4. If µ admits model expansion and has the weak D-amalgamation property, then µ admits
borrowing of entailment and refinement for SP . 2

Proof:
(1) and (2) The proof mainly goes along the lines of the proof in [Bor99]. The crucial difference
here is that the model translation βΣ is not defined on all of ModJ(Sig [Φ(Σ)]), but only for those
models satisfying Ax [Φ(Σ)]. Let us understand sentences like βΣ(M) ∈ ModI(SP ) as “βΣ(M) is
defined and in ModI(SP )”. We will prove for any Sig [Φ(Σ)]-model M that

M ∈ ModJ (µ̂(SP )) iff βΣ(M) ∈ ModI(SP )

where the “if” direction additionally needs weak D-amalgamation. (1) and (2) then easy follow.
We first need to prove a Lemma:

Lemma 5.5 Given a signature morphism σ: Σ−→Σ′ in I and an Sig [Φ(Σ′)]-model M ′, we have

βΣ′(M ′) defined implies βΣ(M ′|Φ(σ)) defined.

Proof: Assume that βΣ′(M ′) is defined. This means M ′ ∈ Mod(Φ(Σ′)). Since Φ(σ): Φ(Σ)−→
Φ(Σ′) is a theory morphism, M ′|Φ(σ) ∈ Mod(Φ(Σ)), i.e. βΣ(M ′|Φ(σ) is defined.

We prove
M ∈ ModJ (µ̂(SP )) iff βΣ(M) ∈ ModI(SP )

by induction over SP (assuming additionally weak D-amalgamation when proving the “if” direction).

• SP = 〈Σ,Ψ〉: M ∈ ModJ(µ̂(SP )) iff M ∈ ModJ(〈Sig [Φ(Σ)],Ax [Φ(Σ)] ∪ αΣ(Ψ)〉). This
holds iff M |=J

Sig[Φ(Σ)] αΣ(Ψ) and M ∈ domβΣ. But this is equivalent to βΣ(M) |=I
Σ Ψ, i.e.

βΣ(M) ∈ ModI (SP ).

• SP = SP1 ∪ SP2: M ∈ ModJ(µ̂(SP )) iffM ∈ ModJ (µ̂(SP1) ∪ µ̂(SP2) iffM ∈ ModJ (µ̂(SP1))∩
Mod(µ̂(SP2)). By induction hypothesis, this holds iff βΣ(M) ∈ ModI(SP1) ∩ ModI(SP2),
i.e., iff βΣ(M) ∈ ModI (SP1 ∪ SP2).
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• SP = translate SP1 by σ: Σ1−→Σ: M ∈ ModJ(µ̂(SP )) iffM ∈ ModJ(translate µ̂(SP1) by Φ(σ) ∪ Φ(Σ)).
By definition, this is equivalent to M |Φ(σ) ∈ ModJ(µ̂(SP1)) and M ∈ ModJ (Φ(Σ)) (the lat-
ter being equivalent to βΣ(M) defined). By induction hypothesis and the Lemma, this holds
iff βΣ1(M |Φ(σ)) ∈ ModI(SP1) and βΣ(M) is defined. By naturality of β, this is equivalent to

βΣ(M)|σ ∈ ModI(SP1), i.e. ∈ ModI(translate SP1 by σ: Σ1−→Σ).

• SP =` SP ′σ: Σ−→Σ1, “only if” direction: M ∈ ModJ(µ̂(SP )) implies M ∈ ModJ(`
µ̂(SP ′)Φ(σ)). This means that there is some M ′ ∈ ModJ (Σ1) with M ′|Φ(σ) = M . Fix such

an M ′. By induction hypothesis, βΣ1(M
′) is defined and in ModI(SP ′). By the Lemma, also

βΣ(M ′|Φ(σ)) = βΣ(M) is defined. By naturality of β, (βΣ1(M
′))|σ = βΣ(M ′|Φ(σ)) = βΣ(M).

Thus, βΣ1(M
′) is a witness for βΣ(M) ∈ ModI(` SP ′σ: Σ−→Σ1).

• SP =` SP ′σ: Σ−→Σ1, “if” direction: βΣ(M) ∈ ModI(` SP ′σ: Σ−→Σ1) means that there is
some M1 ∈ ModI(SP ′) with M1|σ = βΣ(M). Since σ ∈ D, by weak D-amalgamation there is
some M ′

1 ∈ ModJ(Φ(Σ1)) with M ′
1|Φ(σ) = M and βΣ1(M

′
1) = M1. By induction hypothesis,

M ′
1 ∈ ModJ(µ̂(SP ′)). This shows that M ∈ ModJ(` µ̂(SP ′)Φ(σ)).

(3) By (2), (βΣ)−1(ModI(SP )) ⊆ ModJ(µ̂(SP )). By surjectivity of βΣ, ModI(SP ) = βΣ((βΣ)−1(ModI(SP ))) ⊆
βΣ(ModJ(µ̂(SP ))). The converse inclusion is just (1).
(4) SP |=I

Σ ϕ iff for all M ∈ ModI(SP ), M |=I
Σ ϕ iff (by (3)) for all M ′ ∈ ModJ (µ̂(SP )),

βΣ(M) |=I
Σ ϕ iff (by the satisfaction condition) for all M ′ ∈ ModJ(µ̂(SP )), M ′ |=J

Sig[Φ(Σ)] αΣ(ϕ)

iff hatµ(SP ) |=J
Sig[Φ(Σ)] αΣ(ϕ).

The combination of (2) and (3) means that model classes (loose semantics) are preserved and
reflected. This is especially important since Casl (like many other specification languages) has a
model-theoretic semantics: a specification denotes a signature together with a class or category of
models.

Loose semantics for structured specifications with hiding only along D-morphisms can
be lifted along and against simple theoroidal institution comorphisms admitting model
expansion and weak D-amalgamation.

Loose semantics in this context means taking just the class of all models of a specification as
its semantics. Of course, whether these are, e.g., all first-order models or just the finitely generated
ones, depends on the model functor of the institution.

(4) means that tools for theorem proving within structured specifications in the target institution
can be re-used for theorem proving within structured specifications in the source institution. That
is:

simple theoroidal institution comorphisms admitting model expansion and weak D-amalgamation
admit borrowing of entailment and refinement for structured specifications with hiding
only along D-morphisms.

5.3 A Proof Calculus for Structured Specifications

As explained above, the semantics of structured specifications is parameterized over an institution
providing the semantics of basic specifications. The situation with the proof calculus is similar: here,
we need a logic, i.e. an institution equipped with an entailment system. Based on this, it is possible
to design a logic independent proof calculus [Bor02] for proving entailments of the form SP ` ϕ,
where SP is a structured specification and ϕ is a formula, see Fig. 5.1. Fig. 5.2 shows an extension
of the structured proof calculus to refinements between specifications. Note that for the latter
calculus, an oracle for conservative extensions is needed. A specification morphism σ:SP 1−→SP2

is conservative iff each SP 1-model is the σ-reduct of some SP2-model.3
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(CR)
{SP ` ϕi}i∈I {ϕi}i∈I ` ϕ

SP ` ϕ (basic)
ϕ ∈ Ψ

〈Σ,Ψ〉 ` ϕ

(sum1 )
SP1 ` ϕ

SP1 ∪ SP2 ` ϕ (sum2 )
SP1 ` ϕ

SP1 ∪ SP2 ` ϕ

(trans)
SP ` ϕ

σ(SP ) ` σ(ϕ)
(derive)

SP ` σ(ϕ)
σ−1(SP ) ` ϕ

Figure 5.1: Proof calculus for entailment in structured specifications

(Basic) SP ` Ψ
〈Σ,Ψ〉 ; SP

(Sum) SP1 ; SP SP2 ; SP
SP1 ∪ SP2 ; SP

(Trans1)
SP ; θ(SP ′) θ = σ−1

σ(SP ) ; SP ′ (Trans2)
SP ; σ−1(SP ′)
σ(SP ) ; SP ′

(Derive) SP ; SP ′′

σ−1(SP ) ; SP ′
if σ:SP ′−→SP ′′

is a conservative extension

(Trans-equiv)
θ(σ(SP )) ; SP ′

θ ◦ σ(SP ) ; SP ′

Figure 5.2: Proof calculus for refinement of structured specifications

We will now discuss some important meta properties of the calculus. Before we can state a com-
pleteness theorem, we need to formulate some technical assumptions on the underlying institution
I . We also rely on the notions of having amalgamation and Craig interpolation, which have been
defined for an arbitrary institution in Sect. 2.3.

An institution has conjunction, if for any Σ-sentences ϕ1 and ϕ2, there is a Σ-sentence ϕ that
holds in a model iff ϕ1 and ϕ2 hold. The notion of an institution having implication is defined
similarly.

Theorem 5.6 (Soundness [Bor02]) The calculi for structured entailment and refinement be-
tween finite structured specifications given above are sound.

Theorem 5.7 (Completeness [Bor02]) Under the assumptions that

• the institution has the Craig interpolation property,

• the institution admits weak amalgamation,

• the institution has conjunction and implication and

• the logic is complete,

the calculi for structured entailment and refinement between finite structured specifications are
complete. Note that for the refinement calculus, an oracle for conservative extensions is needed.

Actually, the assumption of Craig interpolation and weak amalgamation can be restricted to
those diagrams for which it is really needed. Details can be found in [Bor02].

The problem with the above completeness theorem is that its prerequisites do not hold in most of
the institutions introduced in Chap. 3. Firstly, these institutions are not closed under conjunction
and implication due to the presence of special sentences like sort generation, cogeneration and

3Besides this model-theoretic notion of conservativeness, there also is a weaker consequence-theoretic notion:
SP2 |= σ(ϕ) implies SP1 |= ϕ, and a proof-theoretic notion: SP 2 ` σ(ϕ) implies SP1 ` ϕ coinciding with the
consequence-theoretic one for complete logics. For the calculus of refinement, we need the model-theoretic notion.
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cofreeness constraints. While it is easy to close these institutions under conjunctions, such that
conjunction of constraints with other constraints and with first-order formulas become possible, the
situation is different for closure under implication. Implication between constraints or negation of
constraints (note that negation can be obtained via an implication to false) increase expressiveness
considerably. A similar remark holds for the various Horn clause subinstitution of Casl defined
in Sect. 3.1.9: implications between Horn clauses are strictly stronger expressive than Horn clauses
themselves.

Secondly, also Craig interpolation fails in the presence of e.g. sort generation constraints, see
Sect. 3.1.8. But sort generation constraints are an essential ingredient of the Casl logic, because they
are needed for the specification of the usual inductive datatypes used in programming. Our answer to
this problem is to use a different institution independent proof calculus for structured specifications,
based on the formalism of development graphs. This will be the subject of the subsequent sections.

5.4 Development Graphs

We now introduce so-called development graphs as a simple kernel formalism for structured theorem
proving and proof management. A development graph consists of a set of nodes (corresponding
to whole structured specifications or parts thereof), and a set of arrows called definition links,
indicating the dependency of each involved structured specification on its subparts.

The proof calculus for development graphs is given by rules that allow for decomposing global
theorem links into simpler ones, until eventually local implications are reached. The latter can be
discharged using a logic-specific calculus as given by an entailment system (see Sect. 2.4).

The main advantage of this calculus over the one introduced in Sect. 5.3 is the weaker set of
assumptions for completeness of the calculus: basically, we need completeness of the underlying
entailment system plus existence of quasi-semi-exactness (cf. Def. 2.8). The latter property is much
weaker than Craig interpolation, and easier to fulfill in a heterogeneous framework, see Sect. 6.2.
We postpone the proof of completeness of the calculus to Sect. 6.4, where we will generalize it to
the heterogeneous case.

In contrast to the language of structured specifications of Sect. 5.1, development graphs allow
for expressing the sharing among specifications due to multiple references to named specifications.
Moreover, the proof management tool of the Heterogeneous Tool Set Hets works directly on de-
velopment graphs; hence, the material presented here can serve as a formal background for the use
of Hets and for the understanding of how it works (see Chap. 7). Last but not least, development
graphs also support management of change [AHMS00] and have been used in large-scale industrial
applications [HLS+96]. The graph structure provides a direct visualization of the structure of spec-
ifications, and it also allows for managing large specifications with hundreds of sub-specifications.

Before we introduce development graphs, consider the following running example of specifying
and refining a sorting function sorter.

Given some specification of total orders and lists, an abstract specification of this sorting function
may be denoted in Casl syntax as follows:

spec Sorting
[TotalOrder]
=

{
List [sort Elem ]

then

preds is ordered : List [Elem];
permutation : List [Elem] × List [Elem];

forall x , y : Elem;
L,L1 ,L2 : List [Elem]

• is ordered([])
• is ordered([x ])
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• is ordered(x :: (y :: L)) ⇔ x ≤ y ∧ is ordered(y :: L)
• permutation(L1 ,L2 ) ⇔ (∀ x : Elem • x ∈ L1 ⇔ x ∈ L2 )

then

op sorter : List [Elem] → List [Elem];
forall L : List [Elem]
• is ordered(sorter(L))
• permutation(L, sorter(L))

}
hide is ordered , permutation
end

is ordered and permutation are auxiliary predicates to specify sorter, and are hidden to the
outside. A model of this specification is just an interpretation of the sorter function (together with
a model of the imported specifications of total orders and lists) that can be extended to a model of
the whole specification (including is ordered and permutation).

During a development, we may refine Sorting into a design specification describing a particular
sorting algorithm. For simplicity, we choose a sorting algorithm which recursively inserts the head
element in the sorted tail list. In Casl we obtain the following specification:

spec InsertSort
[TotalOrder]
=

{
List [sort Elem ]

then

ops insert : Elem × List [Elem] → List [Elem];
insert sort : List [Elem] → List [Elem];

forall x , y : Elem;
L : List [Elem]

• insert(x , []) = [x ]
• insert(x , y :: L) =

x :: insert(y ,L) when x ≤ y else y :: insert(x ,L)

• insert sort([]) = []
• insert sort(x :: L) = insert(x , insert sort(L))

}
hide insert
end

Now we want to state InsertSort is actually a refinement of Sorting, i.e. that each InsertSort-
model is also a Sorting-model. This is written as follows:

view InsertSortCorrectness[TotalOrder] : Sorting[TotalOrder] to InsertSort[TotalOrder]
=
sorter 7→ insert sort

Fig. 5.3 shows the corresponding development graph.
Development graphs are structured as follows. Leaves in a graph correspond to basic spec-

ifications, which do not make use of other specifications. Inner nodes correspond to structured
specifications. The links that capture the construction of structured specifications in the graph
are called definition links. Arising proof obligations are attached as so-called theorem links to this
graph.

Definition 5.8 A development graph is an acyclic, directed graph DG = 〈N ,L〉.
N is a set of nodes.4 Each node N ∈ N is labelled with a pair (ΣN ,ΨN) such that ΣN is a

4The structure of nodes is left unspecified here; we assume that they come from a given infinite set Nodes of nodes,
to make the choice of ‘new’ nodes and edges deterministic, we may assume that Nodes comes equipped with a fixed
enumeration – then ‘new’ always means ‘first not used as yet’.
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List+Order

c

Perm+OrderDef InsertSortDef

hSorterProps

h

Sorting
id

InsertSort

Figure 5.3: Development graph for the sorting example

signature and ΨN ⊆ Sen(ΣN ) is the set of local axioms of N .
L is a set of directed links, so-called definition links, between elements of N . Each definition

link from a node K to a node N is either

• global (denoted K
σ

N), annotated with a signature morphism σ : ΣK → ΣN , or

• local (denoted K
σ

N), again annotated with a signature morphism σ : ΣK → ΣN , or

• hiding (denoted K
σ

hide
N), annotated with a signature morphism σ : ΣN → ΣK going

against the direction of the link, or

• free (denoted K
σ

free
N), annotated with a signature morphism σ : Σ → ΣK for some

signature Σ, with the requirement that ΣK = ΣN .5

To simplify matters, we write K
σ

N ∈ DG instead of K
σ

N ∈ L when L are the links
of DG. We use N , K, P , Q, P as variables for nodes, and L as variable for links.

Since development graphs are acyclic, we can use induction principles in definitions and proofs
concerning development graphs.

The next definition captures the existence of a path of local and global definition links between
two nodes. Notice that such a path must not contain any hiding links.

Definition 5.9 Let DG be a development graph. The notion of global reachability is defined

inductively: a node N is globally reachable from a node K via a signature morphism σ, K
σ

N
for short, iff

• either K = N and σ = id, or

• K
σ′

P ∈ DG, and P
σ′′

N , with σ = σ′′ ◦ σ′, or

• K
σ′

free
P ∈ DG and P

σ
N (note that σ′ is just ignored here).

A node N is locally reachable from a node K via a signature morphism σ, K
σ

N for short,

iff K
σ

N or there is a node P with K
σ′

P ∈ DG and P
σ′′

N , such that σ = σ′′ ◦ σ′.
Note that, in contrast to global reachability, local reachability is not transitive.

Obviously global reachability implies local reachability.

5Although freeness will be studied in more detail only in Appendix C, we include free definition links in order not
to have to modify the semantics of nodes later on.
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Definition 5.10 Given a node N ∈ N , its associated class ModDG(N) of models (or N -models
for short) is inductively defined to consist of those ΣN -models M for which

1. M satisfies the local axioms ΨN ,

2. for each K
σ

N ∈ DG, M |σ is an K-model,

3. for each K
σ

N ∈ DG, M |σ satisfies the local axioms ΨK ,

4. for each K
σ

hide
N ∈ DG, M has a σ-expansion M ′ (i.e. M ′|σ = M) that is an K-model, and

5. for each K
σ

free
N ∈ DG, M is an K-model that is σ-free in Mod(K). The latter means

that for each K-model M ′ and each model morphism h:M |σ −→M ′|σ, there exists a unique
model morphism h#:M−→M ′ with h#|σ = h.

Definition 5.11 Let DG = 〈N ,L〉 be a development graph. A node N ∈ N is flattenable iff for all
nodes K ∈ N with incoming hiding or free definition links, it holds that N is not globally reachable
from K.

Definition 5.12 Let DG = 〈N ,L〉 be a development graph. For N ∈ N , the theory ThDG(N) of
N is defined by

ΨN ∪
⋃

P
σ

N

σ(ΨP )

Proposition 5.13 1. K
σ

N and M ∈ Mod(N) imply M |σ ∈ Mod(K).

2. If K
σ

N and M ∈ Mod(N), then M |σ |= ΨK .

Proof: 1. Easy induction over the definition of global reachability.
2. By 1 and Definition 5.10, 3.

Proposition 5.14 1. Mod(N) ⊆ Mod(ThDG(N)).

2. If N is flattenable, then Mod(N) = Mod(ThDG(N)).

Proof: 1. By Proposition 5.13, 2 and Definition 5.10, 1.
2. By 1, it suffices to prove the ‘⊇’ direction. Let M be a ThDG(N)-model. Let len(p) be the

length of a path p witnessing K
τ

N . Let maxp be the maximal such length in DG. We show

that for any K
τ

N , M |τ is an K-model. We proceed by induction over maxp− len(p) with p

witnessing K
τ

N . Since N is flattenable, we only have to show clauses 1 to 3 of Definition 5.10:

1. Since global implies local reachability, K
τ

N , and τ(ΨK) ⊆ ThDG(N); hence M |=
τ(ΨK). By the satisfaction condition for institutions, M |τ |= ΨK .

2. Let P
θ

K, hence P
τ◦θ

N . By the induction hypothesis, M |τ◦θ is a P -model.

3. Let P
θ

K, hence P
τ◦θ

N . With a similar argument as for 1, we get M |τ◦θ |= ΨP .

This completes the induction. Since N
id

N , M is an N -model. 2

Definition 5.15 DG1 = 〈N1,L1〉 is a subgraph of DG2 = 〈N2,L2〉 if N1 ⊆ N2 and L1 ⊆ L2. It is
a faithful subgraph, if all links in L2 \ L1 have target nodes in N2 \ N1. Also, in this case DG2 is
called a faithful supergraph of DG1.
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Model classes do not change when passing to faithful supergraphs:

Proposition 5.16 If DG1 is a faithful subgraph of DG2 and N a node in DG1, then

ModDG1
(N) = ModDG2

(N).

Proof: The notion of N -model only depends on the local axioms of N and definition links going
into N . Both do not change when passing to a faithful supergraph. 2

Complementary to definition links, which define the theories of related nodes, we introduce the
notion of a theorem link with the help of which we are able to postulate relations between different
theories. Theorem links are the central data structure to represent proof obligations arising in formal
developments. Theorem links come, like definition links, in four different versions:

• global theorem links K
σ

N, where σ: ΣK −→ΣN ,

• local theorem links K
σ

N, where σ: ΣK −→ΣN ,

• hiding theorem links K
σ

hide θ
N, where for some Σ, θ: Σ−→ΣK and σ: Σ−→ΣN 6, and

• free theorem links K
σ

free θ
N, where σ: ΣK −→ ΣN and for some Σ, θ: Σ −→ ΣK . In case

that Σ is the initial signature and θ is the unique signature morphism, the link is written as

K
σ

free !
N.

Moreover, we will also need local implications of the form N ⇒ Ψ, where Ψ is a set of ΣN -sentences.
N ⇒ {ϕ} also is written N ⇒ ϕ. The semantics of local implications and of theorem links is given
by the next definition.

Definition 5.17 Let DG be a development graph and K, N nodes in DG.

• DG implies a local implication N ⇒ Ψ, written DG |= N ⇒ Ψ, if for all M ∈ ModDG(N),
M |= Ψ.

• DG implies a global theorem link K
σ

N (denoted DG |= K
σ

N) iff for all M ∈
ModDG(N), M |σ ∈ ModDG(K).

• DG implies a local theorem link K
σ

N (denoted DG |= K
σ

N) iff for all M ∈

ModDG(N), M |σ |= ΨK . (Note that by the satisfaction condition, this is equivalent to
DG |= N ⇒ σ(ΨK).)

• DG implies a hiding theorem link K
σ

hide θ
N (denoted DG |= K

σ

hide θ
N) iff for all M ∈

ModDG(N), M |σ has a θ-expansion to some K-model.

• DG implies a free theorem link K
σ

free θ
N (denoted DG |= K

σ

free θ
N) iff for all M ∈

ModDG(N), M |σ is an K-model which is θ-free in ModDG(K).

Remark 5.18 Note that theorem links may be captured by inclusion between model classes of
some (additional) nodes in the development graph. For instance, consider a hiding theorem link

K
σ

hide θ
N in a development graph DG, where θ: Σ−→ΣK and σ: Σ−→ΣN . One can add nodes

6Here, σ is the translation morphism (comparable to that of global theorem links), and θ is the hiding morphism
(extending a signature with hidden parts).
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N ′ and N ′′ to DG, with ΣN ′

= Σ, ΣN ′′

= ΣN , and ΨN ′

= ΨN ′′

= ∅, together with definition links

K
θ

hide
N ′ and N ′ σ

N ′′. For the thus obtained development graph DG ′, we then have

DG |= K
σ

hide θ
N iff ModDG′(N) ⊆ ModDG′(N ′′)

A similar construction can be performed for the other types of theorem link. 2

Finally, we introduce the analogues of the semantic annotations in Casl. A global theorem link

K
σ

N can be strengthened to

• a conservative extension7 (denoted as K
σ

cons N); it holds if, additionally to the holding of

the theorem link, every K-model has a σ-expansion to an N -model,

• a monomorphic extension (denoted as K
σ

mono N); it holds if, additionally to the holding

of the theorem link, every K-model has a σ-expansion to an N -model that is unique up to
isomorphism, or

• a definitional extension (denoted as K
σ

def
N); it holds if, additionally to the holding of the

theorem link, every K-model has a unique σ-expansion to an N -model.

These annotations can be seen as another kind of proof obligations. If there happens to be a global

definition link K
σ

N in the development graph, we also write K
σ

cons N, K
σ

mono N, or

K
σ

def
N, respectively. In this case, the theorem link part holds trivially, and only the conserva-

tivity, monomorphicity or definitionality statement is relevant.
We also allow for annotating nodes with cons, mono or def . This shall express that the trivial

theorem link using the unique signature morphism from the empty signature8 could be annotated
with the same word.9 Thus, the annotation cons for a node means that there is a model of the
node (consistency), mono means that the node has exactly one model up to isomorphism (i.e. it
is monomorphic), and def means that the node has exactly one model (the latter will occur only
rarely).

5.5 Verification Semantics for Structured Specifications

The link between structured specifications and development graphs is given by a verification seman-
tics. Given a structured specification, the verification semantics constructs a development graph
and a singles out a particular node in the graph that captures the semantics of the structured spec-
ification. The rules of the verification semantics use a suggestive concise notation for extending a

given development graph DG, like the notation DG ′ = DG ] {N ′ := (Σ′,Ψ); N
σ

N ′}. This
should be largely self-explanatory (in particular, ‘N ′ := (Σ′,Ψ)’ means that we introduce a new
node N ′ with ΣN ′

= Σ′ and ΨN ′

= Ψ).

` 〈Σ,Ψ〉 ��� (N, {N := (Σ,Ψ)})

` SP1 ��� (N1,DG1)
` SP2 ��� (N2,DG2)

ΣN1 = ΣN2 = Σ

` SP1 ∪ SP2 ��� (K,DG1 ] DG2 ] {K := (Σ, ∅)} ] {Ni
id

K | i = 1, 2})

7In the literature on model theory, this property is often called model expansion property, while the term conser-

vative extension refers to a (weaker) proof-theoretic principle.
8We here assume that the empty signature is initial.
9Here we tacitly assume that there is some special node having the initial signature and the empty set of axioms.
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` SP ��� (N,DG)

` translate SP by σ: ΣN −→Σ′
��� (K,DG ] {N

σ
K := (Σ′, ∅)})

` SP ��� (N,DG)

` derive from SP ′ by σ: Σ′−→ΣN
��� (K,DG ] {N

(σ)

hide
K := (Σ′, ∅)})

We also provide a verification semantics for views between specifications. Note that it returns
just a development graph.

` SP1 ��� (N1,DG1)
` SP2 ��� (N2,DG2)

` view SP1 to SP2 = σ: ΣN1 −→ΣN2 ���DG1 ] DG2 ] {N1
σ

N2}

Theorem 5.19 The verification semantics preserves model classes of structured specifications.
More precisely, given a structured specification SP with ` SP ��� (N,DG), we have

Mod[SP ] = ModDG(N)

Proof: See Theorem 6.45 for a more general result. 2

5.6 Proof Rules for Development Graphs

In this section, we introduce logic-independent proof rules for development graphs. These rely on
a logic-specific entailment relation for basic specifications in the sense of Sect. 2.4, as well as on
logic-specific proof rules for conservativity and freeness, as e.g. given in Sect. 3.1.5 and Appendix C.

The proof rules work on judgements of the form DG ` L, where DG is a development graph and
L is a theorem link (of any kind) over DG. We follow a natural deduction style presentation and
additionally use a graph-grammar like notation. We hope that this is still largely self-explanatory
while improving readability.

The proof rules for development graphs presented below are typically applied backwards: given
proof goal in form of a theorem link relative to some development graph, find a rule whose conclusion
matches the proof goal, and recursively prove the premises of the rule. Note that within one rule,
the judgements may refer to different development graphs. Often, the premises are formulated over
development graphs that are larger than that for the conclusion. This means that applying rules
backwards possibly adds some new nodes and edges to the development graph.

The rules allow for decomposing global theorem links into simpler ones. In a first step, one
typically tries to get rid of hiding theorem links and to decompose global into local theorem links.
This is done by applying the hiding decomposition rules. Thereby, new conservativity proof goals
can be generated, which need to be tackled by the conservativity rules. The simple decomposition
rules then allow for proving global theorem links when there is some parallel definition link, and for
proving local theorem links and local implications by reasoning with the entailment system of the
logic.

For the sake of readability, each rule is followed by its soundness proof.

5.6.1 Faithful Extension Rule

DG ` K
σ

N

DG ′ ` K
σ

N
if K and N occur in both DG and DG ′, and DG is a faithful sub- oder supergraph of DG ′

(Faithful-Extension)
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Soundness of (Faithful-Extension): by Prop. 5.16. 2

5.6.2 Hiding Decomposition Rules

In order to get rid of hiding links going into the source of a global theorem link, one first applies
(Glob-Decomposition), ending up with some local and hiding theorem links. The rule (Hide-
Theorem-Shift) allows to prove the latter, using conservativity of definition links. (Borrowing)
can be used for shifting a proof goal along a conservative extension; hence, it also exploits conser-
vativity of theorem links. Conservativity is dealt with in the next section. The central rule of the
proof system is the rule (Theorem-Hide-Shift). It is used to get rid of hiding definition links
going into the target of a global theorem link.

N ′

K ′

σ′

N

consθ′

K ′
hide θ

σ
N

if σ′ ◦ θ = θ′ ◦ σ

(Hide-Theorem-Shift)

The proof rules are written in a concise notation as above. We will spell out in detail what this
notation means for the rule (Hide-Theorem-Shift):

σ′ ◦ θ = θ′ ◦ σ

N
θ′

N ′ ∈ DG

DG ` N
θ′

cons N ′

DG ` K ′ σ′

N ′

DG ` K ′ σ

hide θ
N

Soundness of (Hide-Theorem-shift): assume that DG |= K ′ σ′

N ′ and N
θ′

cons N ′ is

conservative. We have to show that DG |= K ′ σ

hide θ
N. Let M be an N -model. Since N

θ′

cons N ′

is conservative, M can be expanded to an N ′-model M ′ with M ′|θ′ = M . By the assumption, M ′|σ′

is an K ′-model. Thus, M ′|σ′◦θ = M ′|θ′◦σ = M |σ has a θ-expansion to an K ′-model. 2

GN (i)

µi (i ∈ |J |)

K
µ〈N〉◦σ

P

DiagN

K
σ

N
with P isolated and (µi) a weakly amalgamable co-
cone for the diagram DiagN of nodes going into N
(see explanation below)

(Theorem-Hide-Shift)

Since this rule is quite powerful, we need some preliminary notions. Given a node N in a
development graph DG = 〈N ,L〉, the idea is that we unfold the subgraph below N into a tree and
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form a diagram with this tree. More formally, define the diagram DiagN : J−→Sig associated with
N together with a map GN : |J |−→N inductively as follows:

• 〈N〉 is an object in J , with DiagN (〈N〉) = ΣN . Let GN (〈N〉) be just N .

• if i = 〈 K
L1 . . . Ln

N 〉 is an object in J with L1, . . . , Ln non-local definition links in

L, and L = P
σ

K or L = P
σ

K is a local or global definition link in L, then

j = 〈 P
L

K
L1 . . . Ln

N 〉

is an object in J with DiagN (j) = ΣP , and L is a morphism from j to i in J with DiagN (L) = σ.
We set GN (j) = P .

• if i = 〈 K
L1 . . . Ln

N 〉 is an object in J with L1, . . . , Ln non-local definition links in

L, and L = P
σ

hide
K is a hiding definition link in L, then

j = 〈 P
L

K
L1 . . . Ln

N 〉

is an object in J with DiagN (j) = ΣP , and L is a morphism from i to j in J with DiagN (L) = σ.
We set GN (j) = P .

Now in order to apply (Theorem-Hide-Shift), take a weakly amalgamable cocone (Σ, (µi:DiagN (i)−→
Σ)i∈|J|) for DiagN (in general, we know that such a cocone exists only if the institution is quasi-
semi-exact), and let P be a new isolated node with signature Σ and with ingoing global definition

links GN (i)
µi

P for i ∈ |J | (if GN (i) has no ingoing free definition links, a local definition link

GN (i)
µi

P would suffice). Here, an isolated node is one with no local axioms and no ingoing

definition links other than those shown in the rule.
We once more spell the rule (this time (Theorem-Hide-Shift)) in detail:

(Σ, (µi:DiagN (i)−→Σ)i∈|J|) is a weakly amalgamable cocone for DiagN

DG′ = DG ] {P with (Σ, ∅)} ] {GN (i)
µi

P | i ∈ |J |}

DG ′ ` K
µ〈N〉◦σ

P

DG ` K
σ

N

Here, if we want to extend a given development graph DG, we use a suggestive concise notation

like DG′ = DG ] {N ′ with (Σ′,Ψ); N
Σ↪→Σ′

N ′} which should be largely self-explanatory (in par-

ticular, ‘N ′ with (Σ′,Ψ)’ means that we introduce a new node N ′ with ΣN ′

= Σ′ and ΨN ′

= Ψ).
Note that (Theorem-Hide-Shift) is the only rule where an extension DG ′ of DG occurs in the
premise of the rule. However, this extension is faithful, and hence, by rule (Faithful Extension),
the difference between DG and DG ′ in the above rule is inessential.

Soundness of (Theorem-Hide-Shift): assume that DG |= K
µ〈N〉◦σ

P . Let M be an N -model.

We have to show M |σ to be an K-model in order to establish the holding of K
σ

N. We
inductively define a family (Mi)i∈|I| of models Mi ∈ Mod(GN (i)) by putting

• M〈N〉 = M ,

• M
〈P

L
Q

L1 . . . Ln
N〉

= M ′|σ , where L = P
σ

Q or L = P
σ

Q and M ′ =

M
〈Q

L1 . . . Ln
N〉

, and

• M
〈P

L
Q

L1 . . . Ln
N〉

is a σ-expansion ofM ′ to a P -model (existing sinceM ′ is a Q-model),

where L = P
σ

hide
Q and M ′ = M

〈Q
L1 . . . Ln

N〉
.
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It is easy to show that this family is consistent with DiagN . Since by the side condition of the
rule, (Σ, (µi:DiagN (i)−→Σ)i∈|J|) is a weakly amalgamable cocone, there is a ΣP -model MK with
MK |µi

= Mi. The latter implies that MK is a P -model. By the assumption, MK |µ〈N〉◦σ = M〈N〉|σ =
M |σ is an K-model. 2

K

θ

N

θ′ cons

K ′
σ′ N ′

K

θ

σ N

θ′ cons

K ′ N ′

if σ′ ◦ θ = θ′ ◦ σ

(Borrowing)

Soundness of (Borrowing): Assume that (1) DG |= K
θ

K ′, (2) DG |= N
θ′

cons N ′, and

that (3) DG |= K ′ σ′

N ′. Let M be an N -model. By (2), M has an expansion to an N ′-model
M ′ with M ′|θ′ = M . By (3), M ′|σ′ is an K ′-model, and hence, by (1) M ′|σ′◦θ = M ′|θ′◦σ = M |σ is
an K-model. 2

P
σ◦τ

K for each P
τ

N

Q
σ◦τ

hide θ
K for each Q

θ

hide
P and P

τ
N

Q
σ◦τ

free θ
K for each Q

θ

free
P and P

τ
N

N
σ

K
(Glob-Decomposition)

Soundness of (Glob-Decomposition): assume that

1. DG |= P
σ◦τ

K for each P
τ

N ,

2. DG |= Q
σ◦τ

hide θ
K for each Q

θ

hide
P and P

τ
N , and

3. DG |= Q
σ◦τ

free θ
K for each Q

θ

free
P and P

τ
N .

In order to show DG |= N
σ

K, let M be an K-model. Let len(p) be the length of a path

p witnessing P
τ

N . Let maxp be the maximal such length in DG. We show that for any

P
τ

N , M |σ◦τ is a P -model. We proceed by induction over maxp − len(p) for p witnessing

P
τ

N . We have to show clauses 1 to 5 of Definition 5.10:

1. By the first assumption, M |σ◦τ |= ΨP .

2. By the induction hypothesis, M |σ◦τ satisfies any global definition link going into P .

3. By the first assumption, M |σ◦τ satisfies any local definition link going into P .

4. By the second assumption, M |σ◦τ satisfies any hiding definition link going into P .

5. By the third assumption, M |σ◦τ satisfies any free definition link going into P .

This completes the induction. Since N
id

N , M |σ is an N -model. 2
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5.6.3 Conservativity rules

K
σ

consθ

N

θ′

K ′ σ′

N ′

N
consθ′

N ′

if

ΣK

θ

σ
ΣN

θ′

ΣK′ σ′

ΣN ′

is weakly amalgam-
able and N ′ is iso-
lated.

(Cons-Shift)

Soundness of (Cons-Shift): Assume that K
θ

cons K ′ is conservative. We have to prove that

N
θ′

cons N ′ is conservative as well. Let M be an N -model. Since K
θ

cons K ′ is conservative, M |σ

has a θ-expansion M ′ being an K ′-model. By weak amalgamation, there is some ΣN ′

-model M ′

with M ′|σ′ = M ′ and M ′|θ′ = M . Since N ′ is isolated, M ′ is an N ′-model. 2

K
σ

defθ

N

θ′

K ′ σ′

N ′

N

defθ′

N ′

if

ΣK

θ

σ
ΣN

θ′

ΣK′ σ′

ΣN ′

is amalgamable and
N ′ is isolated.

(Def-Shift)

Soundness of (Def-Shift): assume that K
θ

def
K ′ is definitional. We have to prove that

N
θ′

def
N ′ is definitional as well. Let M be an N -model. By the argument used for the proof of

soundness of (Cons-shift), M has a θ′-expansion to an N ′-model M ′. Now let M ′′ be another N ′-

model with M ′′|θ′ = M = M ′|θ′ . Then M ′|σ′◦θ = M ′|θ′◦σ = M ′′|θ′◦σ = M ′′|σ′◦θ. Since K
θ

def
K ′

is definitional, M ′|σ′ = M ′′|σ′ . By uniqueness of the amalgamation, M ′ = M ′′. 2

K
σ

cons N

θcons

N ′

K
σ

cons

θ◦σ

cons

N

θ cons

N ′

(Cons-Composition)

Soundness of (Cons-Composition): any K-model can be σ-expanded to an N -model, which
in turn can be θ-expanded to an N ′-model. Hence, each K-model can be θ ◦ σ-expanded to an
N ′-model. 2
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K
σ

mono N

θmono

N ′

K
σ

mono

θ◦σ

mono

N

θ mono

N ′

if θ is transportable, any hiding link going directly or indirectly into N ′ has a transportable
signature morphism, and satisfaction in the institution is closed under isomorphism

(Mono-Composition)

For the rule (Mono-composition), we need some technical notion: call a signature mor-
phism σ: Σ1 −→Σ2 transportable, if for any Σ1-model M1 and Σ2-model M2 and any isomorphism
h1:M2|σ−→M1, there is a Σ2-model M ′

2 and an isomorphism h2:M2−→M ′
2 with h2|σ = h1 (which

of course includes M ′
2|σ = M1). Usually, transportability can be characterized syntactically. For

example we have:

Proposition 5.20 In the Casl institution, a signature morphism is transportable iff it is injective
on sorts.

Proof: Let a sort-injective σ: Σ1 −→Σ2, a Σ1-model M1, a Σ2-model M2 and an isomorphism
h1:M2|σ −→M1 be given. M ′

2 is constructed by taking M1, and extending it with the carriers of
M2 for sorts in Σ2 \ Σ1. Operations and predicates in Σ2 \ Σ1 are interpreted as in M2, possibly
composed with appropriate parts of h1 whenever sorts from Σ1 are involved as source or target
sorts. This construction works if σ is injective on sorts. If not, take sorts s, t with σ(s) = σ(t), take
M2 arbitrary and take M1 as M2|σ except that tM1 is not sM1 , but is replaced by some isomorphic
copy of tM1 (and again operations are composed with this iso if necessary). Then it is impossible
to find a Σ2-expansion of M1. 2

Soundness of (Mono-Composition): we first show that the model class of N ′ is closed under

isomorphism. Let len(p) be the length of a path p witnessing P
τ

N ′. Let maxp be the

maximal such length in DG. We show that for any P
τ

N ′, the model class of P is closed under

isomorphism. We proceed by induction overmaxp− len(p) for p witnessing P
τ

N ′. We have to
show that the conditions of clauses 1 to 5 of Definition 5.10 are invariant under model isomorphism:

1. Holding of sentences in a model is invariant under model isomorphism, by the assumption that
satisfaction in the institution is closed under isomorphism.

2. Since reduct functors preserve isomorphisms, we can apply the induction hypothesis.

3. Here, a combination of the above two arguments applies.

4. Let K
σ

hide
P ∈ DG, M ′ be a P -model and M ′′ be isomorphic to M ′. Since M ′ is a P -

model, it has a σ-expansion to an K-model M . By transportability of σ, there is a ΣK-model
M ′ isomorphic to M with M ′|σ = M ′′. By induction hypothesis, Mod(K) is closed under
isomorphism, hence M ′ ∈ Mod(K) as well, and thus M ′′ ∈ Mod(P ).

5. Freeness is closed under isomorphism.
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This completes the induction. Since N ′ id
N ′, the model class ofN ′ is closed under isomorphism.

Now we come to monomorphicity of the theorem link K
θ◦σ

N ′. LetM be anK-model. By the
two monomorphicity assumptions, it has at least one N ′-expansion. So it remains to prove that all
N ′-expansions are isomorphic. Let M3 and M ′

3 be two N ′-expansions of M . By monomorphicity of

K
σ

N, M3|θ and M3
′|θ are isomorphic. By transportability of θ, there is some M ′′

3 isomorphic

to M3 with M3
′′|θ = M3

′|θ. Since the model class of N ′ is closed under isomorphism, M ′′
3 is an

N ′-model as well. By monomorphicity of N
θ

N ′, M ′′
3 is isomorphic to M ′

3. 2

K
σ

def
N

θdef

N ′

K
σ

def

θ◦σ

def

N

θ def

N ′

(Def-Composition)

Soundness of (Def-Composition): a global theorem link K
σ

N is definitional iff Mod(σ):Mod(N)−→
Mod(K) is bijective. Bijective maps compose. 2

K
σ

def
N

K
σ

mono N

(Def-to-mono)

Soundness of (Def-to-mono): obvious. 2

K
σ

mono N

K
σ

cons N

(Mono-to-cons)

Soundness of (Mono-to-cons): obvious. 2

K
σ

free
N

P
σ

cons N

P
σ

mono N

(Free-is-mono)

Soundness of (Free-is-mono): by the second premise, each P -model has a σ-expansion to an N -
model. It remains to show that these σ-expansions are unique up to isomorphism. But this follows
since N -models are free (and hence unique up to isomorphism) over their σ-reducts. (Notice that
the same signature morphism is used in both premises.) 2
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K
mono

σ
N

K
mono

σ

free ! N

(Mono-is-free)

Recall that !: ∅−→ΣK is the signature morphism starting from the initial signature.
Soundness of (Mono-is-free): recall that the free theorem link holds if for any N -model M ,

M |σ is an K-model that is !-free in ModDG(K). Now for an N -model M , M |σ is an K-model by
the premise of the rule, and it is !-free since in a monomorphic model class, any model is initial (and
initiality is just !-freeness). 2

5.6.4 Simple Structural Rules

The calculus finally provides a set of decomposition rules not interacting with hiding nor freeness,
and a rule allowing for reducing local implications to inference in the calculus of the logic for basic
specifications.

K
σ

N

K
σ

N

(Subsumption)

Soundness of (Subsumption): Obvious. 2

P
σ

Q

P
τ

K
if Q

θ
K and τ(ΨP ) = θ(σ(ΨP ))

(Loc-Decomposition I)

Soundness of (Loc-Decomposition I): assume DG |= P
σ

Q and Q
θ

K and τ(ΨP ) =

θ(σ(ΨP )). In order to show DG |= P
τ

K, let M be an K-model. By Prop. 5.13, M |θ is a

Q-model, and by the assumption, M |θ◦σ |= ΨP . By the satisfaction condition for institutions,
M |= θ ◦ σ(ΨP ) = τ(ΨP ). Again by the satisfaction condition, M |τ |= ΨP . 2

K
θ

N

K
σ

N
if σ(ΨK) = θ(ΨK)

(Loc-Decomposition II)

Soundness of (Loc-Decomposition II): assume that K
θ

N and σ(ΨK) = θ(ΨK). Let
M be an N -model. By Proposition 5.13, M |θ |= ΨK . By the satisfaction condition for institutions,
M |= θ(ΨK) = σ(ΨK). Again by the satisfaction condition, M |σ |= ΨK . 2

N ⇒ σ(ΨK)

K
σ

N
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(Local Inference)

K
σ

N

N ⇒ σ(ΨK)

(Reverse Local Inference)

Soundness of (Local Inference): assume that M |= σ(ΨK) for each N -model M . In order to

show DG |= K
σ

N, let M be an N -model. By assumption, M |= σ(ΨK). By the satisfaction

condition for institutions, M |σ |= ΨK . Soundness of (Reverse Local Inference) is shown by
reversing this argument. 2

ThDG(N) `ΣN ϕ for each ϕ ∈ Ψ

N ⇒ Ψ

(Basic Inference)

Soundness of (Basic Inference): assume that ThDG(N) `ΣN ϕ for each ϕ ∈ Ψ. By soundness
of `ΣN , we get ThDG(N) |=ΣN Ψ. In order to show DG |= N ⇒ Ψ, let M be an N -model. By
Proposition 5.14, M |= ThDG(N). Since ThDG(N) |=ΣN Ψ, also M |= Ψ.

5.6.5 Soundness and Completeness

Proposition 5.21 The rules in Sect. 5.6 are sound.

Proof: For each rule, in Sect. 5.6, a soundness proof has been given. 2

Another question is the completeness of our rules. We have the following counterexample:

Proposition 5.22 Let FOL be the usual first-order logic with a recursively axiomatized complete
entailment system. The problem to decide whether a global theorem link holds in a development
graph with hiding over FOL is not recursively enumerable. Thus, any recursively axiomatized
calculus for development graphs with hiding is incomplete.

Proof: This can be seen as follows. Let Σ be the FOL-signature with a sort nat and operations
for zero and successor, addition and multiplication. Consider the axiom set consisting of the usual
second-order Peano axioms characterizing the natural numbers uniquely up to isomorphism, plus
the defining axioms for addition and multiplication. Without loss of generality, we can assume that
these axioms are combined into a single axiom of the form

∀P : pred(nat) . ϕ

where ϕ is a first-order formula. Let ψ be any sentence over Σ. Let θ: Σ −→ Σ′ add a predicate
P : pred(nat) to Σ. Consider the development graph

Peano

id

PeanoDef
θ

h

Σ

where Σ and Peano are nodes with signature Σ and no local axioms, whereas PeanoDef is a node
with signature Σ′ and local axiom ϕ ⇒ ψ.

Now we have that Peano
id

Σ holds iff each Σ-model has a PeanoDef-expansion. It is
easy to see that this holds iff the second-order formula ∃P : pred(nat).ϕ ⇒ ψ is valid. This is
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equivalent to (∀P : pred(nat).ϕ) |= ψ, i.e. equivalent to the fact that ψ holds in the second-order
axiomatization of Peano arithmetic. By Gödel’s incompleteness theorem [Sho67], the problem to
decide whether this holds is not recursively enumerable. 2

In spite of this negative result, there is still the question of a relative completeness w.r.t. a
given oracle deciding conservative extensions. Such a completeness result has been proved by
Borzyszkowski [Bor02] in a similar setting. In Sect. 6.4, we are going to prove an analogous result,
which additionally is based on oracles for freeness (the latter has not been covered by Borzyszkowski).

An oracle for conservative extensions is a sound logic-specific rule that allows to infer conserva-
tivity annotations for global definition links. It is called complete if for any global definition links
that enjoys the model expansion property, the conservativity annotation may actually be inferred.

An oracle for free theorem links is a sound logic-specific rule that allows to infer free theorem
links. It is called complete if any free theorem link that semantically holds also can be inferred by
the rule.

An elimination oracle for free definition links is a sound logic-specific rule of the form

K
σ

P

K
σ

N

where K
σ

N is arbitrary and P is constructed out of N such that P does not contain any
directly or indirectly ingoing free definition links. Here, soundness just means Mod(N) ⊆ Mod(P ).
Such a rule is called complete, if also Mod(P ) ⊆ Mod(N).

Theorem 5.23 (Completeness) Assume that the underlying logic is complete. Then the rule
system for development graphs with hiding is complete relative to complete oracles for conservative
extensions and free theorem links and a complete elimination oracle for free definition links.

Proof:
See [MAH]. A completeness theorem for an extended set of rules in a heterogeneous setting will

be given in Sect. 6.4.
2

Corollary 5.24 If the underlying logic is complete, the simple structural rules are complete for
proving theorem links between flattenable nodes.

Proof: See [MAH01]. 2

We should note that a complete oracle for conservative extensions is very powerful: it can be used
to obtain a complete proof calculus for development graphs. Namely, in order to decide whether

DG |= K
σ

N, we just add a node P with

K
σ

N

id

P

and ask the oracle whether N
id

P is conservative.
Nevertheless, our completeness theorem is still meaningful. This is because the completeness

proof uses the oracle for conservative extensions only in a limited way. The extensions considered are
those obtained from hiding theorem links in the development graph (pushed along some morphism
into a ‘big’ signature collecting everything). This means, for example, if we use hiding links only
to hide symbols that have been defined using some logic-specific definition scheme, we will need the
oracle for conservative extensions only for checking this definition scheme.

We cannot expect to check conservativity independently of the underlying institution. Therefore,
institution-specific rules are needed. See Sect. 3.1.5 for checking conservativity in Casl.
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List+Order

Perm+Order+Def InsertSortDef

SorterProps

Sorting InsertSort

c

h

h

(a)
⇒

List+Order

Perm+Order+Def InsertSortDef

SorterProps N

Sorting InsertSort

c

h

h

(b)
⇒

List+Order

Perm+Order+Def InsertSortDef

SorterProps N’ N

Sorting InsertSort

c

h

h
c

(c)
⇒

List+Order

Perm+Order+Def InsertSortDef

SorterProps N’ N

Sorting InsertSort

c

h

h
c

h

(d)
⇒

List+Order

Perm+Order+Def InsertSortDef

SorterProps N’ N

Sorting InsertSort

c

h

h
c

(e)
⇒

List+Order

Perm+Order+Def InsertSortDef

SorterProps N’ N

Sorting InsertSort

c

h

h
c

                                                 

  

Figure 5.4: Reduction of theorem links in the running example.

5.7 A Sample Derivation in the Development Graph Calcu-
lus

We now demonstrate the (backward manner) use of the rules with the example development graph
from Sect. 5.4. The goal is to reduce the theorem link between Sorting and InsertSort to
theorem links between flattenable nodes. The derivation is shown in Fig. 5.4. In the first step
(a) the Theorem-Hide-Shift rule is applied, which introduces the new node N and the new global
definition links. In the second step (b), we infer conservative relationships by applying the rule Cons-
Shift. This introduces the new node N ′ and the respective global definition links. Now the theorem
link can be reduced to a hiding theorem link from SorterProps to N by Glob-Decomposition (step
(c)). Now, this hiding theorem link can be reduced to the theorem link between SorterProps and
N ′ using the rule Hide-Theorem-Shift (step (d)). Finally, using Glob-Decomposition again, we get
three local theorem links, two of which can be immediately discarded with Subsumption (step (e)).
The remaining local theorem link can then be proved by reasoning in the logic (via Local Inference
and Basic Inference).
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5.8 Bibliographical Notes

A kernel language for structured specifications in an arbitrary institution has been proposed by San-
nella and Tarlecki [ST88b]. Borzyszkowski [Bor02] has provided a sound and (relatively) complete
proof system. Note that these structured specifications are based on a model-theoretic semantics
for specifications; there are other formalisms with a proof theoretic semantics [RG04].

There are quite a number of institution independent languages for structured specifications
[ST88b, EM90a, DGS91, GT00, DM99, Mos97], one of which also has been extended to the hetero-
geneous case [Tar00]. Most of their constructs can be translated into the formalism of development
graphs, which hence can be seen as a core formalism for structured theorem proving. For the lan-
guage Casl, such a translation has been laid out explicitly in [AHMS00, CoF04, MAH], [MAH] also
covers a few more languages.

Likewise, it should not be difficult to translate various module systems for programming lan-
guages to the formalism of development graphs (as it was done for the module system of the Casl
specification language). Typically, imports of program modules will lead to definition links, while
encapsulation of modules via some export interface will lead to hiding links. Actually, a translation
from the Haskell module system to development graphs has been implemented in the Heterogeneous
Tool Set (see Chap. 7).

The calculus for development graphs has been published in [MAH01] and [CoF04].
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Chapter 6

Foundations of Heterogeneous
Specification

The most prominent approach to heterogeneous specification so far is CafeOBJ with its cube of
eight logics and twelve projections (formalized as institution morphisms) among them [DF02], and
having a semantics based on Diaconescu’s notion of Grothendieck institution [Dia02]. However,
this approach has a limitation: only one type of translation between institution is used, namely
institution morphisms. As we have seen in Chap. 4, institution comorphisms, forward morphisms
and semi-morphisms arise naturally as well.

Tarlecki’s treatment [Tar00] is more general; he introduces a heterogeneous constructs for all
the different kinds of mappings between institutions that have been introduced in Chap. 2. Also,
the beginnings of a proof calculus are provided [Tar00]. However, this calculus only addresses
the question of entailment of a sentence in a specification, and not that of refinement between
specifications. Moreover, completeness of the calculus is an open problem. The goal of the present
chapter is to overcome these limitations while simultaneously staying as simple as possible.

The general idea is to start with a graph of institutions and morphisms, comorphisms and other
types of translations, and then flatten this graph, using a so-called Grothendieck construction. This
construction can be thought of an enriched disjoint union of the institutions involved: while the
institutions are embedded as they are into the Grothendieck construction, the latter has not only
inter-institution signature morphisms, but also new signature morphisms that correspond to intra-
institution translations.

In this way, heterogeneous specification can be viewed as structured specification over a Grothendieck
construction. In Sect. 6.1, we start with the most simple case of the Grothendieck institution over a
graph of institution and comorphisms (the latter is formalised as a so-called indexed coinstitution),
prove semantic properties (Sect. 6.2) and discuss several proof methods for the heterogeneous set-
ting (Sect. 6.3–6.5). Later on, we proceed to the more complex case of mixed types of translations
(Sect. 6.7–6.12).

6.1 Comorphism-Based Grothendieck Institutions

The basic data for comorphism-based heterogeneous specification is a graph of institutions, comor-
phisms and modifications. Remember from Sect. 2.12 that the modifications are needed because we
want to express that certain compositions of comorphisms are the same. This means that we need
to specify both compositions and modifications. The former amounts to starting with a category
instead of just a graph, while the latter amounts to starting with a 2-category, where the 2-cells
correspond to modifications. We hence arrive at the following:

Definition 6.1 Given an index 2-category Ind, a 2-indexed coinstitution is a 2-functor I: Ind∗−→
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CoIns1 into the 2-category of institutions, institution comorphisms and institution comorphism
modifications. In cases where the 2-categorical structure is not needed, we omit the prefix “2-” and
write I: Indop−→CoIns.

Indeed, the name “2-indexed coinstitution” is justified by the fact that the category of institu-
tions and institution comorphisms is isomorphic to the category of coinstitutions and coinstitution
morphisms. A coinstitution is an institution with model translations covariant to signature mor-
phisms, while sentence translations are contravariant.

A 2-indexed coinstitution can be flattened, using the so-called Grothendieck construction. The
basic idea here is that all signatures of all institutions are put side by side, and a signature morphism
in this large realm of signatures consists of an intra-logic signature morphism plus an inter-logic
translation (along some logic comorphism). The other components (sentences, models, satisfaction)
are then defined in a straightforward way.

The Grothendieck construction for indexed institutions has been described in [Dia02]; we de-
velop its dual here. In order to keep the notation simple, we will rely on the definition of in-
stitutions as functors given in Sect. 2.13. In an indexed coinstitution I, we use the notation
Ii = (Signi,Seni,Modi, |=i) for I(i), (Φd, ρd) for the comorphism I(d), and Iu for the modi-
fication I(u).

Definition 6.2 Given a 2-indexed coinstitution I: Ind∗−→CoIns, define the Grothendieck insti-
tution I# as follows:

• signatures in I# are pairs (i,Σ), where i ∈ |Ind| and Σ a signature in I i,

• signature morphisms (d, σ): (i,Σ1) −→ (j,Σ2) consist of a morphism d: j −→ i ∈ Ind and a
signature morphism σ: Φd(Σ1)−→Σ2 in Ij ,

• composition is given by (d2, σ2) ◦ (d1, σ1) = (d1 ◦ d2, σ2 ◦ Φd2(σ1)),

• I#(i,Σ) = Ii(Σ), and I#(d, σ) = Ii(Σ1)
ρd

Ij(Φd(Σ1))
Ij(σ)

Ij(Σ2) .

That is, the room I#(i,Σ) (consisting of sentences, models and satisfaction) for a Grothendieck
signature (i,Σ) is defined component wise, while the corridor for a Grothendieck signature mor-
phism is obtained by composing the corridor given by the inter-institution comorphism with that
given by the intra-institution signature morphism. We also denote the Grothendieck institution by
(Sign#,Sen#,Mod#, |=#).

While the comorphism based Grothendieck construction nearly satisfies all of our needs, one
problem remains. Sometimes, the Grothendieck construction makes too many distinctions between
signature morphisms (cf. Fig. 2.1). Therefore, we use the institution comorphism modifications to
obtain a congruence on Grothendieck signature morphisms: the congruence is generated by

(d′, Iu
Σ: Φd′

(Σ)−→Φd(Σ)) ≡ (d, id: Φd(Σ)−→Φd(Σ)) (6.1)

for Σ ∈ Signi, d, d′: j−→ i ∈ Ind, and u : d ⇒ d′ ∈ Ind. This congruence has the following crucial

property:

Proposition 6.3 ≡ is contained in the kernel of I# (considered as a functor).

Proof: By the definition of comorphism modification, (Ij · Iu) ◦ ρd′

= ρd. But this just means
that equivalent signature morphisms induce the same corridors. 2

Let qI :Sign# −→Sign#/≡ be the quotient functor induced by ≡ (see [Lan72] for the definition
of quotient category). Note that it is the identity on objects. We easily obtain that the functor I#

factors through the quotient category Sign#/≡ :

1Ind∗ is the 2-categorical dual of Ind, where both 1-cells and 2-cells are reversed.
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Corollary 6.4 I#:Sign# −→ InsRoom leads to a quotient Grothendieck institution I#/ ≡
:Sign#/≡−→InsRoom.

By abuse of notation, we denote I#/≡ by (Sign#/≡,Sen#,Mod#, |=#).
When considering e.g. the comorphism going from partial first-order logic PFOL= to first-order

logic FOL=, and the composite comorphism going from PFOL= to Casl and then to FOL=, we
end up in different comorphisms, which are however related by a comorphism modification. The
above identification process in the Grothendieck institution now tells us that it does not matter
which way we choose.

Proposition 6.5 Assume that Ind has cocones for diagrams of 2-cells of shape • • •
that are mapped to pushouts of 2-cells in CoIns. Then the congruence ≡ defined above is explicitly
given by

(d1, σ ◦ Iu1

Σ ) ≡ (d2, σ ◦ Iu2

Σ )

for Σ ∈ Signi, d, d1, d2: j−→ i ∈ Ind, σ: Φd(Σ)−→Σ′ ∈ Signj and u1 : d⇒ d1, u2 : d ⇒ d2 ∈ Ind.

Proof: It is easy to see that the above relation is contain in the relation generated by (6.1):
just apply (6.1) twice. It remains to show that the above relation is a congruence. Reflexivity and
symmetry are clear. Concerning transitivity, assume that

(d1, σ1 ◦ I
u1

Σ ) ≡ (d3, σ1 ◦ I
u2

Σ ) = (d3, σ2 ◦ I
u3

Σ ) ≡ (d5, σ2 ◦ I
u4

Σ ),

the first relation being witnessed by u1 : d2 ⇒ d1, u2 : d2 ⇒ d3, and the second by by u3 : d4 ⇒
d3, u4 : d4 ⇒ d5. Take the pullback in Ind(j, i) of the two spans

d1 d3 d5

d2

u1 u2

d4

u3 u4

d

u u′

By the construction of pushouts of 2-cells in CoIns (see Prop.2.37), the middle square in

Φd1Σ

I
u1
Σ

Φd3Σ

I
u2
Σ I

u3
Σ

Φd5Σ

I
u4
Σ

Φd2Σ
Iu
Σ

σ1

Φd3Σ
Iu′

Σ

σ2

ΦdΣ

σ

Σ′

is a pushout, and the mediating morphism σ leads to the desired form

(d1, σ1 ◦ I
u1

Σ ) = (d1, σ ◦ Iu1◦u
Σ ) ≡ (d5, σ ◦ Iu4◦u′

Σ ) = (d5, σ2 ◦ I
u4

Σ ).

Concerning composition, assume that

(d1, σ ◦ Iu1

Σ ) ≡ (d2, σ ◦ Iu2

Σ )
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via u1 : d⇒ d1, u2 : d ⇒ d2, and

(e1, τ ◦ I
v1

Σ′ ) ≡ (e2, τ ◦ I
v2

Σ′ )

via v1 : e⇒ e1, v2 : e⇒ e2. Then for k = 1, 2,

(ek, σ ◦ Iuk

Σ ) ◦ (dk , τ ◦ I
vk

Σ′ )
= (dk ◦ ek, σ ◦ Iuk

Σ ◦ Φek(τ) ◦ Φek (Ivk

Σ′ )) (definition of Grothendieck composition)
= (dk ◦ ek, σ ◦ Φek (τ) ◦ Φek (Ivk

Σ′ ) ◦ I
uk

Φek (Σ′)) (naturality of Iuk )

= (dk ◦ ek, σ ◦ Φek (τ) ◦ Ivk ·uk

Σ′ ) (functoriality of I)

which shows that we arrive at the desired form. 2

Note that according to Prop. 2.37, under relatively mild assumptions, pushouts of 2-cells in
CoIns exist. Hence, the assumption of Prop. 6.5 that Ind has cocones for diagrams of 2-cells of
shape • • • that are mapped to pushouts of 2-cells in CoIns is quite realistic. In
particular, it is possible to add suitable cocones to Hom-categories in Ind and interpret these as
pushouts in CoIns.

6.2 Amalgamation and Exactness

The importance of amalgamation and exactness properties has been explained in Sect. 2.3. The
theory of amalgamation and exactness in Grothendieck institutions for indexed institutions has
been developed by Diaconescu [Dia02]. Actually, the corresponding theory for indexed coinstitutions
turns out to be much simpler (of course, to compare complexity, we need to choose the 2-categorical
structure to be trivial). Here, we focus on cocompleteness and amalgamation results, since these
are needed for structured proofs (see Sect. 5.3 and 5.6).

Theorem 6.6 Let I: Indop−→CoIns be an indexed coinstitution and K be some small category
such that

1. Ind is K-complete,

2. Φd is cocontinuous for each d: i−→j ∈ Ind, and

3. the indexed category of signatures of I is locally K-cocomplete (the latter meaning that Signi

is K-cocomplete for each i ∈ |Ind|).

Then the signature category Sign# of the Grothendieck institution has K-colimits.

Proof: Apply Theorem 1 of [TBG91] with Ci = Signi and Cm = Φm. Note that Sign# is then
F lat(Cop)op. 2

We cannot expect that this result directly carriers over to the quotient Grothendieck institution,
since quotients of categories generally do not interact well with colimits. However, we can say
something provided that we work with a quotient of the index category Ind:

Proposition and Definition 6.7 Given a 2-category Ind, the relation of being in the same con-
nected component of a Hom-category defines a congruence ≡ on the objects of the Hom-categories,
i.e. the morphisms of Ind. Ind/≡ is the corresponding quotient 1-category.

Lemma 6.8 Given a 2-indexed coinstitution I: Ind∗ −→CoIns, if (d2, σ1) ≡ (d1, σ2) in Sign#,
then d1 ≡ d2.

Proof: Easy induction over the definition of (d1, σ1) ≡ (d2, σ2). 2
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Proposition 6.9 Assume that Ind has cocones for diagrams of 2-cells of shape • • •
that are mapped to pushouts of 2-cells in CoIns. Then the congruence ≡ in Ind defined above is
explicitly given by d1: i−→ j ≡ d2: i−→ j iff there exist d: i−→ j ∈ Ind and u1: d−→ d1, u2: d−→
d2 ∈ Ind.

Proof: Analogous to the proof of Prop. 6.5. 2

Theorem 6.10 Let I: Ind∗−→CoIns be a 2-indexed coinstitution such that

1. Ind/≡ is K-complete for some small category K,

2. each connected component (considered as a subcategory) of a Hom-category Ind(i, j) has a
distinguished canonical weakly terminal object, such that these canonical objects are stable
under composition,

3. (d, σ1) ≡ (d, σ2) in Sign# implies σ1 = σ2,

4. Φd is cocontinuous for each d: i−→j ∈ Ind, and

5. the indexed category of signatures of I is locally K-cocomplete.

Then the signature category Sign#/ ≡ of the quotient Grothendieck institution has K-colimits.
(Note that assumptions 2 and 3 are vacuous in case of ordinary indexed coinstitutions; we then get
Theorem 6.6 as a special case.)

Proof: The proof idea follows that of Theorem 1 in [TBG91], the necessary modifications being
caused by the congruences. By assumption 2, we can always choose representatives d ∈ Ind of
congruences classes [d] ∈ Ind/ ≡ in such a way that d is a canonical weakly terminal object.
Similarly, we can always choose representatives (d, σ) of congruence classes [(d, σ)] in Sign#/≡ in
such a way that d is the canonical weakly terminal object in its connected component: given an
arbitrary (d, σ: Φd(Σ)−→Σ′) in Sign#, let u: d=⇒ t be a 2-cell into the canonical weakly terminal
object. Then (t, σ ◦ Iu

Σ) is equivalent to (d, σ).

Given a diagram D:K −→ Sign#/ ≡, we introduce the notation (ik,Σk) for D(k) (k ∈ |K|)
and [(dm, σm)]: (ik,Σk) −→ (ik′ ,Σk′ ) for D(m) (m: k −→ k′ ∈ K). Let D̄:K −→ Ind/ ≡ be the
projection of D to the first component; by Lemma 6.8 this is a well-defined diagram in Ind/≡. By
assumption 1, D̄ has a limit ([mk]: i−→ ik)k∈|K|.

Let the diagram G:K−→Signi be defined by

G(k) = Φmk(Σk) (k ∈ |K|)
G(m) = Φmk(σm) (m: k′−→k ∈ K)

Note that mk is chosen to be canonical weakly terminal in [mk]. By assumption 5, G has a colimit
(σk:G(k)−→Σ)k∈|K|. We show that ([(mk, σk)]: (ik,Σk)−→(i,Σ))k∈|K| is a colimit of D.

Since equality implies congruence, ([(mk , σk)])k∈|K| is a cocone of D. Let ([(nk , θk)]: (ik,Σk)−→
(i′,Σ′))k∈|K| be another cocone. By Lemma 6.8, ([nk]: i′−→ ik)k∈|K| is a cocone for D̄. Hence there
is a unique [d]: i′−→ i with [mk] ◦ [d] = [nk]. Since we choose representatives canonically in a way
closed under composition, mk ◦ d = nk.

By assumption 4, (Φd(σk))k∈|K| is a colimit of Φd ◦ G. Note that the source of Φd(σk) is

Φd(G(k)) = Φd(Φmk(Σk)) = Φnk(Σk). By the cocone property of ([(nk, θk)])k∈|K|, (nk, θk) ≡
(dm ◦ nk′ , θk′ ◦ Φnk′ (σm)) for m: k −→ k′ ∈ K. By the assumption of weakly terminal canon-
ical representatives, nk = dm ◦ nk′ . By assumption 3, θk = θk′ ◦ Φnk′ (σm). This shows that
(θk: Φnk(Σk) −→ Σ′)k∈|K| is a cocone for Φd ◦ G. Hence, there is a unique τ : Φd(Σ) −→ Σ′ with

τ ◦ Φd(σk) = θk. Then [(d, τ)]: (i,Σ) −→ (i′,Σ′) is a unique morphism in Sign#/ ≡ such that
[(d, τ)] ◦ [(mk, σk)] = [(nk, θk)]. 2
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By contravariancy of I, assumption 2 of the above proposition means that if institution comor-
phisms are linked by modifications, there is always a “smallest” comorphism that can be embedded
into the other ones. This is quite realistic in practice. However, it is not so realistic to assume
that these smallest comorphisms are stable under composition. For example, the composition of the
smallest embedding of FOL= into Casl with the smallest embedding of Casl into SOL= will give
not given the smallest embedding of FOL= into SOL=, but rather a more complex one.

Assumption 3 basically means that the congruence does not identify signature morphisms within
one institution, i.e. that each signature category Signi is faithfully embedded into Sign#/≡. This
assumption is a reasonable and desirable property in practice. We record this explicity:

Proposition 6.11 Under the assumptions of Theorem 6.10, embi:Signi −→Sign#/ ≡ is an em-
bedding preserving colimits.

Proof: Clearly, embi is injective on objects. Faithfulness follows from assumption 3. Preservation
of colimits can be seen by inspecting the construction of the proof of Theorem 6.10: if the indices
are all i, then the colimit is just that in Signi. 2

Let us now come to exactness. We extend the notion of semi-exactness (see Sect. 2.3) to the
indexed case. An 2-indexed coinstitution I: Ind∗−→CoIns is called (weakly) locally semi-exact, if
each institution I i is (weakly) semi-exact (i ∈ |Ind|). Assuming that equivalence classes of 2-cells
have canonical weakly terminal objects, I is called (weakly) semi-exact if for each pullback in Ind/≡

i j1
[d1]

j2

[d2]

k
[e2]

[e1]

the square

Modi(Σ) Modj1(Φd1(Σ))
β

d1
Σ

Modj2(Φd2(Σ))

β
d2
Σ

Modk(Φe1(Φd1(Σ))) = Modk(Φe2(Φd2(Σ)))
β

e2
Σ

β
e1
Σ

is a (weak) pullback for each signature Σ in Signi, where canonical weakly terminal representatives
are used.

Theorem 6.12 Assume that the 2-indexed coinstitution I: Ind∗−→CoIns fulfills the assumptions
of Theorem 6.10. Then the quotient Grothendieck institution I#/≡ is (weakly) semi-exact if and
only if

1. I is (weakly) locally semi-exact,

2. I is (weakly) semi-exact, and

3. for all canonical weakly terminal d: i−→j ∈ Ind, in Id is (weakly) exact.

Proof: “Only if”, 1: Following Prop. 2 in [Dia02], it is easy to see that for each i ∈ |Ind|,
the model functor Modi is the restriction Mod#(i, ) of the model functor of the Grothendieck
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institution to the subcategory Signi of the Grothendieck signature category Sign#/≡.

(Signi)op embi

Modi

(Sign#/≡)op

Mod#

CAT

By Prop. 6.11, the canonical injection embi:Signi−→Sign# preserves colimits, hence Modi takes
pushouts to (weak) pullbacks because Mod# does so.

“Only if”, 2: Given a pullback in Ind/≡

i j1
[d1]

j2

[d2]

k
[e2]

[e1]

choose d1, d2, e1, e2 canonically. By the construction of colimits in Theorem 6.10, for any signature
Σ in Signi,

(i,Σ)
[(d1,id)]

[(d2,id)]

(j1,Φd1Σ

[(e1,id)]

(j2,Φd2Σ)
[(e2,id)]

(k,Φe1Φd1Σ) = (k,Φe2Φd2Σ)

is a pushout in Sign#/≡ and is therefore mapped to a (weak) pullback by the model functor. This
gives exactly the desired property.

“Only if”, 3: Let d: j−→ i by canonical and σ: Σ1−→Σ2 a signature morphism in Signi. By the
construction of colimits in Theorem 6.10,

(i,Σ1)
[(id,σ)]

[(d,id)]

(i,Σ2)

[(d,id)]

(j,ΦdΣ1)
[(id,Φdσ)]

(j,ΦdΣ2)

is a pushout in Sign#/ ≡ and is therefore mapped to a (weak) pullback by the model functor.
Again, this gives exactly the desired property.

“If”: Consider an arbitrary pushout in Sign#/≡

(i,Σ0)
[(d1,σ1)]

[(d2,σ2)]

(j1,Σ1)

[(e1,θ1)]

(j2,Σ2)
[(e2,θ2)]

(k,Σ′)
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and assume that representatives are chosen canonically. By the construction of colimits in Theo-
rem 6.10, the above pushout can be expressed as the following composition of four pushout squares:

(i,Σ0)
[(d1,id)]

[(d2,id)]

(j1,Φ
d1Σ0)

[(id,σ1)]

[(e1,id)]

(j1,Σ1)

[(e1,id)]

(j2,Φ
d2Σ0)

[(e2,id)]

[(id,σ2)]

(k,Φe1Φd1Σ0) = (k,Φe2Φd2Σ0)
[(id,Φe1σ1)]

[(id,Φe2σ2)]

(k,Φe1Σ1)

[(id,θ1)]

(j2,Σ2)
[(e2,id)]

(k,Φe2Σ2)
[(id,θ2)]

(k,Σ′)

Now the model functor of the quotient Grothendieck institution maps the upper left pushout to a
(weak) pullback because the 2-indexed coinstitution is (weakly) semi-exact, maps the lower right
pushout to a (weak) pullback because the 2-indexed coinstitution is (weakly) locally semi-exact, and
maps the remaining two squares to (weak) pullbacks because the comorphisms for canonical index
morphisms are (weakly) exact. Since (weak) pullback squares compose, the result follows. 2

Theorems 6.6, 6.10 and 6.12 already provide a good theoretical basis for heterogeneous specifi-
cation. However, in some cases, these theorems are not general enough: Given a diagram J → Ind,
its limit must be the index of some institution that can serve to encode (via comorphisms) all
the institutions indexed by the diagram. While the existence of such an institution may not be
a problem (e.g. higher-order logic often serves as such a “universal” logic for coding other logics),
the uniqueness condition imposed by the limit property is more problematic. This means that any
two such “universal” institutions must have isomorphic indices and hence be isomorphic themselves.
This might work well is some circumstances, but may not desirable in others: after all, a num-
ber of non-isomorphic logics, such as classical higher-order logic, the calculus of constructions and
rewriting logic have been proposed as such a “universal” logic.2

A related problem3 is that the assumptions of Theorem 6.12 are too strong to be met for all
practical examples. E.g. the Casl institution is not weakly semi-exact, and its encoding into HOL=

is neither exact, nor does it have a cocontinuous signature translation.
We hence now generalize the previous results by replacing weak exactness with quasi-exactness,

i.e. amalgamable colimits with weakly amalgamable cocones, and thereby dropping the uniqueness
requirement. Hence, several non-isomorphic “universal” institutions may coexist peacefully with
our approach, and also non-exact institutions and comorphisms may be included in the indexed
coinstitution serving as basis for heterogeneous specification.

We first extend Def. 2.8 to indexed coinstitutions:

Definition 6.13 An indexed coinstitution I: Indop−→CoIns is called locally quasi-exact, if each
institution Ii is quasi-exact (i ∈ |Ind|). It is called quasi-exact, if for each diagram D: J −→ Ind,
there is some cone (l, (dj)j∈|J|) over D whose image under I is weakly amalgamable. Quasi-semi-
exactness is the restriction of these notions to diagrams of shape • • • .

These notions will play a central role in Sect. 6.4. Here, we investigate their behaviour in
Grothendieck institutions.

However, for the index level, even quasi-exactness may be too strong. Consider the diagram

Casl

ModalCasl CoCasl

2This problem can possibly be circumvented by formally adjoining limits to the index category, which are then
interpreted using Grothendieck institutions over subdiagrams. However, this would add considerable complexity to
the construction.

3This problem already has been noted by Diaconescu [Dia02] for his more special version of Theorem 6.12; see
Sect. 6.7 why we consider it to be more special.
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How do we obtain a weakly amalgamable cocone? A simple way is to use the embedding of
ModalCasl into Casl (Sect. 4.2) and compose it with the inclusion of Casl into CoCasl:

Casl

ModalCasl CoCasl

CoCasl

but the resulting square does not even commute.4 The reason is that on the way from Casl to
CoCasl via ModalCasl, ModalCasl adds an implicit set of worlds, which is made explicit by
the embedding of ModalCasl into Casl.5 To obtain a commuting square, we would need to have
a comorphism from CoCasl to itself which adds an explicit set of worlds. However, this solution
is rather inelegant, since it means that any (present of future) extension of Casl without possible
world semantics (e.g. for HasCasl), we need a similar comorphism.

We hence prefer to split the square into two lax triangles:

Casl

ModalCasl CoCasl

CoCasl

and indeed, the square weakly amalgamable in the following sense:

Definition 6.14 Given a 2-indexed coinstitution I: Ind∗ −→ CoIns, a square consisting of two
lax triangles of index morphisms

i

j2

d2

u2 u1
j1

d1

k

e2 e1
d

is called (weakly) amalgamable, if the following diagram is a (weak) pullback

Modi(Σ) Modj1(Φd1(Σ))
βd1
Σ

Modk(Φd(Σ))

βd
Σ

Modk(Φe1(Φd1(Σ)))

βe1
Σ

Modk(Iu1
Σ )

Modj2(Φd2(Σ)) Modk(Φe2(Φd2(Σ)))
βe2
Σ

Modk(Iu2
Σ )

•

4Of course, we could also embed everything into HOL, which would not cause any relevant change to the subsequent
discussion.

5See section 3.2.6 for the reason why the set of worlds cannot be omitted even for models of signatures without
modalities.
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where the lower right square is a pullback. That is, each pair consisting of a Φd2(Σ)- and a Φd1(Σ)-
model with the same Σ-reduct is (weakly) amalgamable to a pair consisting of a Φe2(Φd2(Σ))- and
a Φe1(Φd1(Σ))-model having the same Φd(Σ)-reduct.

I is called lax-quasi-exact, if each for pair of arrows j1
d1

i j2
d2

in Ind, there is some
square

i

j1 j2

k

consisting of a weakly amalgamable square of lax triangles, such that additionally Ik is quasi-semi-
exact.

Note that this property is different from (and indeed, incomparable to) amalgamability of the
individual lax triangles:

Definition 6.15 Given a 2-indexed coinstitution I: Ind∗−→CoIns, a lax triangle of index mor-
phisms

i

j

k

is called (weakly) amalgamable, if I maps it to a (weakly) amalgamable lax triangle in the sense of
definition 2.36.

Theorem 6.16 For a 2-indexed coinstitution I: Ind∗−→CoIns, assume that

• I is lax-quasi-exact, and

• all institution comorphisms in I are weakly exact.

Then I#/≡ is quasi-semi-exact.

Proof:

Let a diagram (j1,Σ1) (i,Σ)
(d1,σ1) (d2,σ2)

(j2,Σ2) in Sign# be given. Let

i

j2

d2

u2 u1
j1

d1

k

e2 e1
d
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be a weakly amalgamable square of two lax triangles with Ik quasi-semi-exact. By the latter
property, there are θ1, θ2 such that

Φd(Σ)

Iu2
Σ

Iu1
Σ

Φe1(Φd1(Σ))
Φe1σ1

Φe1(Σ1)

θ1Φe2(Φd2(Σ))

Φe2σ2

Φe2(Σ2)
θ2

Σ′

is a weakly amalgamable square, which leads to weak amalgamability of the lower right square in

(i,Σ)
(d1,id)

(d2,id)

(d,id)

(j1,Φd1(Σ))
(id,σ1)

(e1,id)

(j1,Σ1)

(e1,id)

(k,Φd(Σ))

(id,Iu2
Σ )

(id,Iu1
Σ )

(k,Φe1(Φd1(Σ)))
(id,Φe1(σ1))

(k,Φe1(Σ1))

(id,θ1)(j2,Φd2(Σ))

(id,σ2)

(e2,id)
(k,Φe2(Φd2(Σ)))

(id,Φe2(σ2))

(j2,Σ2)
(e2,id)

(k,Φe2(Σ2))
(id,θ2)

(k,Σ′)

The upper right and lower left squares are weakly amalgamable by weak exactness of Ie1 and
Ie2 . The pair of the remaining two squares is jointly weakly amalgamable since it is induced by
a weakly amalgamable square of two lax triangles (and note that squares in Sign#/≡ induced by
lax triangles in Ind commute by definition of ≡). Since weakly amalgamable squares can be pasted
together, we get a weakly amalgamable cocone for the original diagram. 2

Call a diagram acyclic (connected) if the graph underlying its index category is acyclic (con-
nected) when the identity arrows are deleted.

Corollary 6.17 Let I satisfy the assumptions of Theorem 6.16. Then I#/≡ admits weak amal-
gamation of finite acyclic connected diagrams.

Proof: In the sequel, we will use terms like “connected”, “maximal”, “lower bound” for small
categories, when we really mean the pre-order obtained from the category by collapsing the hom-sets
into singletons. A maximal element in a pre-order is an element which is equivalent to any element
above it.

Let D: J −→ Sign# be a connected diagram and let Max be the set of maximal nodes in J .
We successively construct new diagrams out of J . Take two nodes in Max that have a common
lower bound (if two such nodes do not exist, the diagram is not connected). By Theorem 6.16, there
is a weak amalgamating cocone for the sub-diagram consisting of the two maximal nodes and the
lower bound (together with the arrows from the lower bound into the maximal nodes). Extend the
diagram with the cocone. The diagram thus obtained now has a set of maximal nodes whose size
is decreased by one. By iterating this construction, we get a diagram with one maximal node. The
maximal node then is just the tip of a weakly amalgamating cocone for the original diagram. 2
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6.3 Grothendieck Logics and Heterogeneous Borrowing

How to obtain an entailment system for the Grothendieck institution, i.e. turn it into a logic in
the sense of Def. 2.9? The answer is easy if all the involved institutions are already logics, i.e. the
indexed coinstinstitution is an indexed cologic. The latter notion is defined entirely analogous to
that of an indexed coinstitution, as well as its Grothendieck constructions (just as the satisfaction
relation, the entailment relation of a Grothendieck logic is constructed component wise).

Proposition 6.18 The Grothendieck logic L# of an indexed cologic L: Indop −→ coLog is com-
plete if and only if L is locally complete (i.e. each individual logic is complete).

Proof: The logical rooms of the Grothendieck logic L# are just logical rooms of some individual
logic in L. Hence, global completeness is equivalent to local completeness. 2

However, in many cases, not every institution will come with an entailment system (let alone a
complete one); hence, it is difficult to apply the above proposition in practice.

We therefore follow a different path an assume that we have an indexed coinstitution where
each institution is encoded (via a comorphism) in some expressive “universal” institution with good
proof support, such that heterogeneous proof goals can be translated into homogeneous ones (over
the “universal” institution), using a heterogeneous variant of the borrowing technique introduced in
Sect. 5.2.

To this end, fix a logic U = (USign,USen,UMod, |=,`) which we will very informally view as
a “universal” logic (with sufficient expressiveness to represent many logics, and with suitable tool
support). We will also denote the institution (USign,USen,UMod, |=) by U .

Definition 6.19 The category of comorphisms into U , denoted by Comorphisms(U), has as ob-
jects comorphisms ρ: I−→U from some institution I into U , while morphisms (ρ, τ) from ρ1: I1−→U
to ρ2: I2−→U consist of a comorphism ρ: I1−→I2 and a comorphism modification τ : ρ1−→ρ2 ◦ρ. If
(ρ, τ): ρ1−→ρ2 and (ρ′, τ ′): ρ2−→ρ3, the composition (ρ′, τ ′) ◦ (ρ, τ) is given by (ρ′ ◦ ρ, τΦρ ◦Φρ′

τ),
where Φρ is the signature translation component of ρ, and similarly for ρ′.

An indexed comorphism is just a functor C: Indop−→Comorphisms(U).

Theorem 6.20 Given an indexed institution comorphism C: Indop−→Comorphisms(U), we can
form its Grothendieck comorphism C#: (Π1 ◦ C)# −→ U , which is a comorphism going from the
Grothendieck institution of the indexed coinstitution Π1 ◦C formed from the source institutions and
comorphisms involved in C.

Proof: Using the notation of institution as functors from Sect. 2.13, let C(i) be denoted by (Φi, ρi)
and C(d: j−→ i) denoted by ((Φd, ρd), τd): (Φi, ρi)−→ (Φj , ρj). Note that the (Φd, ρd) are not used
in the sequel, but they contribute to Π1 ◦ C.

We need to construct a comorphism C# = (Φ, ρ): (Π1 ◦ C)# −→ U . On signatures, Φ(i,Σ) :=

Φi(Σ), and on signature morphisms, Φ( (i,Σ1)
(d,σ)

(j,Σ2) ) := Φj(σ) ◦ τd
Σ1

. On rooms, we just

define ρ(i,Σ) := ρi
Σ. 2

Proposition 6.21 Given an indexed comorphism C: Indop −→Comorphisms(U), if all the indi-
vidual comorphisms C(i) admit model expansion, then also C# admits model expansion.

Proof: Obvious by the component wise construction. 2

Definition 6.22 Given an indexed comorphism C: Indop −→ Comorphisms(U) and a class of
signature morphisms D in (Π1 ◦ C)#, C is said to admit weak D-amalgamation if

• for each i ∈ Ind, C(i) admits weak E-amalgamation, where E = {σ | (d, σ) ∈ D for some d: i−→
j ∈ Ind}, and
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• for each d ∈ Ind such that (d, σ) ∈ D for some σ, C(d) admits weak amalgamation in the sense
of Def. 2.36.

Proposition 6.23 Given an indexed comorphism C: Indop −→ Comorphisms(U) and a class of
signature morphisms D in (Π1 ◦ C)#, if C admits weak D-amalgamation, then C# also admits weak
D-amalgamation.

Proof: Given (d, σ) ∈ D, the relevant square (where u is the index for the “universal” institution
U)

Modi(Σ1) Modj(Φd(Σ1))
βd
Σ1

Modj(Σ2)
Modi(σ)

Modu(Φi(Σ1))

βi
Σ1

Modu(Φj(Σ1))

βj

Φd(Σ1)

Modu(τd
Σ1

)

Modu(Φj(Σ2))

βj
Σ2

Modu(Φj(σ))

is obviously a composition of two weakly amalgamable squares, hence itself weakly amalgamable.
2

Corollary 6.24 Given an indexed comorphism C: Indop−→Comorphisms(U), if all the individual
comorphisms C(i) admit model expansion, and moreover C admits weak D-amalgamation, then
C# admits global borrowing for development graphs containing hiding links only along signature
morphisms in D.

This means that global theorem links in heterogeneous development graphs can be derived using
only the entailment relation of U (and the proof rules for development graphs from Sect. 5.6).

6.4 Heterogeneous Proofs

Often, heterogeneous borrowing is not feasible. One problem is a possible lack of weak amalga-
mation, as indicated in Sect. 6.2. Another problem is that while it is in principle often possible
to encode every institution into some single “universal” logic as target for comorphisms, it may
be much more desirable to use specific tools designed for specific (sub)logics, which may be far
more efficient than a coding to some “universal” logic. This means that it would be desirable to
have the possibility of heterogeneous proving, with proofs being constructed out of sub-proofs in
different proof systems. A first attempt in this direction are heterogeneous bridges [BCL96, CBL99].
However, these have no clear semantical basis (a more detailed discussion is given in Sect. 6.6). We
here aim at clear semantical basis for heterogeneous specification and proofs, where in the extreme
for each proof goal the best-suited logic could be chosen individually, based on the proof calculus
for development graphs given in Sect. 5.6. The central notion is that of heterogeneous development
graphs:

Definition 6.25 A heterogeneous development graph is just a development graph over a Grothendieck
institution.

In Sect. 6.3, we have introduced heterogeneous borrowing (through structured proving in U).
Here, we use instead encodings of the individual institutions into (possibly varying) logics that
are present in the indexed coinstitution. We call this internalized borrowing, which just means
translation of a proof goal or refinement goal into another logic, using heterogeneous development
graphs. Shifting of proof goals is sound if the involved comorphism admit model expansion. This
allows us to choose the logic for carrying out proofs in a very flexible way — typically the most
specific logic in which the theory and the goal can still be expressed. We therefore arrive at truly
heterogeneous proofs, via structured proving in the Grothendieck institution. We will see, however,
that due to the problems with amalgamation discussed in Sect. 6.2, some of the tools for development
graphs need to be adapted to the heterogeneous case in order to work smoothly.
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N

(d,id)cons

K

if d is marked as
model-expansive and
K is isolated.

(Model-Expansion)

N K

θ′ c

N ′
σ′ K ′

N σ K

θ′ c

N ′ K ′

θ: ΣN −→ΣN ′

,
σ′ ◦ θ = θ′ ◦ σ,

θ(ΨN ) ⊆ ΨN ′

K ′ is isolated
(Local Borrowing)

N
σ

K K
θ

P

N
θ◦σ

P
(Composition)

Figure 6.1: New proof rules for heterogeneous proofs

In particular, we add the three proof rules given in Fig. 6.1 to the proof calculus for development
graphs given in Sect. 5.6. The rule (Model-Expansion) is a conservativity rule for comorphisms:
if a comorphism is model-expansive, then we can treat the corresponding Grothendieck signature
morphism as a semantically conservative morphism. The rules (Local borrowing) and (Compo-
sition) allow the simulation of “heterogeneous bridge” proofs.

Theorem 6.26 For a 2-indexed coinstitution I: Ind∗−→CoIns (with some of the institutions also
being logics), the proof calculus for heterogeneous development graphs given in Sect. 5.6, extended
by the rules in Fig. 6.1 is sound for I#/≡. If, moreover,

• I is lax-quasi-exact,

• all institution comorphisms in I are weakly exact,

• there is a set L of institutions in I that come as complete logics,

• the rule system is extended with a (sound and complete) oracle for conservative extension for
each logic in L,

• all institutions in L are quasi-semi-exact,

• from each institution in I, there is some model-expansive comorphism in I going into some
logic in L,

• there is some set D of index morphisms in Ind such that for each diagram

(j1,Σ1) (i,Σ)
(d1,σ1) (d2,σ2)

(j2,Σ2)

in Sign# with d2 ∈ D, the corresponding weakly amalgamable square of lax triangles

i

j2

d2

u2 u1
j1

d1

k

e2 e1
d

is such that the left lax triangle is weakly amalgamable and βe1 is model-expansive,
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then the proof calculus complete for those heterogeneous development graphs over I#/≡ that use
hiding links are only with signature morphisms whose comorphism component is in D.

Proof: Soundness:
The soundness of most of the rules follows from the soundness proof in Sect. 5.6 (note that the

rule (Theorem-Hide-Shift) has the needed weak amalgamabilities as side condition, hence we do
not need quasi-exactness of the institutions). There are three new rules, which we now prove to be
sound:

(Model-Expansion): By assumption, Id is model-expansive. But ρd is just I#(d, id). Since N
is isolated, any M -model can be (d, id)-expanded to an N -model.

(Local Borrowing): Let M be an K-model. Since by assumption K
θ′

K ′ is conservative and

K ′ is isolated, M has a θ′-expansion to an K ′-model M ′. By the assumption N ′ σ′

K ′,

M ′|θ′ |= ΨN ′

, hence by the first side condition, M ′|σ′ |= θ(ΨN ′

). By the satisfaction condition,
M ′|σ′◦θ = M ′|θ′◦σ |= ΨN ′

, i.e. M |σ |= ΨN ′

.

(Composition): Let M be a P -model. By the second assumption, M |θ is a K-model, and by the
first assumption, M |θ◦σ |= ΨN . 2

Completeness:
We first need a preparatory lemma:

Lemma 6.27 If P is constructed as in the rule (Theorem-Hide-Shift), then any ΣP -model
satisfying ThDG(P ) is already a P -model.

Proof: We use the notation introduced in connection with the construction of P in the rule
(Theorem-Hide-Shift). For i ∈ |I |, let len(i) be the length of the path i, and let p be the
maximum of all len(i), i ∈ |I |. We prove by induction over p− len(i) that for all P -models M and
all paths i ∈ |I | containing no local definition link, M |µi

is a G(i)-model. Since G(〈N〉) = N , the

result then follows. Let i = 〈 K
l1 . . . ln

N 〉 ∈ |I | be a path containing no local definition

link. By induction hypothesis, for each ingoing non-local link O
l

K, M |µj
is an O-model for

j = 〈 O
l

K
l1 . . . ln

N 〉. Now

• if l = O
σ

K, M |µi◦σ = M |µj
, and since O = G(j)

µj

P ∈ S, M |µj
|= ΣO;

• if l = O
σ

K, M |µi◦σ = M |µj
, and M |µi

σ-reduces to an O-model;

• if l = O
σ

hide
K, M |µj◦σ = M |µi

, and M |µi
σ-expands to an O-model.

Hence in all cases, the link l is satisfied by M |µi
. Since K = G(i)

µi

P , M |µi
also satisfies

the local axioms in K. Hence, M |µi
is a model of K = G(i). 2

We now come to the proof of the completeness theorem.

Assume DG |= K
σ

N. We want to show DG ` K
σ

N.
Let D: I −→ Sign and P be as in the rule (Theorem-Hide-Shift), noting that by Corol-

lary 6.17, a weakly amalgamable cocone exists, since the diagram constructed in the rule is acyclic
and connected. Let (iP ,ΣP ) be the signature of P , and let M be an (iP ,ΣP )-model satisfying
ThDG(P ). By Lemma 6.27, M is a P -model. Hence, M |µ〈N〉

is an N -model, and by the assumption

DG |= K
σ

N, M |µ〈N〉◦σ is a K-model. We now have for any O
θ

K:
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1. M |µ〈N〉◦σ◦θ |= ΨO by Prop. 5.13. By the satisfaction condition for the Grothendieck institution

I#/≡, we obtain M |= µ〈N〉(σ(θ(ΨO))). Since M was an arbitrary ThDG(P )-model, we have

shown ThDG(P ) |= µ〈N〉(σ(θ(ΨO))). Let d: l−→ i ∈ Ind such that Id is a model-expansive

comorphism from Ii to Il, where the latter also is a complete logic (this exists by the sixth
assumption of the theorem). Obtain a new development graph DG ′ from DG by letting P ′ be

a new node with signature (l,Φd(ΣP )) and with one ingoing definition link P
(d,id)

P ′.

O
µ〈N〉◦σ◦θ

id

P

(d,id)

O
(d,id)◦µ〈N〉◦σ◦θ

P ′

By the satisfaction condition for comorphism corridors, we get ThDG(P ′) |= αd(µ〈N〉(σ(θ(ΨO)))).

By completeness of the logic I l, we obtain ThDG(P ′) ` αd(µ〈N〉(σ(θ(ΨO)))). By (Basic In-

ference), DG ` P ′ ⇒ αd(µ〈N〉(σ(θ(ΨO)))). By (Local Inference), DG ` O
(d,id)◦µ〈N〉◦σ◦θ

P ′.
Since by assumption, all comorphisms are model-expansive, by (Model-Expansion), (d, id)

is conservative. By (Subsumption) and (Borrowing), DG ` O
µ〈N〉◦σ◦θ

P .

2. For Q
(d2,σ2)

hide
O, by Theorem 6.16, we obtain a weakly amalgamating cocone

ΣO

(d2,σ2)

µ〈N〉◦σ◦θ

ΣP

(e1,θ1)

ΣQ
(e2,θ2)

(k,Σ′)

By inspecting the proof of Theorem 6.16, we can assume that the above diagram is split up
in the following way:

(i,Σ)
(d1,id)

(d2,id)

(d,id)

(j1,Φd1(Σ))
(id,σ1)

(e1,id)

(j1,Σ1)

(e1,id)

(k,Φd(Σ))

(id,Iu2
Σ )

(id,Iu1
Σ )

(k,Φe1(Φd1(Σ)))
(id,Φe1(σ1))

(k,Φe1(Σ1))

(id,θ1)(j2,Φd2(Σ))

(id,σ2)

(e2,id)
(k,Φe2(Φd2(Σ)))

(id,Φe2(σ2))

(j2,Σ2)
(e2,id)

(k,Φe2(Σ2))
(id,θ2)

(k,Σ′)

With loss of generality, we can assume that Ik is in the set L of complete logics (if not, use
the sixth assumption of the theorem to end up in such a logic, using model-expansiveness to
keep the weak amalgamation property). We will interchangeably also use the notation of the
diagram in the proof of Theorem 6.16, i.e. we put (d1, σ1) := µ〈N〉 ◦ σ ◦ θ and (j1,Σ1) :=
(iP ,ΣP ).
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We now construct a new development graph DG ′ from DG by introducing a new node Q′ with
signature (k,Σ′), a new node P ′ with signature (k,Φe1(Σ1)). P ′ has one ingoing definition

link P
(e1,id)

P ′, while Q′ has two ingoing definition links Q
(e2,θ2)

Q′ and P ′
(id,θ1)

Q′.

O
θ

K
σ

?
N

µ〈N〉

P

(e1,id)

P ′

(id,θ1)

Q

(d2,σ2) hide

(e2,θ2)
Q′

We now show the latter link to be conservative: Since by assumption, hiding is done only
against signature morphisms with comorphism component in D, Ie1 is model-expansive, and

by (Model-Expansion), P
(e1,id)

cons P ′. For any P ′-model M ′, M ′|(e1,id)◦(d1,σ1) has a (d2, σ2)-

expansion to a Q-model M2. Since d2 ∈ D, the upper left square in the diagram from
Theorem 6.16 is weakly amalgamable, and hence M ′|(id,Φe1(σ1))◦(id,Iu1

Σ1
) and M2|(id,σ2) can

be amalgamated to a (k,Φe2(Φd2(Σ)))-model. The latter can be amalgamated with M2 to
a (k,Φe2(Σ2))-model, which in turn can be amalgamated with M ′ to a (k,Σ′)-model that
by construction is a Q′-model. By the oracle for conservativity in logic Ik (note that by

assumption all logics in L come with such an oracle), we get P ′
(id,θ1)

cons
Q′. With (Cons-

Composition), we get P
(e1,θ1)

cons
Q′. Now DG ′ ` Q

(e2,θ2)
Q′ by (Subsumption). By (Hide-

Theorem-Shift), we get DG ′ ` Q
µ〈N〉◦σ◦θ

hide (d2,σ2)
P .

Let DG1 be the union of all the DG ′ constructed in steps 1 and 2 above (assuming that all the

added nodes are distinct). By (Glob-Decomposition), we get DG1 ` K
µ〈N〉◦σ

P . By (Theorem-

Hide-Shift), we get DG1 ` K
σ

N. Finally, noting that all graph extensions in the proofs are

faithful, by (Faithful extension), we obtain DG ` K
σ

N. 2

Note that due to Gödel’s incompleteness theorem, one cannot expect to drop the oracle for
conservative extensions, see Prop. 5.22. The crucial achievement here is to restrict the oracle to
intra-logic conservativity.

Further note that in contrast to Theorem 6.12, we need neither cocontinuity nor exactness of
the comorphism signature translations here. Moreover, we need quasi-exactness only for some of
the logics; this allows us to include logics which are not quasi-exact, such as Casl.

6.5 A Sample Heterogeneous Proof

Consider the sample heterogeneous specification in Fig. 6.2. It starts with a theory in IndexedProp-
Modal (see Sect. 3.2.5), specifying something about persons that may be married, dead and immor-
tal. (Intuitively, the modalities are interpreted as temporal ones here.) This theory is then translated
to FOL along the comorphism making worlds explicit defined in Sect. refsec:ModalComorphisms.
Then, the resulting theory is enriched by some first-order formula involving existential quantifi-
cation. Call the thus obtained theory T . Finally, using the then %implies annotation, a proof
obligation ϕ is expressed. The proof obligation is again written in IndexedPropModal, but it is
implicitly coerced to FOL using the same comorphism as above in order to be compatible with T .
The proof obligation expresses that T implies ϕ.
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spec Marriage =
{ logic IndexedPropModal

sort Person
props isMarried , immortal , dead : Person;

isMarriedTo : Person × Person
var x , y : Person
• isMarriedTo(x , y) ⇒ ¬dead(x )
• immortal(x ) ⇔ ¬3dead(x ) } with logic −→ FOL

then var x : Person; w : World
• isMarried(x ,w) ⇒ ∃y : Person • isMarriedTo(x , y ,w)

then %implies
logic IndexedPropModal
var x : Person
• (�isMarried(x )) ⇒ immortal(x )







implicitly
coerced
to FOL

end

Figure 6.2: A sample heterogeneous specification

FOL1

(id,id)

FOL2
(id,id)

IPM1

(ρ,id)

IPM2

(ρ,id)

Local axioms:

IPM1 isMarriedTo(x, y) ⇒ ¬dead(x)
immortal(x) ⇔ ¬3dead(x)

FOL1 isMarried(x,w) ⇒ ∃y : Person • isMarriedTo(x, y, w)
FOL2 -
IPM2 �isMarried(x)) ⇒ immortal(x)

Figure 6.3: The heterogeneous development graph for the specification Marriage. ρ is the comor-
phism from IndexedPropModal to FOL.

As an example, the heterogeneous development graph for the specification Marriage is shown
in Fig. 6.3.

Suppose that we now want to prove the abovementioned proof obligation. There are several ways
to do this. The simplest way is just to use heterogeneous borrowing, as descirbed in Sect. 6.3. This
means that everything is translated to FOL (this is possible, because in our institution graph, each
institution is embedded in FOL). Then, one can use the entailment system (resp. a corresponding
theorem prover) for FOL.

However, this is unsatisfactory, because in practice it is more efficient to use the entailment
system (resp. a corresponding theorem prover) for PropModal for those parts of the proof that can
be carried out within PropModal. Therefore, we construct a truly heterogeneous proof (see also
Sect. 6.4).

The global theorem link in the heterogeneous development graph is discharged by successive
backwards applications of the proof rules, thereby reducing the theorem link to simpler ones, until
all of them can be removed.

The entire proof is shown in Fig. 6.4. The first step just decomposes the global theorem link
into several local ones. One of the latter can trivially be discharged in step 2, a second one in step
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Decomposition

=⇒
(5)
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IPM3

(ρ,id)

IPM1

(ρ,id)
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(ρ,id)

Subsumption
=⇒
(6)

FOL1 FOL2

IPM3

(ρ,id)

IPM1

(ρ,id)

IPM2
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Basic Inference
in FOL

=⇒
(7)

FOL1 FOL2

IPM3

IPM1

(ρ,id)
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Local
borrowing

=⇒
(8)

FOL1 FOL2

IPM3

(id,µ)IPM1

(ρ,id)
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Basic Inference
in PropModal

=⇒
(9)

FOL1 FOL2

IPM3

(id,µ)IPM1

(ρ,id)

IPM2

(ρ,id)

PM3 PM2

Figure 6.4: A sample heterogeneous proof
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3. (The application of basic inference in the third step is trivial because the node FOL2 does not
contain local axioms.) At this point, we now could apply basic inference also for the remaining local
theorem link. However, this would be basic inference entirely in FOL.

Instead, we try to decompose the proof goal into subgoals in FOL and in modal logic. This is
done in step 4, using the rule (Composition). This step is the key step of the whole proof, because
here a “heterogeneous bridge” (in a sense that will be made precise in Sect. 6.6) is constructed. We
therefore introduce a new node, IPM3. It has an ingoing global definition link from IPM1 and a
local axiom isMarried(x) ⇒ ¬dead(x). This local axiom can be seen as a lemma bridging between
IndexedPropModal and FOL: it is formulated in IndexedPropModal, proved in FOL, and used in
an IndexedPropModal proof. The fourth step thus leaves us with two new theorem links.

The first of these is a global one, and hence we decompose it in the step 5. One of the resulting
local theorem links can be discharged trivially in step 6. The other one is solved by basic inference
in FOL in step 7. This is done as follows: we need to show that the local axiom of IPM3, namely
isMarried(x) ⇒ ¬dead(x), follows from FOL1. Now the translation along ρ is isMarried(x,w) ⇒
¬dead(x,w), and this follows from isMarried(x,w) ⇒ ∃y • isMarriedTo(x, y, w) (a local axiom of
FOL1) and isMarriedTo(x, y, w) ⇒ ¬dead(x,w) (the translation of isMarriedTo(x, y) ⇒ ¬dead(x)
coming from IPM1) by inference in the FOL entailment system.

It remains to solve the remaining local theorem link, which lives entirely in IndexedPropModal.
We now can exploit the way how IndexedPropModal was built; namely in such a way that there is
a conservative comorphism µ into PropModal. We add two new nodes to the development graph,
PM2 and PM3, whose signatures are the translations of those of IPM2 and IPM3, resp. PM3 gets
a global definition link coming from IPM3 (via µ), while PM2 only gets the translation of the local
axiom in IPM2 along µ as local axiom (the result of the translation is �isMarried⇒ immortal, a
purely modal propositional formula). We now can apply (Local Borrowing) in order to translate
the local theorem link from IndexedPropModal into PropModal in step 8. Finally, in step 9, this
link is discharged by basic inference in PropModal: from �isMarried, we get �¬dead by the bridge
lemma (i.e. the local axiom of IPM3). By propositional modal reasoning, we get ¬3dead. By
the translation of one of the local IPM1 axioms (immortal ⇔ ¬3dead), we get immortal. This
completes the heterogeneous proof.

6.6 Heterogeneous Bridges

We now recall the original approach to heterogeneous bridges in [BCL96], but adapt it at a few
points to integrate it more smoothly in our setting. One point of difference is that in [BCL96],
signatures and models are translated covariantly (as by institution morphisms), while we translate
them contravariantly (using institution comorphisms). See Sect. 6.10 for an explanation of why this
makes no essential difference. We therefore recast the definition of [BCL96] for the comorphism
case, make the indexing more obvious, and use heterogeneous development graphs instead of the
heterogeneous specifications of [BCL96]. We also turn some of the technical conditions into (in our
eyes) more natural ones, but the general idea remains that of [BCL96].

For the purpose of this section, we restrict ourselves to development graphs with flattenable
nodes only (this assumption is implicit in [BCL96] as well).

Definition 6.28 A heterogeneous framework in the sense of [BCL96] is a tuple (I, `̀ ) consisting
of

• an indexed coinstitution I: Ind−→CoIns,

• a family (`̀ d,Σ)d:i−→j∈Ind,Σ∈Signi with `̀ d,Σ⊂ P(Seni(Σ))×Senj(Φd(Σ)), called heterogeneous
inference bridge,

such that

• Ψ `̀ d,Σ ϕ and Ψ ⊆ Ψ′ implies Ψ `̀ d,Σ ϕ′ (monotonicity),
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• for any d: i−→ j ∈ Ind, any signature morphism σ: Σ−→Σ′ in Signi, any Ψ ⊆ Seni(Σ), and
any ϕ ∈ Senj(Φd(Σ)),

Ψ `̀ d,Σ ϕ implies σ(Ψ) `̀ d,Σ′ Φd(σ)(ϕ) (`̀ -translation),

• for any d: i−→j ∈ Ind, any Ψ ⊆ Seni(Σ), any ϕ ∈ Senj(Φd(Σ)), and any M ∈ Modj(Φ(Σ))
with Ψ `̀ d,Σ ϕ,

if βd
Σ(M) |=i

Σ Ψ, then M |=j
Φ(Σ) ϕ (heterogeneous soundness).

Definition 6.29 Given a heterogeneous framework (I, `̀ ), the corresponding heterogeneous infer-
ence system is the least family (indexed by heterogeneous development graphs DG over I) of binary
relations `̀`DG between nodes N in DG and ΣN -sentences such that

• `̀`DG is compatible with `: if ΣN = (i,Σ) and ΨN `i
Σ ϕ, then N `̀`DG ϕ;

• `̀`DG is compatible with `̀ : if K
(d:i−→j,σ)

N ∈ DG, K `̀`DG Ψ and Ψ `̀ d,Σ ϕ, then N `̀`DG

σ(ϕ);

• `̀`DG is transitive: if N `̀`DG Ψ, DG ′ results from DG by adding N
id Ψ

• (where
Ψ
• is a

new node with local axioms Ψ), and
Ψ
•`̀`DG′ ϕ, then N `̀`DG ϕ.

Heterogeneous bridges have been the first proof-theoretic device for heterogeneous specification,
and have provided a foundation for so-called brigde lemmas (see also Sect. 6.5). Our main criticism
of this approach is the ad-hoc nature of the bridge relation `̀ . We find it more natural to generate it
via the entailment relation ` of a logic in connection with the sentence translation of a comorphism:

Proposition 6.30 Any indexed coinstitution I equipped with a set L of logics satisfying the
assumptions for the completeness result in Theorem 6.26 leads to a heterogeneous framework by
just putting

Ψ `̀ d:i−→j,Σ ϕ iff αd′

(αd(Ψ)) `k
Φd′ (Φd(Σ))

αd′

(ϕ)

where d′: j−→k is such that I(d′) is a model-expansive comorphism into some logic in L.

Proof: Monotonicity follows from monotonicity of the entailment relations, `̀ -translation follows
from naturality of αd and αd′

and `-translation for the entailment relations, and heterogeneous
soundness follows from soundness of ` and the satisfaction condition for Id and Id′

. 2

Theorem 6.31 When using the construction of Prop. 6.30, the heterogeneous inference system
`̀` induced by the constructed heterogeneous framework can be simulated using the proof rules for
heterogeneous development (see Sect. 6.4). That is,

N `̀`DG ϕ

implies
DG ` N ⇒ ϕ

in the calculus for heterogeneous development graphs. 2

Proof: By induction over the construction of the relation `̀`DG .
The first clause in Def. 6.29 can be easily handeled using (Basic Inference).
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Concerning the second clause, by induction hypothesis, DG ` N ⇒ Ψ, and the assumption
Ψ `̀ d,Σ ϕ means that for some d′: j −→ k, αd′

(αd(Ψ)) `k
Φd′ (Φd(Σ))

αd′

(ϕ). Extend DG to DG ′as

follows (for simplicity, we have decorated the new nodes with their local axioms, if any):

Ψ
•

id

(d,id)

K

(d,σ)

ϕ
•

id
P

(id,σ)

(d′,id)

N

αd′
(ϕ)
•

id
Q

By (Faithful Extension), DG ′ ` N ⇒ Ψ, and by (Local Inference), DG ′ ` Ψ
•

id
K. By

(Subsumption) and (Composition), DG ′ ` Ψ
•

(d,σ)
N. By (Global Decomposition), DG ′ `

P
(id,σ)

N. From αd′

(αd(Ψ)) `k
Φd′ (Φd(Σ))

αd′

(ϕ) by (Basic Inference) and (Local Inference),

DG′ ` αd′
(ϕ)
•

id
Q. By (Local Borrowing), DG ′ ` ϕ

•
id

P . By (Subsumption) and

(Composition), DG ′ ` ϕ
•

(id,σ)
N. By (Reverse Local Inference), DG ′ ` N ⇒ σ(ϕ). By

(Faithful Extension), DG ` N ⇒ σ(ϕ).

Concerning the third clause in Def. 6.29, by induction hypothesis, DG ` N ⇒ Ψ and DG ′ `
Ψ
•⇒ ϕ.

ϕ
•

id Ψ
•

id

N
id

By (Faithful Extension) and (Local Inference), DG ′ ` Ψ
•

id
N and DG′ ` ϕ

•
id Ψ

•.

From the former, by (Global Decomposition) and (Subsumption), DG ′ ` Ψ
•

id
N. By

(Composition), DG ′ ` ϕ
•

id
N. By (Faithful Extension) and (Reverse Local Inference),

DG ` N ⇒ ϕ. 2

From soundness of the development graph calculus, we immediately get:

Corollary 6.32 The heterogeneous inference system `̀`DG is sound, i.e. if N `̀`DG ϕ, then M |= ϕ
for any M ∈ ModDG(N). 2

Heterogeneous frameworks as introduced in [BCL96] are more general than the ones introduced
here, because in [BCL96], only semi-comorphisms (i.e. comorphisms without sentence translation
maps) are used. 6 However, we believe that this extra generality is not of much use (any practical
bridge will be obtained as in Prop. 6.30), and moreover comes with the cost of introducing the
bridge relation `̀ in an ad-hoc manner. Note that it is possible (and important) also to include
semi-(co)morphisms in our framework (see Sect. 6.10), but this is mainly for relating specification
and programming languages, and not for heterogeneous bridges.

6Actually, it is easy to introduce indexed semi-coinstitutions, but the corresponding Grothendieck construction
does not yield an institution: only homogeneous signature morphisms induce sentence translations. In principle, it is
possible to introduce kind of “partial institution” for this. However, for the sake of simplicity, we have refrained from
doing so. Note that the sentence translation maps of the comorphisms are not needed before Prop. 6.30. A proper
treatment of semi-comorphisms is given in Sect. 6.10.
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6.7 Morphism-Based Grothendieck Institutions

Diaconescu orignially developed the theory of Grothendieck institutions for indexed institutions,
based on institution morphisms rather than comorphisms, as we have done. The relevant notions
are easily dualized:

Given an index 2-category Ind, a 2-indexed institution is a 2-functor I: Ind∗ −→ Ins7 into the
2-category of institutions, institution morphisms and institution morphism modifications. In cases
where the 2-categorical structure is not needed, we omit the prefix “2-”.

Definition 6.33 Given an indexed institution I: Ind∗−→Ins, define the Grothendieck institution
I# as follows (where we use the notation of institutions as functors and moreover write (Ψd, µd) for
I(d)):

• signatures in I# are pairs (i,Σ), where i ∈ |Ind| and Σ a signature in I i,

• signature morphisms (d, σ): (i,Σ1) −→ (j,Σ2) consist of a morphism d: i −→ j ∈ Ind and a
signature morphism σ: Σ1−→Ψd(Σ2) in Ij ,

• composition is given by (d2, σ2) ◦ (d1, σ1) = (d2 ◦ d1,Ψ
d1(σ2) ◦ σ1),

• I#(i,Σ) = Ii(Σ), and I#(d, σ) = Ii(Σ1)
Ii(σ)

Ii(Ψd(Σ1))
µd

Ij(Σ2) .

For 2-indexed institutions, we can also form a quotient Grothendieck institution, as in Sect. 6.1.

Diaconescu proves results about amalgamation properties of Grothendieck institutions for so-
called embedding-indexed institutions, which means that each signature translation Ψd has a left
adjoint Φd. But these left adjoints lead to a corresponding indexed coinstitution, and in fact,
strictly speaking Diaconescu uses this induced indexed coinstitution in his proofs. This shows that
indexed coinstitutions are simpler and more general than embedding-indexed institutions (and only
for these, Diaconescu has results about exactness and amalgamability). In particular, a simpler proof
of Diaconescu’s results can be obtained by reducing them to our results in Sect. 6.2 via the following
generalization of the adjointness between morphisms and comorphisms introduced in Sect. 2.9:

Proposition 6.34 Given an embedding-indexed institution I: Indop −→ Ins, define the indexed
coinstitution Ico: Indop−→CoIns by

Ico(i) := I(i) and Ico(d: i−→j) := (Φd, (µd · Φd) ◦ (Ij · ηd)),

where ηd is the unit of the adjunction between Φd and Ψd.
Then I# is isomorphic to (Ico)#.

Proof: Let ηd be the unit and εd the counit of the adjunction between Ψd and Φd. Define an
institution comorphism (Φ, ρ): I#−→(Ico)# as follows: Φ sends (i,Σ) to (i,Σ) and (d, σ): (i,Σ1)−→
(j,Σ2) in I# to (d, εΣ2 ◦ Φd(σ)): (i,Σ1)−→ (j,Σ2) in (Ico)#. Since εΣ2 ◦ Φd(σ) is is just the arrow
adjoint to σ, Φ is an isomorphism.

Now I#(d, σ) is Ii(Σ1)
Ii(σ)

Ii(Ψd(Σ2))
µd

Σ2
Ij(Σ2) . Since

Ico(d: j−→ i) = (Φd, (µd · Φd) ◦ (I i · ηd)),

we get that (Ico)#(Φ(d, σ)) = (d, Ico)#(εΣ2 ◦ Φd(σ)) =

Ii(Σ1)
Ii(ηd

Σ1
)

•
µd

Φd(Σ1)

•
Ij(Φd(σ))

•
Ij(εΣ2 )

Ij(Σ2) .

7Recall that Ind∗ is the 2-categorical dual of Ind, where both 1-cells and 2-cells are reversed.
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By the following diagram, both are the same, showing that ρ can be taken to be the identity:

Ii(Σ1)
Ii(σ)

Ii(ηd
Σ1

)

Ii(Ψd(Σ2))

id
Ii(η

Ψd(Σ2)
)

Ii(Ψd(Φd(Σ1)))
Ii(Ψd(Φd(σ)))

µd

Φd(Σ1)

Ii(Ψd(Φd(Ψd(Σ2))))
Ii(Ψd(εΣ2 ))

µd

Φd(Ψd(Σ2))

Ii(Ψd(Σ2))

µd
Σ2

Ij(Φd(Σ1))
Ij(Φd(σ))

Ij(Φd(Ψd(Σ2)))
Ij(εΣ2 )

Ij(Σ2)

The squares commute by naturality of ηd and µd, while the triangle commutes by a general adjoint-
ness law. 2

The Grothendieck construction does not obviously generalize to diagrams consisting of forward
or semi-(co)morphisms, because of the lacking (contravariance between model and) sentence trans-
lation. We therefore concentrate for a moment on morphisms and comorphisms only, and postpone
the treatment of forward and semi-(co)morphisms to Sect. 6.10.

6.8 The Bi-Grothendieck Institution

As seen in Chap. 4, both institution comorphisms and morphisms are needed for heterogeneous
specification. The question is therefore how to obtain a kind of Grothendieck construction involving
both comorphisms and morphisms. Consider heterogeneous specification over a set of institutions,
a set of morphisms and a set of comorphisms. This can be formalized as an indexed institution Im

(collecting the morphisms) together with an indexed coinstitution Ic (collecting the comorphisms),
both with the same underlying set of institutions, regarded as a discrete indexed institution I0.

Definition 6.35 Let (Im, Ic, I0), with Im: Indop
m −→ Ins an indexed institution, Ic: Ind

op
c −→

CoIns an indexed coinstitution and I0: Ind
op
0 −→ Ins a discrete indexed institution be given, such

that |Indm| = |Indc| = |Ind0|, and Im, Ic and I0 agree on these.

Then we form the Grothendieck institutions I#
0 , I#

m and I#
c . Since I#

0 obviously is included in
I#

m and I#
c via a (co)morphism, we can take the pushout

I#
0 I#

m

I#
c J

in the category of institutions and institution morphisms (or comorphisms, this would make no
difference here). The pushout in either category exists by results of [RG04]. By abuse of notation,
we will denote the pushout J by (Im, Ic)

#. It will be called the Bi-Grothendieck institution.

Since at the level of signature categories, this is a pushout, we obtain as new signature mor-
phisms paths consisting of both morphism-based and comorphism-based heterogeneous signature
morphisms.

The heterogeneous development graph in Fig. 1.9 can now formally be understood as a develop-
ment graph over the Bi-Grothendieck institution.

6.9 Inducibility

The Bi-Grothendieck institution is quite complex, and it is not immediately clear how to obtain e.g.
proof support for it. It is therefore tempting to try to reduce the complexity of this construction by
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mapping morphisms to comorphisms or vice versa. This can be done by weakening the adjunction
between morphisms and comorphisms introduced in Sect. 2.9:

Definition 6.36 Given an institution comorphism ρ = (Φ, α, β): I −→ J , a functor Ψ:SignJ −→
SignI and a natural transformation ε: Φ◦Ψ−→Id, we say that ρ ε-induces the institution morphism
µ = (Ψ, ᾱ, β̄): J−→I given by

ᾱ = (SenJ · ε) ◦ (α · Ψ)

β̄ = (β · Ψop) ◦ (ModJ · εop)

A morphism that is ε-induced by some comorphism is called inducible.
Dually, given an institution morphism µ = (Ψ, ᾱ, β̄): J −→ I , a functor Φ:SignI −→ SignJ

and a natural transformation η: Id−→Ψ ◦ Φ, we say that µ η-induces the institution comorphism
ρ = (Φ, α, β): I−→J given by

α = (ᾱ · Φ) ◦ (SenI · η)

β = (ModI · ηop) ◦ (β̄ · Φop)

A comorphism that is η-induced by some morphism is called inducible. Moreover, it is straight-

forward to extend inducibility to the simple theoroidal case. Here, SignI Φ
SignJ has to be

replaced with Sign
Φ

ThJ
Sig

SignJ , leading to the equations

α = (ᾱ · Sig · Φ) ◦ (SenI · η)

β = (ModI · ηop) ◦ (β̄ · Sig · Φop)

Furthermore, inducibility also extend to semi-(co)morphisms. 2

With this, we can easily obtain the desired reduction:

Theorem 6.37 Let (Im, Ic, I0) as in Definition 6.35 be given.
If each morphism in Im is ε-induced by some comorphism in Ic, then there is a retraction of

(Im, Ic)
# onto I#

c .
Dually, if each comorphism in Ic is η-induced by some morphism in Im, then there is a retraction

of (Im, Ic)
# onto I#

m.

Proof: Consider the pushout construction in Definition 6.35. Clearly, I#
m, I#

c and I#
0 all have

the same object class. Moreover, since I0 is discrete, the signature morphisms in I#
0 are basically

those of the individual institutions. With this, it is easy to see that the signature morphisms in
(Im, Ic)

# are paths of morphisms coming from I#
m and I#

c in an alternating way.
The retraction of (Im, Ic)

# onto I#
c (having the obvious inclusion as right inverse) is therefore

given by the identity for the objects, while for a path of alternating morphisms, each morphism

( i
d

j , Σ1
σ

Ψd(Σ2) ): (i,Σ1)−→(j,Σ2)

from I#
m is replaced with

( j
e

i , Φe(Σ1)
Φe(σ)

Φe(Ψd(Σ2))
εΣ2

Σ2 ),

where e is the index of the comorphism inducing Im(d), and ε the corresponding natural transfor-
mation. Since all the resulting morphisms live in I#

c , they can be composed to a single morphism.
The other statement follows by a dual argument. 2

However, unfortunately there are practically relevant situations where this is not applicable.
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Claim 6.38 Typical feature interaction morphisms are not inducible. Typical simple theoroidal
coding comorphisms are not inducible. Of course, “typical” is informal here. However, we give two
examples below which are typical in the sense that the proofs carry over to many similar examples.

Proposition 6.39 Neither the morphism pr:Csp-Casl−→Casl nor the simple theoroidal semi-
comorphism toLTL:Csp-Casl−→ModalCasl from Sect. 4.5 is inducible.

Proof: Assume that pr = (Ψ, ᾱ, β̄):Csp-Casl −→ Casl is ε-induced by a comorphism ρ =
(Φ, α, β):Casl −→ Csp-Casl. Let Σ1 consist of a sort s and Σ2 of sorts t and u (both seen
as Csp-Casl-signatures). Let σ: Ψ(Σ2) −→ Ψ(Σ1) map both t and u to s (recall that Ψ is just
an inclusion). Now β̄Σ2 just forgets the optional LTS component, and hence is surjective. Since
β̄Σ2 = βΨ(Σ2) ◦ εΣ2 , βΨ(Σ2) is surjective as well. Since all signature morphisms in Csp-Casl are
injective (and carriers are assumed to be non-empty), the corresponding reduct functors are easily
seen to be surjective. Hence, the lower right path in the naturality diagram for β

ModCsp-Casl(Φ(Ψ(Σ1)))
βΨ(Σ1)

|Φ(σ)

ModCasl(Ψ(Σ1))

|σ

ModCsp-Casl(Φ(Ψ(Σ2)))
βΨ(Σ2)

ModCasl(Ψ(Σ2))

is surjective as well. Hence, also the upper left path must be surjective, and hence its second
component |σ . But |σ just doubles the carrier set, and this is clearly not surjective.

The semi-comorphism toLTL is more precisely defined on the subinstitution Csp-Casl-d con-
sisting of identity signature morphisms only, i.e. toLTL = (Φ, β):Csp-Casl-d −→ ModalCasl.
Assume that it is η-induced by a semi-morphism µ = (Ψ, β̄):ModalCasl−→Csp-Casl-d. Since
all signature morphisms in Csp-Casl-d are identities, η is the identity as well. Hence, β̄ ·Φ = β, and
one easily obtains a contradiction to the β̄-naturality diagram for a signature morphism σ: Φ(Σ1)−→
Φ(Σ2) in ModalCasl. This proof relies on the severe restrictedness of the Csp-Casl-d signature
morphisms; however, also a proof not exploiting this is possible. 2

Proposition 6.40 The “feature interaction” institution morphism µ going from first-order logic
with equality FOL= to first-order logic FOL described in Sect. 2.10 is not ε-inducible.

The “coding” simple theoroidal comorphism ρ:FOL= −→ FOL described in Sect. 2.10 is not
η-inducible.

Proof: Suppose that µ = (Ψ, ᾱ, β̄):FOL= −→ FOL is ε-induced by some comorphism ρ =
(Φ, α, β):FOL−→FOL=. Let Σ1 consist of a sort s and Σ2 additionally of a predicate R : s × s
(both seen as FOL=-signatures). Since ᾱΣ2 obviously is surjective and ᾱΣ2 = SenJ (εΣ2) ◦ αΨ(Σ2),

SenJ(εΣ2) and therefore also εΣ2 : Φ(Ψ(Σ2))−→Σ2 have to be surjective as well. Since Σ2 contains
a binary relation symbol, by surjectivity of εΣ2 , Φ(Ψ(Σ2)) must contain one as well. Now there
exists a signature morphism σ: Ψ(Σ2) −→ Ψ(Σ1) (mapping both R and eqs to eqs). But then
εΣ1 ◦ Φ(σ): Φ(Ψ(Σ2))−→Σ1 has to map the binary relation symbol. However, this is not possible,
since Σ1 does not contain one. Hence, µ cannot be inducible.

Concerning the second statement of the proposition, assume that ρ = (Φ, α, β):FOL=−→FOL
is η-induced by some morphism µ = (Ψ, ᾱ, β̄):FOL −→ FOL=. Then ηΣ is injective (if not,
ModFOL=

(ηΣ) has in its image only models where at least two components are identical, while this
is not the case for βΣ, contradicting β = (ModJ · η) ◦ (β̄ · Sig · Φop)). W.l.o.g. we can assume that
ηΣ is an inclusion, hence for ϕ ∈ SenFOL=

(Σ), αΣ(ϕ) = ᾱSig(Φ(Σ))(ϕ). Let Σ2 be as in the above
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proof, and let σ:Sig(Φ(Σ2))−→Sig(Φ(Σ2)) map both R and ≡ to R.

Sen(Ψ(Sig(Φ(Σ2))))
ᾱSig(Φ(Σ2))

SenF OL=
(Ψ(σ))

Sen(Sig(Φ(Σ2)))

SenF OL(σ)

Sen(Ψ(Sig(Φ(Σ2))))
ᾱSig(Φ(Σ2))

Sen(Sig(Φ(Σ2)))

Now for ϕ ∈ SenFOL=

(Σ2), αΣ2(ϕ) = ᾱSig(Φ(Σ2))(ϕ) is obtained by replacing = with ≡. Now by

definition of FOL=, SenFOL=

(Ψ(σ)) leaves = unchanged, and SenFOL(σ) maps ≡ to R. Hence,
the above naturality diagram for ᾱ cannot commute. This shows that ρ cannot be inducible.

2

The examples from Prop. 6.40 are simple but quite typical. E.g. when considering the analogous
translations between Casl and Casl-Lt sketched in [Mos02b], the main structure of the above
proofs carries over.

6.10 Spans of Comorphisms

The method of the previous section to use inducibility to reduce the complexity of heterogeneous
specifications involving different kinds of translations between institutions works for some cases, but
the counterexamples of Proposition 6.39 have shown that the method is not general enough.

A more general idea is to express all the different kinds of translations as spans of morphisms
or of comorphisms. For reasons explained in Sect. 6.7, we work with (spans of) comorphisms here.
Nevertheless, the results presented below easily dualize to spans of morphisms.

Each institution morphism µ: I −→ J = I

Ψ

α

β

J can be translated into a span

I J ◦ Ψ
µ− µ+

J of institution comorphisms as follows:

SignI id
SignI Ψ

SignJ

SenI α
SenJ ◦ Ψ

id
SenJ ◦ Ψ

ModI β
ModJ ◦ Ψop id

ModJ ◦ Ψop

Here, the “middle” institution J ◦Ψ is the institution with signature category inherited from I , but
sentences and models inherited from J via Ψ.

In the case that µ happens to be inducible, there is also a relation to the inducing comorphism:

Proposition 6.41 If a comorphism ρ: I −→ J ε-induces the morphism µ: J −→ I , then there is a
comorphism modification

I J
ρ

ε

J ◦ Ψ

µ− µ+
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Proof: Using the notation of institutions as functors, we need to show (I · ε) ◦ (ρ ·Ψ) ◦ µ+ = µ−,
where ρ, µ+ and µ− are just the natural transformations (i.e. without signature translation). But
since µ+ = id and µ− = µ, we just arrive at the inducibility condition (I · ε) ◦ (ρ · Ψ) = µ. 2

The span construction can also be lifted to the indexed level by freely adding formal objects and
morphisms (modulo some quotient) to the index category of Ic.

Definition 6.42 Given an indexed institution Im: Indop
m −→ Ins and an indexed coinstitution

Ic: Ind
op
c −→CoIns (both over the same set of institutions in the sense of Definition 6.35), form

an indexed coinstitution Span(Im, Ic) = I: Indop −→ CoIns as follows: Ind is the free category
[Sch99] obtained by adjoining the following to Indc:

• for each d: j−→ i ∈ Indm, an object d and a pair of morphisms i
d−

d j
d+

,

• for each k
d

j
e

i ∈ Indm, a morphism d−/e: e−→e ◦ d and a morphism e+/d: d−→
e ◦ d, and

• for each k
d

j
e

i ∈ Indm, the following three commutativity conditions are imposed:

i
e−

(e◦d)−

e
d−/e

j
e+ d−

d
e+/d

k
d+

(e◦d)+

e ◦ d

The action of I is Ic on Indc and as follows on the newly added structure (using the notation
(Signi, Ii

m) for Im(i) and (Ψd, µd) for Im(d)):

• for d: j−→ i ∈ Indm, I(d) = (Signi, Ij
m ◦ Ψd) (note that d becomes an object in Ind),

• for d: j−→ i ∈ Indm, I(d−) = (id, µd) and I(d+) = (Ψd, id), and

• for k
d

j
e

i ∈ Indm, I(d−/e) = (id, µd · Ψe) and I(e+/d) = (Ψe, id).

It is straightforward to check that I actually maps that above three triangles to commutative
triangles:

• I(e−) ◦ I(d−/e) = (id, µe) ◦ (id, µd · Ψe) = (id, µe ◦ (µd · Ψe)) = I((e ◦ d)−)

• I(e+) ◦I(d−/e) = (Ψe, id) ◦ (id, µd ·Ψe) = (Ψe, µd ·Ψe) = (id, µd) ◦ (Ψe, id) = I(d−) ◦I(e+/d)

• I(d+) ◦ I(e+/d) = (Ψd, id) ◦ (Ψe, id) = (Ψd ◦ Ψe, id) = (Ψe◦d, id) = I((e ◦ d)+)

We can extend this also two 2-cells. Given morphisms d1, d2: j−→ i and a 2-cell u: d2 −→ d1 in
Indm, add a morphism u: d2−→d1 and a 2-cell u:u ◦ d+

2 =⇒d+
1 in Span(Im, Ic).

d1

i

d−
1

d−
2

=
u

j

d+
1

d+
2

d2

u
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with I(u: d2−→d1) = (id, Ij
m · Im(u)) and I(u:u ◦ d+

2 =⇒d+
1 ) = Im(u).

For practical purposes (i.e. in the Heterogeneous Tool Set, see Chap. 7), we will not work with
a category Im, but rather with kind of composition graph, where the compositions are given via lax
triangles:

j

d2 u

i u

d1

d

leading to a diagram where d2 ◦ d1 is not needed at all, but replaced with d instead:

i
d−
2

d−

d2

f

j
d+
2 d−

1
d1

g

k
d+
1

d+

u

d

and the new formal arrows f and g replacing u ◦ d−1 /d2 and u ◦ d+
2 /d1, respectively. f and g are

interpreted under I as the arrows they shall replace:

I(f) = (id, (µd1 · Ψd2) ◦ (Ik
m · Im(u)))

I(g) = (Ψd2 , Ik
m · Im(u))

Moreover,
I(u: g ◦ d+

1 =⇒d+) = Im(u).

Concerning the relation to the Bi-Grothendieck institution, unfortunately, we cannot expect that
Theorem 6.37 carries over to the present situation. But we have some weaker property that still is
sufficiently strong for practical needs:

Theorem 6.43 Given an indexed institution Im and an indexed coinstitution Ic (both over the
same set of institutions in the sense of Definition 6.35), each development graph over the Bi-
Grothendieck institution (Im, Ic)

# can be translated into a development graph over the Grothendieck
institution over the span-based indexed coinstitution Span(Im, Ic)

#, such that model categories are
preserved.

Proof: As in the proof of Theorem 6.37, we rely on the fact that signature morphisms in the Bi-
Grothendieck institution (Im, Ic)

# are paths of morphisms coming from I#
m and I#

c in an alternating
way. A global definition link therefore has the form

K
〈(e1,σ1),(d2,σ2),...,(en,σn)〉

N ,

where the di are from Im and the ei are from Ic (with (e1, σ1), (en, σn) possibly not present). The
definition link now is replaced by a sequence of definition and hiding links:

K
(e1,σ1)

K1

(id,σ2)
K2

(d+
2 ,id)

h
K3

(d−
2 ,id)

K4
. . .

(en,σn)
N
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((Casl-inj, List), ∅)
(id,pr−)

((Casl, List), Ax)

(id,pr+)

h

((Csp-Casl, List), {Buf})

(id,toLTL+)

h

((Csp-Casl-d-nosen, List)∅)

(id,toLTL−)

((ModalCasl, List′), {Fair})

Figure 6.5: The sample heterogeneous development graph with spans of comorphisms.

Here, d+
2 and d−2 are the indices for the span of comorphisms associated to Im(d2), and K1, . . . ,K4

are new nodes with appropriate signatures and no local axioms. Of course, the path could also
start and/or end with a di instead of an ei, but this won’t affect the general construction: each
path element containing a di leads to a sequence of a definition link, a hiding link, and again a
definition link, while path elements containing an ei are just kept. The construction for theorem
links is entirely analogous, except that only the last arrow in the sequence has to be a theorem link
— the other ones must be definition links.

Let us now come to hiding links. The construction is very similar, so we restrict ourselves to the
replacement of individual path elements of form (di, σi). Such an element leads to

. . . Kn

(d−
i ,id)

h
Kn+1

(d+
i ,id)

Kn+2
(id,σi)

h
Kn+3 . . .

In comparison to the construction above, here the arrows are reversed, and definition and hiding
links interchanged.

It is straightforward to see that the model class is left unchanged by these translations. 2

Example 6.44 Extend the institutions and (co)morphisms introduced in Sect. 4.5 by the following
ones:

• Casl-inj is the restriction of Casl to signature that are injective on sorts.

• Csp-Casl-d-nosen is the restriction of Csp-Casl to the empty set of sentences, for each
signature, and to identity signature morphisms.

• The comorphism pr+:Casl-inj−→Casl is just the obvious subinstitution inclusion.

• The comorphism pr−:Casl-inj −→Csp-Casl behaves very similar to pr: At the signature
level, it is the identity, at the sentence level, it is the obvious inclusion. For models, just the
LTS (if present) is forgotten.

When applying the construction of Theorem 6.43 to (a formalized variant of) the development graph
given in Fig. 1.9, we arrive at the development graph shown in Fig. 6.5 (for simplicity, we index the
involved institutions and comorphisms by themselves here).

Let us now consider the other types of morphisms between institutions that have been introduced

in Chap. 2.8 To begin with, a semi-comorphism I

Φ

β

J can be translated into a span

8We adopt the convention that the µ+-component always goes along with µ (and its signature translation), whereas
the µ−-component goes against it.
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I I∅
µ− µ+

J of comorphisms

SignI id
SignI Φ

SignJ

SenI incl
∅

incl
SenJ ◦Φ

ModI id
ModI β

ModJ ◦ Φ

while a semi-morphism I

Φ

β

J is translated into a span I J ◦ Φ∅
µ− µ+

J of

comorphisms

SignI id
SignI Φ

SignJ

SenI incl
∅

incl
SenJ ◦ Φ

ModI β
ModJ ◦ Φ

id
ModJ ◦ Φ

where in each case the “middle” institution has the indicated components.

Forward comorphisms µ = (Φ, α, β): I −→J = I

Φ

α

β

J are translated into spans of

form I J ◦ ΦSen
µ− µ+

J consisting of institution comorphisms as follows:

SignI id
SignI Φ

SignJ

SenI α
SenJ ◦ Φ

id
SenJ ◦ Φ

ModI id
ModI β

ModJ ◦ Φ

The “middle” institution J ◦ΦSen inherits signatures and models from I , but sentences (via Φ) from

J . The satisfaction relation M |=J◦ΦSen

Σ ϕ holds iff M |=Σ αΣ(ϕ) in I .

Dually, a forward morphism µ = (Φ, α, β): I−→J = I

Φ

α

β

J can be translated into

a span I J ◦ ΦMod
µ− µ+

J of institution comorphisms as follows:

SignI id
SignI Φ

SignJ

SenI id
SenI α

SenJ ◦ Φ

ModI β
ModJ ◦ Φ

id
ModJ ◦ Φ

The “middle” institution J ◦ ΦMod inherits signatures and sentences from I , but models (via Φ)

from J . The satisfaction relation M |=J◦ΦMod

Σ ϕ holds iff M |=Φ(Σ) αΣ(ϕ) in J .
(One could complete the picture and define, for a comorphism µ, µ+ to be µ itself, and µ− the

identity.)

6.11 The Heterogeneous Verification Semantics

The various notions of institution translations introduced in Sect. 2.10 naturally lead to the following
heterogeneous specification constructs [Tar00, Tar04], which can be seen as a core language for the
language HetCasl as described in Appendix A.
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heterogeneous translation: For any institution comorphism, forward comorphism or semi-comorphism
µ = (Φ, α, β): I−→I ′ and Σ-specification SP in I , translate SP by µ is a specification with:

Sig [translate SP by µ] := Φ(Σ)
Mod[translate SP by µ] := {M ′ ∈ Mod(Φ(Σ)) | βΣ(M ′) ∈ Mod[SP ]}

heterogeneous hiding : For any institution morphism, forward morphism or semi-morphism µ =
(Φ, α, β): I−→I ′ and Σ-specification SP in I , derive from SP by µ is a specification with:

Sig [derive from SP by µ] := Φ(Σ)
Mod[derive from SP by µ] := {βΣ(M ′) |M ′ ∈ Mod[SP ]}

Some heterogeneous calculus rules have been given already in [Tar04]; however, they cover only
the question whether a heterogeneous specification entails a sentence, but not the question whether
a heterogeneous specification entails (or refines to) another one.

The purpose of the heterogeneous verification semantics is to provide a proof calculus for hetero-
geneous specifications covering both entailment and refinement. Its rules follow a similar verification
semantics for (Casl) structured specifications given in Sect. 5.5 and in [MHAH04].

General assumption We assume to work with an indexed coinstitution that contains all the
“middle” institutions as well as the µ− and µ+ comorphisms given by the constructions of the
previous section, applied to those morphisms, semi-morphisms etc. that we expect to occur in our
heterogeneous specifications. Of course, we assume that all institutions and comorphisms that are
used directly are included as well. To formalize this, one needs to extend Def. 6.42 appropriately.
In particular, we assume that the “middle” institutions are always indexed by the index morphism
of the morphism, semi-morphism, forward comorphism etc. at hand. Actually, we do not spell out
all the details for other types of (co)morphisms as we did in Def. 6.42 for the morphisms, because
we expect that these (co)morphisms will not come with compositions anyway, but rather are given
by a graph, while compositions are given by 2-cells.

The heterogeneous verification semantics now takes a heterogeneous specification and translates
it into a development graph over the Grothendieck institution induced by the indexed coinstitution
given by the above assumption.

In the sequel, we use the notation for constructing development graphs introduced in Sect. 5.5.
Furthermore, by abuse of notation, we identify institutions and comorphisms with their respective
indices in the index category of the indexed coinstitution (in general, it is expected that the indexed
coinstitution is an embedding of categories; hence this abuse of notation will not lead to ambiguities).

The verification semantics uses judgements of form

` SP ��� (N,DG)

which read as: the specification SP is translated to the node N in development graph DG.

Σ ∈ Signi

` 〈Σ,Ψ〉 ��� (N, {N := ((i,Σ),Ψ)})

` SP1 ��� (N1,DG1) ` SP2 ��� (N2,DG2)
ΣN1 = ΣN2

` SP1 ∪ SP2 ��� (K,DG1 ] DG2 ] {K := (ΣN1 , ∅)} ] {Ni
id

K | i = 1, 2})

` SP ��� (N,DG)
ΣN = (i,Σ)

` translate SP by σ: Σ−→Σ′
��� (K,DG ] {N

(σ,id)
K := ((i,Σ′), ∅)})
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` SP ��� (N,DG)
ΣN = (i,Σ′)

` derive from SP ′ by σ: Σ−→Σ′
��� (K,DG ] {N

(σ,id)

hide
K := ((i,Σ), ∅)})

` SP ��� (N,DG)
ΣN = (i,Σ)

d: j−→ i is the index of a comorphism

` translate SP by d��� (K,DG ] {N
(id,d)

K := ((j,Φd(Σ)), ∅)})

` SP ��� (N,DG)
ΣN = (i,Σ)

d: j−→ i is the index of a morphism

DG ′ = DG ] {N
(id,d−)

hide
K := ((d,Σ), ∅); K

(id,d+)
P := ((j,Φd(Σ)), ∅)}

` derive from SP by d��� (P,DG ′)

` SP ��� (N,DG)
ΣN = (i,Σ)

d: j−→ i is a semi-comorphism

DG ′ = DG ] {N
(id,d−)

hide
K := ((d,Σ), ∅); K

(id,d+)
P := ((j,Φd(Σ)), ∅)}

` translate SP by d��� (P,DG ′)

` SP ��� (N,DG)
ΣN = (i,Σ)

d: j−→ i is the index of a semi-morphism

DG ′ = DG ] {N
(id,d−)

hide
K := ((d,Σ), ∅); K

(id,d+)
P := ((j,Φd(Σ)), ∅)}

` derive from SP by d��� (P,DG ′)

` SP ��� (N,DG)
ΣN = (i,Σ)

d: j−→ i is the index of a forward comorphism

DG ′ = DG ] {N
(id,d−)

hide
K := ((d,Σ), ∅); K

(id,d+)
P := ((j,Φd(Σ)), ∅)}

` translate SP by d��� (P,DG ′)

` SP ��� (N,DG)
ΣN = (i,Σ)

d: j−→ i is the index of a forward morphism

DG ′ = DG ] {N
(id,d−)

hide
K := ((d,Σ), ∅); K

(id,d+)
P := ((i,Φ(dΣ)), ∅)}

` derive from SP by d��� (P,DG ′)

Although many of the clauses look very similar, note that the µ−-comorphisms for the various
types of morphisms inherit their model translations from µ, while for the various types of comor-
phisms, it is the µ+-comorphisms that inherit the model translation from µ.

We now state the important property of the heterogeneous verification semantics:
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Theorem 6.45 The heterogeneous verification semantics preserves model classes of heterogeneous
specifications. More precisely, given a heterogenous specification SP with ` SP ��� (N,DG), we
have

Mod[SP ] = ModDG(N)

Proof: Straightforward induction over the structure of SP . E.g. if d is the index of a comorphism,

Mod(translate SP by d: j−→ i) =

{M ∈ Modj(Φd(Σ)) | βd
Σ(M) ∈ Mod(SP )} = (induction hypothesis)

{M ∈ Modj(Φd(Σ)) | βd
Σ(M) ∈ ModDG(N)} =

ModDG′(K)

If d is the index of a morphism,

Mod(derive from SP by d: j−→ i) =

{βd
Σ(M) ∈ Modj(Φd(Σ)) |M ∈ Mod(SP )} = (induction hypothesis)

{βd
Σ(M) ∈ Modj(Φd(Σ)) |M ∈ ModDG(N)} =

ModDG′(K) = (⊆ Modd(Σ))

ModDG′(P ) (⊆ Modj(Φd(Σ)))

If d is the index of a semi-comorphism,

Mod(translate SP by d: j−→ i) =

{M ∈ Modj(Φd(Σ)) | βd
Σ(M) ∈ Mod(SP )} = (induction hypothesis)

{M ∈ Modj(Φd(Σ)) | βd
Σ(M) ∈ ModDG(N)} =

{M ∈ Modd(Φd(Σ)) | βd
Σ(M) ∈ ModDG(K)} =

ModDG′(P )

2

By inserting theorem links into a development graph generated by the heterogeneous verification
semantics, it is now possible to tackle the problem of refinement between heterogeneous specifications
with the proof calculus of Sect. 6.4 and 5.6.

A word concerning the difference between morphisms and semi-morphisms is in order: although
they are treated quite similarly in the heterogeneous verification semantics, their difference shows
up when using the proof calculus: the “middle” institution is much poorer in the case of semi-
morphisms (it has no sentences). The latter makes it much harder to conduct heterogeneous proofs;
indeed, for proofs along semi-morphisms, typically both the source and target institution have to
be translatable into some common target institution (or some special proof rules for the particular
semi-morphism has to be added). Of course, a similar remark applies to semi-comorphisms as well.

6.12 Representation Maps

The notion of institution representation map [Tar96] between institution comorphisms is an impor-
tant concept for extending the well-known borrowing technique (i.e. translating proof systems along
institution comorphisms) to the heterogeneous case. We here study its relation to our approach
based on comorphism modifications.

Fix an institution U = (USign,USen,UMod, |=) which we will very informally view as a
“universal” institution (with sufficient expressiveness to represent many logics, and with suitable
tool support).

Given two institution comorphisms (called representations in [Tar96]) ρ1: I1−→U and ρ2: I2−→
U , a representation map (µ, θ): ρ1−→ρ2 consists of

• a morphism µ = (Ψ, α, β): I1−→I2 and

• a natural transformation θ: Φ2 ◦ Ψ−→Φ1

182



such that (SenU · θ) ◦ (α2 · Ψ) = α1 ◦ α and (β2 · Ψ) ◦ (ModU · θ) = β ◦ β1.
The latter conditions mean that that for each signature Σ ∈ |Sign| the following diagrams

commute:

SenI1(Σ)
(α1)Σ

USen(Ψ1(Σ))

SenI2(Ψ(Σ))

αΣ

(α2)Ψ(Σ)

USen(Ψ2(Ψ(Σ)))

USen(θΣ)

ModI1(Σ)

βΣ

UMod(Ψ1(Σ))
(β1)Σ

UMod(θΣ)

ModI2(Ψ(Σ)) UMod(Ψ2(Ψ(Σ)))
(β2)Ψ(Σ)

With an obvious composition, this gives us a category Repr(U) of institution representations
(=comorphisms) into U and representation maps.

Example 6.46 The representation map from Casl → HOL to FOL→ HOL is defined as follows:

• µ forgets partiality and subsorting,

• ρ1 encodes partiality and subsorting,

• ρ2 is the inclusion, and

• θ is just the inclusion as well.

Casl

µ

ρ1

θ HOL

FOL

ρ2

The concept of institution comorphism modification (see Sect. 2.12) is a specialization of the
concept of representation map: just take the institution morphism component of the representation
map to be the identity. However, when considering the span construction, it is also a generalization.
Each representation map

I2

µ

ρ2

τ U

I1

ρ1

leads to a comorphism modification in the square

I2
ρ2

U

τ

I1 ◦ Ψ

µ+

µ−

I1

ρ1

Moreover, in case of adjointness, we have an even closer connection between the two notions:

Theorem 6.47 Given comorphisms ρ1: I1 −→ U , ρ2: I1 −→ U , and functors Φ a Ψ:SignI2 −→
SignI1 , the one-one correspondence of
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• comorphisms ρ: I1−→I2 (extending Φ) and

• morphisms µ: I2−→I1 (extending Ψ)

described in Proposition and Definition 2.18 extends to a one-one correspondence of

• pairs (ρ: I1−→I2, τ : ρ1−→ρ2 ◦ ρ) of comorphisms and modifications, and

• representation maps (µ, θ): ρ2−→ρ1.

Proof: We will use the notation of institutions as functors from Sect. 2.13. By a slight abuse of
notation, we will write ρ1 as (Φ1, ρ1): I1 −→U , where Φ1:SignI1 −→SignU and ρ1: I1 −→U ◦ Φ1,
and similarly (Φ2, ρ2): I2−→U etc.

Given a comorphism (Φ, ρ): I1 −→ I2 and a modification τ : (Φ1, ρ1) −→ (Φ2, ρ2) ◦ (Φ, ρ), i.e.
τ : Φ1−→Φ2 ◦ U with (U · τ) ◦ ρ1 = (ρ2 · Φ) ◦ ρ, we define the associated representation map as

µ = (I2 · ε) ◦ (ρ · Ψ)

θ = (Φ2 · ε) ◦ (τ · Ψ)

The representation map condition follows easily from the condition for the comorphism modification
and naturality of ρ2:

I1Ψ
ρ1Ψ

µ

ρΨ

UΦ1Ψ

UτΨ

UθI2ΦΨ

I2ε

ρ2ΦΨ
UΦ2ΦΨ

UΦ2ε

I2
ρ2

UΦ2

Vice versa, given a a representation map ((Ψ, µ), θ): (Φ2, ρ2)−→(Φ1, ρ1), i.e. µ: I1 ◦Ψ−→I2 and
θ: Φ1 ◦ Ψ−→Φ2 such that (ρ1 · Ψ) ◦ (U · θ) = ρ2 ◦ µ, define the comorphism from I1 to I2 by

ρ = (µ · Φ) ◦ (I1 · η)

and the comorphism modification τ : (Φ1, ρ1)−→(Φ2, ρ2) ◦ (Φ, ρ) as

τ = (θ · Φ) ◦ (Φ1 · η)

The condition for the comorphism modification follows easily from the representation map condition
and naturality of ρ1:

I1
ρ1

I1η

ρ

UΦ1

UΦ1η

UτI1ΨΦ
ρ1ΨΦ

µΦ

UΦ1ΨΦ

UθΦ

I2Φ
ρ2Φ

UΦ2Φ

By the adjunction laws, the two constructions are inverses of each other.
2
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6.13 Bibliographical Notes

The early publications about institutions-based approaches to heterogeneous specification include
[AC94], [KST94], [OP02] and [BCL96, CBL99]. Diaconescu [Dia98] and Tarlecki [Tar00] were the
first to systematically study the semantics of heterogeneous specification languages, including amal-
gamation and exactness properties. Tarlecki [Tar00] has been the first noting that different types
of (co)morphisms [Tar96] are needed for heterogeneous specification. This has been elaborated by
the present author in [Mos03].

A breakthrough in the semantics of heterogeneous specification is the invention of Grothendieck
institutions by Diaconescu [Dia02] as a generalization of Grothendieck categories.9 The latter are
obtained by the flattening construction on indexed categories introduced by Grothendieck [Gro63].
Actually, Diaconescu first had invented so-called extra theory morphisms [Dia98] in order to provide
a semantics for CafeOBJ [DF02], and then later found that his results can be obtained within the
framework of Grothendieck institutions in a much simpler way. The present author has dualized the
Grothendieck construction to the comorphism case [Mos02a] (and thereby simplified the amalga-
mation results). The Grothendieck construction for entailment systems has already been presented
even earlier than that for institutions: in an unpublished report by Dimitrakos, Bicarregui and
Maibaum [DBM99].

Tarlecki [Tar04] argues that Grothendieck institutions are not necessary for heterogeneous spec-
ification; instead, he defines syntax and semantics and proof rules for heterogeneous specification
directly w.r.t. a given set of institutions and (co)morphisms. However, the proof rules only cover
the question whether a heterogeneous specification entails a sentence, but not the question whether
a heterogeneous specification entails (or refines to) another one. The latter question is inevitably in-
tertwined with amalgamation and interpolation properties of (and conservativity checks in) the
Grothendieck institution. Although Tarlecki [Tar00] studies some heterogeneous amalgamation
properties without constructing a Grothendieck institution, we think that a study of all the needed
properties is much easier when working with the Grothendieck construction. Moreover, many proof
rules work independently of whether the involved signature morphisms are homogeneous or hetero-
geneous. Imagine e.g. how complicated the proof system of [Bor02] for proving refinements gets if
homogeneous and heterogeneous signature morphisms have to be distinguished. A similar remark
holds for the proof calculus for development graphs.

The notion of heterogeneous development graph has been introduced by the present author
in [Mos02b]. Our completeness theorem for the proof calculus for development graphs has been
published in [MAH01] for the homogeneous case. The heterogeneous case (published in [Mos02a])
mainly adds one complication, caused by the desired restriction of conservativity checks to intra-logic
signature morphisms. The main advantage of this calculus over the one for structured specifications
introduced in [Bor02] (see also Sect. 5.3) is the weaker set of assumptions for completeness of the
calculus: basically, we need completeness of the underlying entailment system plus existence of
quasi-semi-exactness (cf. Def. 2.8). The latter property is much weaker than the assumptions in
[Bor02] (Craig interpolation, conjunction and implication).

The use of 2-cells between institutions (co)morphisms for heterogeneous specification has its
origin in Tarlecki’s representation maps [Tar96]. The notion of 2-indexed (co)institution has been
introduced by the present author in [Mos02a].

Diaconescu’s forthcoming book [Dia] will cover a good portion of the theory of Grothendieck in-
stitutions. See also the FLIRTS bibliography (http://www.tzi.de/flirts/flirtslibrary.html)
for literature about heterogeneous specification.

9Indeed, the present author has re-invented Grothendieck institutions in Spring 2001, but then found out that
Diaconescu already had written a paper about them.
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Chapter 7

The Heterogeneous Tool Set
(Hets)

The Heterogeneous Tool Set (Hets) implements the theory developed so far. It is the main analysis
tool for the specification language heterogeneous Casl. Heterogeneous Casl (HetCasl) combines
the specification language Casl with Casl extensions and sublanguages, as well as completely dif-
ferent logics and even programming languages such as Haskell. HetCasl extends the structuring
mechanisms of Casl, while HetCasl basic specifications are unstructured specifications or mod-
ules written in a specific logic (possibly completely different from Casl). Hence, only syntax and
semantics the logic for specification-in-the-small has to be adapted individually, while the concepts
in-the-large can be used for any logic. The graph of currently supported logics is shown in Fig. 7.1,
and the degree of support by Hets in Fig. 7.2. It should be stressed that the name “HetCasl” only
refers to Casl’s structuring constructs. The individual logics used in connection with HetCasl
and Hets can be completely orthogonal to Casl.

Casl provides institution-independent structuring constructs for writing specifications-in-the-
large. With heterogeneous structured specifications in HetCasl, it is possible not only to combine
and rename specifications, hide parts thereof (as in the language of Casl structured specifica-
tions), but also translate them to other logics. Like in Casl, also HetCasl provides architectural
specifications that prescribe the structure of implementations, and specification libraries, which are
collections of named structured and architectural specifications. A detailed language summary of
HetCasl is given in Appendix A.

Actually, the capabilites of Hets now go even slightly beyond HetCasl, since Hets also sup-
ports Haskell’s module system as a structuring language. This enables Hets to directly read in
Haskell programs. Moreover, support of further structuring languages is planned. The central de-
vice gluing together the different structuring languages is the formalism of development graphs, that
have been introduced in Sect. 5.4 and have been extended for heterogeneous specification in Chap. 6.
Development graphs have been used for industrial-scale applications with hundreds of specifications.
They serve as a core structuring language. Tools such as Maya [AHMS02] provide a management
of proofs, based on the formalism of development graphs. The goal of Hets is to make Maya
heterogeneous.1

The architecture of Hets is depicted in Fig. 7.3. Hets has an abstract interface corresponding to
concept of logic in Haskell. Of course, since model theory is not directly implementable, the interface
mainly is concerned with the entailment system of the logic. However, also some amalgamability
tests (refering to the model theory of the institution) need to be implemented.

Hets implements this by providing a type class Logic. Logic is a multiparameter type classes
with functional dependencies [PJM97]. Such a type class can be thought of as a formal parameter

1Indeed, Maya supports some kind of ad-hoc heterogeneity: while every theory is translated to higher-order logic,
there are special nodes indicating the original logic of a specification.
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2*CASL2PCFOL

CspCASL

Modal

HasCASL

CASL

CoCASL

Haskell Isabelle

Figure 7.1: Graph of logics currently supported by Hets.

Language Parser Static Analysis Prover
Casl x x (x)
CoCasl x x (x)
ModalCasl x x -
HasCasl x (x) (x)
Haskell x x -
Csp-Casl (x) - -
Structured specifications x x (x)
Architectural specifications x x -

Figure 7.2: Current degree of Hets support for the different languages.
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Text

Parser

Abstract syntax
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Interfaces

XML, ATerms

(e.g. CCC)
Consistency checker

(e.g. HOL-CASL)

Theorem prover

Management of proofs & change

Heterogeneous proof engine

MAYA
(e.g. ELAN-CASL)

Rewriter

proposed extensions

sublanguages and

Figure 7.3: Architecture of the heterogeneous tool set

signature. Logic contains types for signatures, signature morphisms, sentences, abstract syntax of
basic specifications etc., and functions for parsing, printing, static analysis, and proving. Based on
this abstract interface, we have implemented heterogeneous tools for parsing and static analysis of
heterogeneous Casl (using a semantics similar to the verification semantics in Sect. 6.11 above)2.
The heterogeneous tools of course needs to call the logic-specific tools whenever a basic specification
is encountered. The heterogeneous parser yields an abstract syntax tree, which is fed into the
heterogeneous static semantic analysis. The latter in turn yields a development graph over the
Grothendieck institution, which is then the basis for heterogeneous proofs. Part of the proof calculus
for heterogeneous development graphs has been implemented, the support for hiding is currently
being completed.

Technically, heterogeneity is realized as follows. On top of the type class Logic, an existential
datatype is constructed. Usually, existential types are used to realize e.g. heterogeneous lists, where
each element may have a different type. We use lists of (components of) institutions and comor-
phisms instead. This leads to an implementation of the Grothendieck institution over an indexed
coinstitution.

We have instantiated this general framework with institution-specific analysis tools for Casl,
HasCasl, Haskell, CoCasl, Csp-Casl and ModalCasl. Future work will interface existing theo-
rem proving tools with specific institutions in Hets. We already have implemented an experimental
interface to the theorem prover Isabelle, which is realized as an own logic within Hets.

The Heterogeneous Tool Set is available at www.tzi.de/cofi/hets. There, a user guide is
available as well. A brief introduction into Hets is given in [BM04].

In the sequel, we will describe a toy heterogeneous language and a toy Haskell program analysing
it (with providing full code in detail). The central ideas of Hets can be grasped by studying this
toy tool. Later on, an overview over the real Hets system is given.

2As noted above, also Haskell’s module system can be parsed and analysed.
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SPEC ::= logic ID SPEC

| BASIC-SPEC

| SPEC then SPEC

| SPEC with SYMBOL-MAPPING

| SPEC with logic ID

Figure 7.4: Abstract syntax of a simple subset of the heterogeneous specification language.
BASIC-SPEC and SYMBOL-MAPPING have a logic specific syntax, while ID stands for some form of
identifiers.

7.1 Genericity Versus Heterogeneity

In [MK02], we outlined how the static analysis of Casl structured specifications can be turned into
a generic program which is parameterized over a static analysis for an arbitrary logic. This has
been realized as a Standard ML functor. If one now wants to implement an analysis tool for a new
specification language, one can easily adopt the Casl structuring language for specification-in-the-
large and only needs to implement an analysis tool for specifications-in-the-small based on the logic
underlying the specification language. This language-specific tool has to fit with the signature of the
Standard ML functor. Then, the functor can be instantiated with the language-specific tool. Along
similar lines, various generic tools have been realised as Standard ML functors, e.g. the IsaWin
system realizing a graphical user interface for LCF-style theorem provers [LW99, LTKKB99].

However, this approach has its strong limitations when moving from genericity to heterogeneity,
as it is the case for the heterogeneous specification language proposed in [Mos03]. Here, we not only
want to use structuring constructs that are generic over the underlying logic, but we also want to
write specifications that use several logics simultaneously, in one and the same specification, while
using logic translations for relating the logics (cf. the abstract syntax in Fig. 7.4). Of course, one
can use several instantiations of standard ML functors in parallel. However, there is no way to deal
simultaneously with several of these instantiations in a uniform manner (in particular, if the number
of forthcoming instantiations is not known). It seems that the type system of Standard ML cannot
handle this in an elegant way. We have therefore decided to move to Haskell (and its extensions
provided by the Glasgow Haskell compiler [Uni]), which does provide a richer type system (although
functors are missing).

7.2 The Type Class Logic

What is the abstract interface for a logic? While in Standard ML, we have collected the types and
functions implementing a logic into a signature of a functor, in Haskell, all this is collected into a
multiparameter type class [PJM97]. Now Haskell needs to be able to infer the correct type class
instance from any instance of any of the functions in the type class. Since hardly any function
has all the type class parameters occurring in its argument type, we need to specify functional
dependencies. The easiest way to do this for an arbritrary interface signature is to add a new
dummy type parameter id carrying the identity (in the sense of “personality”, and not in the
sense of λx → x) of the instance of the multiparameter type class. This new type parameter is
usually instantiated as a singleton, and added as an extra argument type to each function helping
to determine the correct instance.

An example of this method is given in Figs. 7.5 and 7.6. Here, the basic ingredients of a logic
are formalized.

This leads to the following type classes:

• The type class Language merely carries the identity of the language (consisting of the type
parameter id as indicated above, and the name of the language).

• The type class Category is for the category of signatures and signature morphisms (although
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module Logic (module Logic, module Dynamic) where

import Dynamic

import Parsec

-- the identity of a language

class (Show id, Typeable id) => Language id where

language_name :: id -> String

language_name i = show i

-- categories, needed for signatures and signature morphisms

class (Language id, Eq sign, Show sign, Eq morphism) =>

Category id sign morphism | id -> sign, id -> morphism where

identity :: id -> sign -> morphism

o :: id -> morphism -> morphism -> Maybe morphism

dom, cod :: id -> morphism -> sign

-- abstract syntax, parsing and printing

class (Language id, Show basic_spec, Eq basic_spec, Typeable basic_spec,

Show symbol_mapping, Eq symbol_mapping, Typeable symbol_mapping,

Show sentence, Eq sentence) =>

Syntax id sign sentence basic_spec symbol_mapping

| id -> sign, id -> basic_spec, id -> symbol_mapping, id -> sentence where

parse_basic_spec :: forall st . id -> CharParser st basic_spec

parse_symbol_mapping :: forall st . id -> CharParser st symbol_mapping

parse_sentence :: id -> sign -> String -> sentence

Figure 7.5: The basic ingredients of a logic — syntactic part
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it could be re-used for other categories as well). Except from the additional type parameter
id, this has be directly obtained from the mathematical definition of a category.

• Usually signatures and signature morphisms (as well as sentences) of a logic are more semantic
entities of a condensed nature, while the syntax of a specification language built upon that
logic provides a more verbose and user-friendly input syntax. We therefore introduce types
basic spec and symbol map, serving as abstract syntaxes for basic specifications and symbol
maps, and parsers and printers for these. All this is collected in the type class Syntax.

• Now a basic specification in the specification language corresponds to a theory (signature
plus set of sentences) at the level of the logic. The type class StaticAnalysis contains
a static analysis function for basic specifications that delivers such a theory. Note that a
signature (“local environment”) flows into the analysis; this corresponds to imported parts of
a specification.

• The data type Proof Status provides a simple abstract interface for theorem provers that
prove sentences in a given theory. A prover returns whether the sentence could be proved or
not, or remains open.

• Finally, the type class Logic adds, besides a prover, also the sentence functor. Since we do
not want to complicate things by using dependent types, we have just collected all sentence
sets into one type, the objects of which of course should also carry the signature information.
Hence, due to the possibility of a signature mismatch, sentence translation along a signature
morphism becomes a partial operation. We introduce sentence translation only at this late
stage (compared with the mathematical definition of entailment system), since it is practically
used only in the management of proofs.

The type class Logic also is depicted in the the upper left box in Fig. 7.3 (we also have included
some interfaces to a compact output format such as XML or ATerms there, which for brevity are
omitted in the shown Haskell code).

Based on the type class Logic, our goal is now to implement heterogeneous tools for parsing and
static analysis of the heterogeneous language, as well as theorem proving tools for proving in multi-
logic specifications. Together, these tools will form the heterogeneous tool set with architecture is
depicted in Fig. 7.3. Of course, we will present only some very simplified version here; nevertheless,
the shown pieces of code together form a complete set of Haskell modules.

7.3 Implementing the Grothendieck Logic

The Grothendieck logic (see Sect. 6.1) can be implemented as a bunch of existential types over the
type class Logic, see Fig. 7.7. At this point, we can see the achievement compared to standard ML
functors: we can now instantiate the type class logic with different logics and work with heteroge-
neous lists of logics, which is not possible in Standard ML. A disadvantage compared with Standard
ML is that we cannot name signatures — we always have to list the whole list of type parameters,
which is a bit tedious when often repeated.

We also have included some functions doing coercions among dynamic types. This will be
explained below.

The abstract syntax of heterogeneous specifications is given in Fig. 7.8. A specification either
consists of some basic specification in some logic, or a union of specifications, or a translation of
a specification. Translations can be along symbol maps, or along logic translations. The datatype
for environments follows roughly the same structure; however, environments are intended to carry
fully statically checked informations, based on theories and their translations. Additionally, at each
point, a theory corresponding to the flattened environment (i.e. with all translations performed and
extensions united) is stored as well.
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-- module Logic continued

-- a theory consists of a signature and a set of sentences

type Theory sign sentence = (sign,[sentence])

-- static analysis

class (Syntax id sign sentence basic_spec symbol_mapping,

Typeable sign, Typeable morphism, Typeable sentence) =>

StaticAnalysis id sign morphism sentence basic_spec symbol_mapping

| id -> morphism where

basic_analysis ::

id -> sign -> basic_spec -> Maybe (Theory sign sentence)

-- the input signature contains imported stuff

stat_symbol_mapping ::

id -> symbol_mapping -> sign -> Maybe morphism

-- Proofs

data Proof_status = Open | Disproved | Proved deriving Show

-- logic (entailment system)

class (Category id sign morphism,

StaticAnalysis id sign morphism sentence basic_spec symbol_mapping) =>

Logic id sign morphism sentence basic_spec symbol_mapping

where empty_signature :: id -> sign

empty_theory :: id -> Theory sign sentence

empty_theory i = (empty_signature i,[])

map_sentence :: id -> morphism -> sentence -> Maybe sentence

inv_map_sentence :: id -> morphism -> sentence -> Maybe sentence

prover :: id -> Theory sign sentence -- theory that shall be assumed

-> sentence -- the proof goal

-> IO Proof_status

-- logic translations

data (Logic id1 s1 m1 sen1 b1 sy1, Logic id2 s2 m2 sen2 b2 sy2) =>

Logic_translation id1 s1 m1 sen1 b1 sy1 id2 s2 m2 sen2 b2 sy2 =

Logic_translation { source :: id1,

target :: id2,

tr_sign :: s1 -> s2,

tr_mor :: m1 -> m2,

tr_sen :: s1 -> sen1 -> Maybe sen2,

inv_tr_sen :: s1 -> sen2 -> Maybe sen1 }

Figure 7.6: The basic ingredients of a logic — semantic part
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module Grothendieck (module Logic, module Grothendieck) where

import Logic

data AnyLogic =

forall id s m sen b sy .

Logic id s m sen b sy =>

G_logic id

data AnyTranslation =

forall id1 s1 m1 sen1 b1 sy1 id2 s2 m2 sen2 b2 sy2 .

(Logic id1 s1 m1 sen1 b1 sy1, Logic id2 s2 m2 sen2 b2 sy2) =>

G_LTR (Logic_translation id1 s1 m1 sen1 b1 sy1 id2 s2 m2 sen2 b2 sy2)

type LogicGraph = ([(String,AnyLogic)],[(String,AnyTranslation)])

data G_basic_spec =

forall id s m sen b sy .

Logic id s m sen b sy =>

G_basic_spec id b

data G_symbol_mapping_list =

forall id s m sen b sy .

Logic id s m sen b sy =>

G_symbol_mapping_list id sy

data G_sentence =

forall id s m sen b sy .

Logic id s m sen b sy =>

G_sentence id sen

data G_theory =

forall id s m sen b sy .

Logic id s m sen b sy =>

G_theory id (Theory s sen)

data G_morphism =

forall id s m sen b sy .

Logic id s m sen b sy =>

G_morphism id m

-- auxiliary functions for conversion between different logics

coerce :: (Typeable a, Typeable b) => a -> Maybe b

coerce = fromDynamic . toDyn

coerce1 :: (Typeable a, Typeable b) => a -> b

coerce1 = Maybe.fromJust . coerce

Figure 7.7: The Grothendieck logic
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module Structured (module Structured, module Grothendieck) where

import Grothendieck

data SPEC = Basic_spec G_basic_spec -- unstructured specifications

| Intra_Translation SPEC G_symbol_mapping_list -- renaming within a logic

| Inter_Translation SPEC AnyTranslation -- translation between logics

| Extension SPEC SPEC -- hierarchical extension or union

deriving Show

data Env = Basic_env G_theory

| Intra_Translation_env G_theory Env G_morphism

| Inter_Translation_env G_theory Env AnyTranslation

| Extension_env G_theory Env Env

Figure 7.8: Abstract syntax and environments for heterogeneous specifications

7.4 Heterogeneous Parsing

The heterogeneous parser (cf. Fig. 7.9) transforms a string to an abstract syntax tree and is addition-
ally parameterized over an arbitrary logic graph. It implements the grammar from Fig. 7.4, using
the Parsec combinator parser and its expression parser ParsecExpr [LM]. Logic and translation
names are looked up in the logic graph — this is necessary to be able to choose the correct parser
for basic specifications. Indeed, the parser has a state that carries the current logic, and which is
updated if an explicit specification of the logic is given, or if a logic translation is encountered (in
the latter case, the state is set to the target logic of the translation). With this, it is possible to
parse basic specifications by just using the logic-specific parser of the current logic as obtained form
the state.

The parsing of logic translations is based on dynamic types and the function coerce coercing
values between any two of these. This is necessary in order to be able to check whether the logic of
the translated specification coincides with the logic of the logic translation.

7.5 Heterogeneous Static Analysis

The static analysis, given in Fig. 7.10, is based on the static analysis of basic specifications, and
transforms an abstract syntax tree to an environment. Starting with an empty theory, it successively
extends (using the static analysis of basic specifications) and/or translates (along the intra- and
inter-logic translations) the theory, while simultaneously constructing an environment. The initial
empty theory has to be computed by an auxiliary function, since the logic of this theory is not
known in advance.

Within the static analysis of basic specifications and of (intra- and inter-logic) translations,
dynamic types and the function coerce are heavily used. This is because we need to relate different
instances of the existential types of the module Grothendieck, which fit together because of the way
the parser works - but this is not known by the type system. In order to store this information in
the types, we would need dependent types, which however are available only in experimental Haskell
extensions. We have therefore chosen to use dynamic types, which works quite well. One limitation
of the type system of the Glasgow Haskell compiler is that we often cannot annotate the result of of
a call of coerce with its type. This is because this type here typically is computed using functional
dependencies, and there is no notation that allows one to extract such a type from given types.
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module Parser where

import Parsec

import ParsecExpr

import Structured

hetParse :: LogicGraph -> String -> SPEC

hetParse (logics@((_,defaultLogic):_), translations) input =

case (runParser spec defaultLogic "" input) of

Left err -> error ("parse error at "++show err)

Right x -> x

where

spec :: CharParser AnyLogic SPEC

spec = buildExpressionParser table basic

<?> "SPEC"

basic = do { G_logic id <- getState;

b <- parse_basic_spec id;

return (Basic_spec (G_basic_spec id b))}

table = [[Prefix (do {string "logic"; spaces;

name <- many1 alphaNum;

setState (case lookup name logics of

Nothing -> error ("logic "++name++" unknown")

Just id -> id);

spaces; return (\x->x) } )],

[Postfix (do

string "with"; spaces;

do string "logic"; spaces

name <- many1 alphaNum

G_logic (id::src) <- getState

case lookup name translations of

Nothing -> error ("translation "++name++" unknown")

Just (G_LTR tr) ->

case coerce(source tr)::Maybe src of

Nothing -> error ("translation type mismatch")

Just _ -> do

setState (G_logic (target tr))

return (\sp -> Inter_Translation sp (G_LTR tr))

<|> do G_logic id <- getState

sy <- parse_symbol_mapping id

spaces

return (\sp -> Intra_Translation sp (G_symbol_mapping_list id sy))

)],

[Infix (do{string "then"; spaces; return Extension}) AssocLeft]

]

Figure 7.9: The heterogeneous parser
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module StaticAnalysis where

import Structured

staticAnalysis :: SPEC -> Maybe (Env, G_theory)

staticAnalysis sp = staticAna1 initial_theory sp

where

initial_theory = get_initial sp

get_initial sp = case sp of

Basic_spec (G_basic_spec logic _) ->

G_theory logic (empty_theory logic)

Intra_Translation sp _ -> get_initial sp

Inter_Translation sp _ -> get_initial sp

Extension sp _ -> get_initial sp

staticAna1 :: G_theory -> SPEC -> Maybe (Env, G_theory)

staticAna1 th@(G_theory id (sig,ax)) sp =

case sp of

Basic_spec (G_basic_spec _ b) ->

do b’ <- coerce b

(sig1,ax1) <- basic_analysis id sig b’

let th’ = G_theory id (sig1,ax1++ax)

return (Basic_env th’,th’)

Intra_Translation sp (G_symbol_mapping_list _ symap) ->

do (env,G_theory id1 (sig1,ax1)) <- staticAna1 th sp

symap’ <- coerce symap

mor <- stat_symbol_mapping id1 symap’ sig1

tr_ax <- sequence (map (map_sentence id1 mor) ax1)

let th’ = G_theory id1 (cod id1 mor,tr_ax)

let env’ = Intra_Translation_env th’ env (G_morphism id1 mor)

return (env’,th’)

Inter_Translation sp (G_LTR tr) ->

do (env,G_theory id1 (sig1,ax1)) <- staticAna1 th sp

let id_tar = target tr

sig2 <- coerce sig1

ax2 <- coerce ax1

let tr_sig = tr_sign tr sig2

tr_ax <- sequence (map (tr_sen tr sig2) ax2)

let th’ = G_theory id_tar (tr_sig,tr_ax)

let env’ = Inter_Translation_env th’ env (G_LTR tr)

return (env’,th’)

Extension sp1 sp2 ->

do (env1,th1) <- staticAna1 th sp1

(env2,th2) <- staticAna1 th1 sp2

return (Extension_env th2 env1 env2,th2)

Figure 7.10: The heterogeneous static analysis
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module Proof where

import Structured

import Parser

import StaticAnalysis

prove :: LogicGraph -> Bool -> String -> [String] -> IO()

prove logicGraph flat spec raw_goals = do

if flat then proveFlat th (getGoals th)

else proveStruct th env (getGoals th)

where

as = hetParse logicGraph spec

Just (env,th) = staticAnalysis as

getGoals (G_theory id (sig,ax)) =

map (G_sentence id . parse_sentence id sig) raw_goals

proveFlat th goals = do

res <- sequence (map (proveFlat1 th) goals)

putStrLn (show res)

proveFlat1 (G_theory id (sig,ax)) (G_sentence _ goal) =

prover id (sig,ax) (coerce1 goal)

proveStruct (G_theory id (sig,ax)) env goals = do

res <- sequence (map (prove1 env) goals)

putStrLn (show res)

where

prove1 :: Env -> G_sentence -> IO Proof_status

prove1 env g@(G_sentence id goal) = case env of

Basic_env (G_theory id’ (sig,ax)) ->

prover id’ (sig,ax) (coerce1 goal)

Intra_Translation_env th env’ (G_morphism id’ mor) ->

let goal’ = coerce1 goal in

case inv_map_sentence id’ mor goal’ of

Just goal’’ -> prove1 env’ (G_sentence id’ goal’’)

Nothing -> proveFlat1 th g

Inter_Translation_env th env’ (G_LTR tr) ->

prove_aux th

where

prove_aux (G_theory _ (sig,_)) =

case inv_tr_sen tr (coerce1 sig) (coerce1 goal) of

Just goal’’ -> prove1 env’ (G_sentence (source tr) goal’’)

Nothing -> proveFlat1 th g

Extension_env _ env1 env2 -> do

res <- prove1 env1 g

case res of

Proved -> return Proved

_ -> prove1 env2 g

Figure 7.11: Homogeneous and heterogeneous proofs
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7.6 Heterogeneous Proofs

Finally, the module Proof implements homogeneous as well as heterogeneous proofs. First, the
heterogeneous specification is parsed and statically analysed, and then, the proof goals are parsed
in the logic and signature of the specification. For a homogeneous (=flat) proof, for each proof goal
just the prover for the logic of the specification is called. In contrast, for a heterogeneous proof,
each proof goal is translated back along any intra- and inter-logic translations of the environment
of the specification, until this is no longer possible, and then, it is proved in some flattened theory.
With this, it is possible to do truly heterogeneous proofs: each proof goal is proved within a logic
that is as minimal (w.r.t. the translations in the logic graph) as possible. In this way, it is possible
to exploit the strengths of provers that are specialized towards particular logics.

7.7 Overview of Hets module structure

We now give a brief overview of the module structure of Hets, which is of course much more
complicated than the structured of the toy modules presented above. The input language of Hets
is the heterogeneous language summarized in Appendix A is of course also more complicated than
the above toy language.

The Hets modules are grouped using hierarchical modules (where modules can be grouped into
folders); we here only discuss the top view on this hierarchy.

The folder Logic contains the infrastructure needed for institution independence. The module
Logic.Logic contains all the type classes for interfacing institutions mentioned above, including
the type class Logic. The module Logic.Prover is for the interface to theorem provers, rewriters,
consistency checkers, model checkers. The data types Proof Status and Prover provides the inter-
face to provers. In case of a successful proof, also the list of axioms that have been used in the proof
can be returned. This will be crucial for an efficient management of change, see [AHMS00, AM02].

Module Logic.Comorphism provides type classes for the various kinds of mappings between
institution (which have been introduced in Chap. 2), and module Logic.Grothendieck realizes the
Grothendieck construction from Sect. 6.1 and also contains a type LogicGraph. This is complemented
by folders working in the heterogeneous level — the code in modules in these folders is parameterized
over an arbitrary but fixed logic graph. The folder Syntax provides abstract syntax and parsing of
heterogeneous structured specifications. Static is for the static analysis (based on the verification
static semantics given in Sect. 5.5 and 6.11). Static.DevGraph contains the data structures for
heterogeneous development graphs. Finally, the folder Proofs contains an implementation of the
proof calculus for heterogeneous development graphs as described in Sect. 6.4.

The folders CASL, CoCASL, HasCASL, Haskell, CspCASL, Modal, Isabelle contain different in-
stances of the type class Logic of the module Logic.Logic. These instances always are contained in
a module named Logic xxx, where xxx is the name of the language at hand. Since the integration
of a new logic into Hets requires writing a new instantiation of the type class Logic, it is advisable
to consult the module Logic xxx (and the modules imported there) for some logic that is in some
sense similar to the new logic to be integrated. In particular, we have implemented the Casl logic in
such a way that much of the folder CASL can be re-used for Casl extensions as well; this is achieved
via “holes” (realized via polymorphic variables) in the types for signatures, morphisms, abstract
syntax etc. This eases integration of Casl extensions and keeps the effort quite moderate.

The folder Comorphisms contains various comorphisms and other translations that constitute
the logic graph. Note that these modules can be compiled independently of the logic independent
heterogeneous modules listed above. The module Comorphisms.LogicList assembles all the logics
into one (heterogeneous) list, while Comorphism.LogicGraph builds up the logic graph, i.e. it assem-
bles all the (co)morphisms among the logics, and also specifies which ones are standard inclusions.
This module also provides a partial union for logics, which is crucial for the static analysis of unions
of specifications (which may occur explicitly or implicitly).

Last but not least, there are general purpose folders: ATC for conversion from and to the ATerm
[BJKO00] format — most of the modules have been automatically created using DriFT from the
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Casl 11.500
CoCasl 1.300
Csp-Casl 1.700
ModalCasl 1.000
HasCasl 11.000
Haskell 3.500
Isabelle 1.000
Comorphisms between logics 3.000

Logic specific-code in total 34.000

Interface for Logics, Heterogeneous Tools 11.500
Common utilities, GUI 12.500

Logic independent code in total 24.000

UniForM Workbench 110.000
Other third party modules 15.000

Third party modules in total 125.000

Figure 7.12: Lines of Haskell code in the Heterogeneous Tool Set.

utils folder. The latter also contains a module inlineAxioms that can be used to write the axioms
for theoroidal comorphisms in a concise way, namely in the input syntax of the respective target
logic (the identifiers will turn into Haskell variables and can hence be used for easily producing
instances of axiom schemes). The folder Common contains general purpose libraries, e.g. for sets,
maps and relations, and for parsing and pretty printing. The command line interface is contained
in hetcats, the graphical interface in GUI. A more detailed descriptions of the modules and their
contents, including an index of all data types and functions, can be found via the Hets web page
(http://www.tzi.de/cofi/hets). An overview of the numbers of lines of code is given in Fig. 7.12.

The reader is encouraged to have a look at the selected code parts of Hets in Appendix B. These
code parts close the gap between the toy language presented above and the real Hets system.
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Chapter 8

Conclusion

The central objective of this work is to provide a solid semantic foundation for heterogeneous
specification of complex software systems and simultaneously show that this leads to a framework
that can be used in practice, also supported by tools. We hope that the reader has got the general
picture how this can be done, even if it is clear that there is some (not too large) gap between the
present work and realistic formal heterogeneous developments.

Heterogeneous specification adds a certain degree of (meta-level) complexity to the complexity
already inherent in the various specification frameworks. However, we think that in the end this
extra meta-level complexity pays off: indeed, it is implicitly already there in the various structuring
languages and translations between formalism that are already in use. Heterogeneous specification
just studies this more systematically and thoroughly, in order to provide the foundation at this
meta-level once and for all, instead of re-inventing it numerous times in an ad-hoc manner.

The most promising way of giving a semantics to such specifications has turned out to be the
formalization of logics as institutions, logic translations as institution comorphisms, and graphs of
logics as indexed coinstitutions. The semantics of a heterogeneous specification then lives in the
comorphism-based Grothendieck institution. Other types of translation between institutions (whose
need is motivated by various examples) can be integrated as well, using spans of comorphisms. The
advantage of the comorphism-based Grothendieck construction is its nice interaction with amalga-
mation properties. The latter are needed for obtaining structured and heterogeneous proof calculi.

Of course, a central prerequisite to make this work in practice is to show that a number of logics
of varying nature and application domain can indeed be formalized as institutions in such a way
that smooth translations are possible and an initial logic graph (which of course can be extended
later on) emerges.

The central device for managing specifications and structured proofs are development graphs,
which already have successfully been applied in industrial context. The central achievement of the
present work is to extend development graphs with a hiding operation, consistency and conserva-
tivity considerations, and of course to make them heterogeneous. The central point here has been
to obtain a soundness and completeness result for heterogeneous development graphs that can be
applied to realistic logic graphs, such as the one studied here. Indeed, the conditions for soundness
and completeness of our calculus are related to various forms of exactness and weak amalgamation
conditions. These conditions are so mild that they hold in typical practical examples; in particu-
lar, they are considerably weaker than both the exactness conditions for Grothendieck institutions
in [Dia02] and the Craig interpolation property needed for completeness of calculi for structured
specification [Bor02]. We also have demonstrated that heterogeneous bridges (and hence truly het-
erogeneous proofs), as introduced in [BCL96, CBL99] in an ad-hoc manner, can be obtained in
the semantic framework of Grothendieck institutions. Instead of using a global encoding into some
“universal” logic, truly heterogeneous proofs have the advantage to better exploit specialized tool
support.

Tool support for heterogeneous specifications and development graphs is provided in form of
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the Heterogeneous Tool Set (Hets). The latter provides an abstract programming interface for
the implementable part of institutions and comorphisms. This serves as a basis for heterogeneous
analysis and proof tools that are based on corresponding tools for the individual logics, provided for
an arbitrary but fixed graph of logics and logic transformations. Hence, we achieve not only gener-
icity, but also true heterogeneity, involving different logics and their translations at the same time.
While genericity has been achieved using multi-parameter type classes with functional dependencies
(roughly corresponding to Standard ML functors), heterogeneity makes essential use of existential
and dynamic types. We have provided a self-contained set of toy Haskell modules that show how
the tool is implemented, as well as a realistic Haskell program of 60.000 lines. The effort needed
to integrate a new logic remains moderate. Hets can thus seen as a framework for integrating
languages and tools, aiming at software development in a heterogeneous setting, but also usable for
mediating between different formal ontologies.

Compared with logic combination [MTP98, SSCM00, CMRS02, CGR03], heterogeneous specifi-
cation has only weaker forms of feature interaction. Logic combination provides feature interaction
between different logical connectives, quantifiers, modalities, and so on. By contrast, heterogeneous
specification puts the involved logics side by side, with the only feature interaction provided by the
logic translations (formalized as comorphisms).

The problematic point with logic combination is th resulting proliferation of even more logics,
all of which need their own proof support (although calculi sometimes can be combined as well,
they still need to be implemented and optimized individually). Here, heterogeneous specification
and heterogeneous proofs are more flexible: they support better re-use of existing (sometimes highly
specialized) proof tools for individual logic. Last but not least, heterogeneous specification is more
widely applicable than logic combination: one needs just one metaformalism for all logics, while
meta-frameworks for logic combination usually have to be fine-tuned for each new type of logic they
are applied to.

Further comparison with related work is given in the bibliographical sections of each chapter.

8.1 Future Work

Future work will in the first place consist of the development of realistic case studies1 of heteroge-
neous specifications with Hets, along with the further enhancement of Hets in order to provide the
needed support for such case studies. The goal is to come up with a convincing reference application
that will lead to more direct insight of the usefulness of heterogeneous specification and the hetero-
geneous tool set, both in academia and industry. We plan to extend Hets to an industrial-strength
tool for formal software development using heterogeneous specifications. The approach presented
here therefore needs to be extended in the directions described below.

As a general line, we are of course also interested in the integration of more logics, translations,
provers and consistency and model checkers into Hets. If your favorite language or prover is not
yet integrated, please contact us2, or even better, join the Hets development team and integrate
your language and/or prover. In Bremen, several people are working on this, but we need resources
from other sites as well in order to turn Hets into a success.

Moreover, also, the general interfaces of Hets, like the general command-line interface and the
graphical interface, as well as the interface for storing states of the development, can be enhanced.

Of course, also the heterogeneous language and the theory behind it need further development,
see e.g. Sect. 8.1.5. However, given the body of theory developed in this thesis, we plan to concentrate
the energies on turning Hets into a success.

8.1.1 Management Of Change

The development graph manager Maya developed in Saarbrücken already provides a management
of change for homogeneous development graphs [AHMS00, AM02]. The central motivation is the

1For example, the specification of safety properties of the Bremen autonomous wheel chair [RL00, LR01].
2See http://www.tzi.de/cofi/hets.
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insight that not only implementations, but also specifications may be incorrect and therefore are
subject to change. The central idea of [AHMS00] is to compute the difference between two different
versions of a development graph and use heuristics to match the nodes and links of the two graphs.
Based on this and the information about the axioms and theorems that have been used in the
proofs, the change management can then determine which proofs remain valid without change and
which proof goals have to be re-proved (either be re-running the respective tactic script, or by
adapting it or even providing a completely new proof). This change management shall be extended
to heterogeneous development graphs with hiding. In order to achieve logic independence, the only
properties that will be used are those of an entailment system in the sense of [Mes89b]. Moreover, it
is planned to actually realize a much more general change management, based on abstract objects
and dependencies among them, and instantiate this with heterogeneous development graphs.

A related topic is version control and configuration management. Here, the idea is to integrate
Hets with the UniForM workbench [KPO+99]. Also, it sounds promising to enhance the XML
interface in such a way that the OMDOC infrastructure [Koh00] can be used for Hets.

8.1.2 Reduction Strategies

At at least two places, reduction strategies for rewriting will play a role in Hets.
Currently, the quotient on the Grothendieck signature category is not implemented yet. The

implementation will represent the quotient category as a composition graph [Sch99]. A central
question is the study of termination and confluence properties for the resulting term rewriting
system.

Furthermore, the proof calculus for development graphs with hiding is non-deterministic as well.
While the rules without hiding can easily be made deterministic, it is not clear how far this is
possible also for the rules dealing with hiding. Also here, termination and confluence properties
(this time for graph grammars) are the interesting things to study.

8.1.3 Flattening out Heterogeneity

The proof calculus for development graphs with hiding is of course ultimately based on entailment
systems of the logics involved, using the rule (Basic Inference), see Sect. 5.6. This rule is the
interface to rule systems for the individual logics. The rule just flattens the theory in which a certain
sentence has to be proved. In practice, the latter will be done using a theorem prover. However,
flattening the theory usually is a bit too much: it is more advisable to keep the structure of the
theory as much as possible and flatten out only those things that the prover cannot deal with. This
means that the theory needs to be made homogeneous, i.e. any inter-logic signature morphism
needs to be flattened away by translating the whole development graph along it. For most theorem
provers, ordinary intra-logic signature morphisms that are not just inclusions must be flattened out
as well, since most theorem provers do not support renaming. Note however that the hierarchical
structuring along intra-logic inclusions can be kept. We thus have to add a flattening rule that
allows to translate a flattenable node (i.e. without derive) along a comorphism.

A related topic is the logic-specific oracle for conservativity: in the proof of the completeness
theorem (Theorem 6.26) the conservativity check is only used for a link whose source node is flatten-
able (Lemma 6.27) and thus easy to make homogeneous. However, the possibilities of homogenizing
the target node need to be investigated.

8.1.4 Interface for Theorem Provers

Besides the goal of integrating more theorem provers (currently, SPASS, KRHyper and Racer are on
the list), the general interface for theorem provers shall be improved. Actually, there are already a
number of interface languages that are understood by more than one theorem provers: proof general,
mathweb, the protegé language and an XML-RPC interface for theorem proving easing management
of change [AM02]. Hets should learn these languages as well. If provers deliver proof trees (the
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datastructure for this is already provided by Hets), then Hets can build heterogeneous proof trees
and provide a small program that checks these for correctness.

8.1.5 Heterogeneous Architectural Specifications and Heterogeneous Re-
finement

Heterogeneous architectural specifications are just architectural specifications over the Grothendieck
logic. Luckily, the semantics of architectural specifications given in [CoF04, II.5] neither existence of
colimits of signatures nor exactness of the underlying institution (see Sect. 6.2 for a discussion why
it is problematic to require this for Grothendieck institutions). Instead, the diagram semantics OF
[CoF04, III.5.6] relies on the notion of a diagram ensuring amalgamability along a sink. This notion
naturally applies also to Grothendieck institutions. An open problem is how to formulate (and
implement, in the Heterogeneous Tool Set) the check for ensurance of amalgamability within the
Grothendieck institution in terms of corresponding checks for the individual institutions. It might
suffice to use weakly amalgamable cocones, but the question then is: how to find a factorization
within the Grothendieck institutions (e.g. assuming factorizations for the individual logics)?

A related topic is making the refinement language for Casl developed in [MSA05] heterogeneous.
Indeed, we expect that this should go through without any further technical problems. Of course,
the real challenge is then the study of observational or behavioural refinement. This currently is
being completed for the heterogeneous case.
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[Rößi00] M. Rößiger. Coalgebras and modal logic. In Coalgebraic Methods in Computer Science, Electron.
Notes Theoret. Comput. Sci. 33. Elsevier, 2000.
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Appendix A

Heterogeneous Casl (HetCasl)
Language Summary

Heterogeneous Casl (HetCasl) allows mixing specifications written in different logics (using trans-
lations between the logics). It extends Casl only at the level of structuring constructs, by adding
constructs for choosing the logic and translating specifications among logics. HetCasl is needed
when combining specifications written in Casl with specifications written in its sublanguages and
extensions. HetCasl also allows the integration of logics that are completely different from the
Casl logic.

This document provides a detailed definition of the HetCasl syntax and an informal description
of the semantics, building on the existing Casl Summary [CoF04].

About this document

This document gives a detailed summary of the syntax and intended semantics of HetCasl. It is
intended for readers already familiar with Casl, in particular with Casl structured specifications
and libraries, see [CoF04]. Like the Casl Summary [CoF04], this document provides little or nothing
in the way of discussion or motivation of design decisions; for such matters, see in particular [Mos03].

Structure

The document consists of a chapter explaining the semantic concepts needed for heterogeneous
specification (Chap. A.1), and a chapter (Chap. A.2) describing the language constructs of HetCasl
(which extend Casl structured specifications and libraries).

Like the Casl Summary [CoF04], this document provides appendices containing the abstract
syntax (Appendices A.3 and A.4) and the concrete syntax (Appendix A.5) of HetCasl specifica-
tions.

A.1 Heterogeneous Concepts

A.1.1 Institutions

HetCasl exploits the fact that Casl structured and architectural specifications are defined in-
dependently of the underlying framework of basic specifications, formalized in terms of so-called
institutions [GB92] (some category-theoretic details are omitted below) and proof systems.

A basic specification framework may be characterized by:

• a class Sig of signatures Σ, each determining the set of symbols |Σ| whose intended inter-
pretation is to be specified, with morphisms between signatures;
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• a class Mod(Σ) of models , with homomorphisms between them, for each signature Σ;

• a set Sen(Σ) of sentences (or axioms), for each signature Σ;

• a relation |= of satisfaction , between models and sentences over the same signature; and

• (optionally) a proof system , for inferring sentences from sets of sentences.

A signature morphism σ : Σ → Σ′ determines a translation function Sen(σ) on sentences,
mapping Sen(Σ) to Sen(Σ′), and a reduct function Mod(σ) on models, mapping Mod(Σ′) to
Mod(Σ).1 Satisfaction is required to be preserved by translation: for all S ∈ Sen(Σ),M ′ ∈
Mod(Σ′),

Mod(σ)(M ′) |= S ⇐⇒ M ′ |= Sen(σ)(S).

If present, the proof system is required to be sound, i.e., sentences inferred from a specification are
always consequences; moreover, inference is to be preserved by translation.

The semantics of a structured specification consists of a signature Σ together with a class of
models in Mod(Σ). A specification is said to be consistent when there are some models that satisfy
all the sentences, and inconsistent when there are no such models. A sentence is a consequence
of a specification if it is satisfied in all the models of the specification.

A.1.2 Institution Morphisms and Comorphisms

Heterogeneous specifications involve several institutions, which are related by institution mor-
phisms and comorphisms [RG04].

An institution morphism from an institution I to an institution J consists of the following
components:

• a translation Φ of I-signatures to J-signatures,

• a translation α of J-sentences over Φ(Σ) to I-sentences over Σ,

• a translation β of I-models over Σ to J-models over Φ(Σ),

such that satisfaction is preserved by translation along the institution morphism: for all Σ ∈ SigI ,
M ∈ ModI(Σ) and ϕ′ ∈ SenJ(Φ(Σ)),

M |=I
Σ αΣ(ϕ′) ⇐⇒ βΣ(M) |=J

Φ(Σ) ϕ

While institution morphisms often are projections expressing the fact that a “richer” institution
is built over a “poorer” one, institution comorphisms often formalize inclusions or encodings between
institution. An institution comorphism is similar to an institution morphism; only the directions of
sentence and model translation change. It consists of the following components:

• a translation Φ of I-signatures to J-signatures,

• a translation α of I-sentences over Σ to J-sentences over Φ(Σ),

• a translation β of J-models over Φ(Σ) to I-models over Σ,

such that satisfaction is preserved by translation along the institution comorphism: for all Σ ∈ SigI ,
M ′ ∈ ModJ (Φ(Σ)) and ϕ ∈ SenI(Σ):

M ′ |=J
Φ(Σ) αΣ(ϕ) ⇐⇒ βΣ(M ′) |=I

Σ ϕ.

Simple theoroidal institution morphisms and comorphisms [RG04] admit extra flexibility:
signatures may be mapped to theories (where a theory consists of a signature and a set of sentences

1In fact Sig is a category, and Sen(.) and Mod(.) are functors. The categorical aspects of the semantics of Casl
are emphasized in its formal semantics [CoF04].
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Figure A.1: A sample logic graph.

over that signature). In the sequel, we allow simple theoroidal (co)morphisms when we talk about
(co)morphisms.

An institution comorphism is said to be a subinstitution comorphism , if its signature and
sentence translation components are embeddings, and its model translation component is an isomor-
phism. An institution I is said to be a subinstitution of an institution J if there is a subinstitution
comorphism from I to J .2

Finally, a modification τ between two institution morphisms (Φ1, α1, β1) : I → J and (Φ2, α2, β2)): I−→
J consists of a family of signature morphisms τΣ: Φ1(Σ)−→Φ2, indexed by signature Σ in I , and
satisfying some natural compatibility requirements. Modifications between comorphisms are defined
similarly.

A.1.3 Logic Graphs

Heterogeneous specification is based on an arbitrary but fixed graph of institutions, morphisms,
comorphisms and modifications, which we call the logic graph . We will henceforth speak of logics
when speaking about the institutions of the logic graph. Each logic, morphism and comorphism in
the logic graph has a unique name , which is needed for referring to it.3

We will assume that the logic graph comes with a default logic (which for the purposes of
HetCasl is the institution underlying Casl). We also will assume that some of the subinstitution
comorphisms in the logic graph are marked as (default) logic inclusions . However, between a
given pair of logics, at most one logic inclusion is allowed. The source logic of a logic inclusion is
said to be a sublogic of the target logic. The logic inclusions are subject to a coherence condition :
given two paths of inclusions between two logics, there must be a comorphism modification between
the composites of the paths.4

Similarly, we assume that some of the institution morphisms are marked as (default) logic
projections , again with the proviso that between a given pair of logics, at most one logic projection
is allowed, and also with a coherence condition similar to that of logic inclusions.

A subset of the logics of the logic graph is marked as main logics . Each main logic comes with
an associated set of sublogics.

We further assume an (associative, symmetric, idempotent) partial union operation on the logics
of the logic graph. If the union of two logics is defined, we require that both logics are included in

2The dual notion, subinstitution morphism, does not cover typical examples, e.g. the inclusion of equational algebra
into first-order logic.

3The logic graph is implicitly extended with identities and compositions, yielding a 2-category of morphisms and
a 2-category of comorphisms.

4This ensures that between two given logics in the 2-category of comorphisms, there is only one logic inclusion up
to connectedness via 2-cells. Note that 2-cells are factorized out in the Grothendieck construction below.
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the union via logic inclusions, and that the union is minimal (w.r.t. the sublogic relation) with this
property. With the help of this binary union it is easy to define unions of finite lists of logics.

For proof-theoretic purposes, it is also required that each logic in the logic graph can be mapped
(via some comorphism in the logic graph) to a logic equipped with a proof system, such that this
mapping preserves and reflects semantic consequence.

The Grothendieck logic5 of the logic graph puts all signatures of all involved logics side by
side (hence, Grothendieck signatures are pairs consisting of a logic and a signature in that logic).
A signature morphism in this large realm of signatures consists of an intra-institution signature
morphism plus an inter-institution translation (along some institution morphism or comorphism).
Sentences, models and satisfaction for a signature of the Grothendieck logic are just the sentences,
models and satisfaction of that signature in the respective logic. Translation of sentences and models
is given by composing the intra-institution translation induced by the signature morphism with the
inter-institution translation given by the institution morphism or comorphism.

The (co)morphism modifications in the logic graph lead to identification of certain signature
morphism in the Grothendieck logic (this concerns signature morphisms that are conceptually “the
same”, and in particular are known to have identical induced sentence and model translations).

A signature inclusion in the Grothendieck logic is a signature morphism that consists of an
intra-institution inclusion and a logic inclusion. The union of two signatures in the Grothendieck
logic is constructed by translating the two signatures in the union of the underlying logics, and
uniting them there (note that either of these steps may be undefined, leading to undefinedness of
the signature union in the Grothendieck logic).

Some logics in the logic graph may be marked as process logics . Each process logic has an
associated data logic, which is required to be included in the process logic by means of a logic
inclusion.

A.2 Heterogeneous Constructs

This chapter indicates the abstract and concrete syntax of the constructs of heterogeneous speci-
fications, extending those for Casl specifications. The semantics of a heterogeneous specification
consists of a signature in the Grothendieck logic and a class of models over that signature. It is
assumed that for any of the logics in the logic graph, there is an abstract syntax and semantics for
basic specifications as well as for symbol lists and mappings.

For an introduction to the form of grammar used here to define the abstract syntax of language
constructs, see Appendix A.3, which also provides the grammar defining the abstract syntax of the
HetCasl specification language (as an extension of the Casl grammar).

The central slogan is: heterogeneous specification is just ordinary specification over the Grothendieck
logic. The rest of this chapter details how this works.

A.2.1 The Current Logic

Within a homogeneous Casl structured specification, the current signature (also called local
environment) may vary. Within a heterogeneous structured specification, also the current logic
may vary. Since Grothendieck signatures consist of a logic and an ordinary signature, the current
logic may be regarded as part of the local environment. However, there is also a current logic at
the level of libraries, and a construct for changing the current logic. This is necessary in order
to determine the logic in which the empty local environment (which is the empty signature in the
current logic) is formed.

At some places, (implicit) coercions into the current logic may take place. More precisely,
this happens for logic qualifications and data specifications as introduced below. A specification is
coerced into the current logic by translating its logic into the current logic using the corresponding

5Technically, this construction corresponds to a quotient in the sense of [Mos02a] of a Bi-Grothendieck institution
[Mos03] — the latter can be regarded as a Grothendieck institution in the sense of [Dia02] by regarding institution
morphisms as spans of comorphisms.
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logic inclusion. If there is no logic inclusion between the two logics, the construct involving the
coercion is ill-formed.

Note that at other places, implicit logic coercions are induced by the definition of unions of
Grothendieck signatures in Sect. A.1.3 above. E.g., the semantics of instantiations of generic spec-
ifications in Casl is such that the resulting signature of the instantiation is united with the local
environment. When e.g. Casl specification downloaded from a Casl library is referenced in a li-
brary written in a Casl extension, this has the effect that the Casl specification is coerced to the
logic of the Casl extension.6

The local environment of a heterogeneous specification may be translated only along logic inclu-
sions, and may not be affected by other logic translations. This in particular means that translations
and reductions involving non-inclusion (co)morphisms may not affect the local environment. Oth-
erwise, the heterogeneous specification is ill-formed.

A.2.2 Heterogeneous Structured Specifications

SPEC ::= ... | LOGIC-QUALIFICATION | DATA-SPEC

A logic qualification selects a particular logic. A data specification is a concise notation
for writing the data and process parts of a specification in a process logic. The syntax of Casl
symbol lists and symbol mappings is extended in HetCasl in such a way that also inter-
logic translations, reductions, fitting maps and views are allowed. The remaining Casl structuring
constructs are available unchanged in HetCasl, but now with a heterogeneous meaning. Revealings
and local specifications must be homogeneous, however. The semantics of basic specifications is
determined by the semantics of basic specifications for the current logic.

Logic Qualifications

LOGIC-QUALIFICATION ::= logic-qual LOGIC SPEC

A logic qualification is written:

logic L SP

L must denote a logic in the logic graph. The specification SP gets the empty signature for that
logic as local environment (this is similar to closed specifications). The result is then coerced into
the enclosing current logic.

Logics

LOGIC ::= SIMPLE-LOGIC | SUBLOGIC

SIMPLE-LOGIC ::= simple-logic LOGIC-NAME

SUBLOGIC ::= sublogic LOGIC-NAME LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

A SIMPLE-LOGIC is written:

LN

LN must be the name of a main logic in the logic graph.
A SUBLOGIC is written

LN1 . LN2

6Still open is the question what happens with the actual parameters: Are they automatically parsed in the logic
of the parameterized specification, or is it the responsibility of the user to ensure this?
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LN1 and LN2 must be a logic names in the logic graph, such that LN1 is a main logic and LN2 is
a sublogic of LN1 .

Data Specifications

DATA-SPEC ::= data-spec SPEC SPEC

A data specification is written:

data SP1 SP2

The current logic is required to be a process logic. SP1 gets as local environment the empty
signature in the data logic of the current logic. The resulting signature is then coerced into the
current logic, and the result of this coercion is added to the local environment for SP2 .

Institution Morphisms and Comorphisms

The same syntax is used for both institution morphisms and comorphisms. It is determined by
the context whether a morphism or a comorphism is needed. In the sequel, we will sometimes use
‘morphism‘ when both a morphism or a comorphism can be meant.

MORPHISM ::= NAMED-MORPHISM | QUALIFIED-MORPHISM

| ANONYMOUS-MORPHISM | DEFAULT-MORPHISM

NAMED-MORPHISM ::= named-mor MORPHISM-NAME

QUALIFIED-MORPHISM ::= qual-mor MORPHISM-NAME LOGIC LOGIC

ANONYMOUS-MORPHISM ::= anonymous-mor LOGIC LOGIC

DEFAULT-MORPHISM ::= default-mor LOGIC

MORPHISM-NAME ::= SIMPLE-ID

A named morphism NAMED-MORPHISM is written

MN

MN must be the name of an institution morphism or comorphism in the logic graph.
A qualified morphism QUALIFIED-MORPHISM is written

MN : LN1 → LN2

The sign ‘→‘ is input as ‘->‘.
LN1 and LN2 must be names of logics in the logic graph, and MN must be the name of an

institution morphism or comorphism in the logic graph, with source LN1 and target LN2 .
An anonymous morphism ANONYMOUS-MORPHISM is written

LN1 → LN2

LN1 and LN2 must be names of logics in the logic graph, and there must be a unique institution
morphism or comorphism in the logic graph having source LN1 and target LN2 .

An default (inclusion or projection) morphism DEFAULT-MORPHISM is written

→ L

L must be the name of a logic in the logic graph. If the enclosing construct requires an institution
comorphism, there must be a (necessarily unique) logic inclusion from the source logic (as determined
by the enclosing construct) to L. If the enclosing construct requires an institution morphism, there
must be a (necessarily unique) logic projection from the source logic (as determined by the enclosing
construct) to L.
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Symbol Lists

HET-SYMB-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-REDUCTION

HOM-SYMB-ITEMS ::= hom-symb-items SYMB-ITEMS*

LOGIC-REDUCTION ::= logic-reduction MORPHISM

A heterogeneous symbol list HET-SYMB-ITEMS*denotes a signature morphism in the Grothendieck
logic. Each HET-SYMB-ITEMS denotes such a signature morphism, and the signature morphism for a
HET-SYMB-ITEMS* is obtained by composing all these signature morphisms. The composition may
involve both homogeneous and heterogeneous components, e.g. as follows:

(L1,Σ1) ⊇ (L1,Σ2) 7→ (L2,Φ(Σ2)) ⊇ (L2,Σ3) 7→ (L3,Φ
′(Σ3)) . . . ,

where the “7→” components denote institution morphisms and the “⊇” components denote intra-
institution signature inclusions. Each HET-SYMB-ITEMS gets a required target signature, which ini-
tially is the signature of the specification of the enclosing REDUCTION, and then is the source signature
of the Grothendieck signature morphism constructed from the preceding list of HET-SYMB-ITEMS.

A logic reduction LOGIC-REDUCTION is written:

logic MOR

MOR must determine an institution morphism. The source logic of the institution morphism must
match the required target signature as determined by the list of preceding HET-SYMB-ITEMS. The
institution morphism contributes to the Grothendieck signature morphism denoted by the enclosing
symbol list by mapping to its target logic. The resulting signature is the new required target
signature.

Note that institution morphisms are defined in a way that models are mapped along their
signature translation. The signature translation of the morphism is analogous to the signature
reduction as determined by a homogeneous SYMB-ITEMS*, and the model translation of the morphism
is analogous the model reduction as determined by a homogeneous SYMB-ITEMS*.

Reductions

The abstract syntax of reductions is changed as follows:

REDUCTION ::= reduction SPEC RESTRICTION

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden HET-SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

In this way, heterogeneous reductions can be formed. Heterogeneous symbol lists are not allowed
within revealings (i.e. revealings are always required to be homogeneous).

Symbol Mappings

HET-SYMB-MAP-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-TRANSLATION

HOM-SYMB-MAP-ITEMS ::= hom-symb-map-items SYMB-MAP-ITEMS*

LOGIC-TRANSLATION ::= logic-translation MORPHISM

A heterogeneous symbol mapping HET-SYMB-MAP-ITEMS* denotes a signature morphism in the
Grothendieck logic. Each HET-SYMB-MAP-ITEMS denotes such a signature morphism, and the signa-
ture morphism for a HET-SYMB-MAP-ITEMS* is obtained by composing all these signature morphisms.
The composition may involve both homogeneous and heterogeneous components, e.g. as follows:

(L1,Σ1) → (L1,Σ2) 7→ (L2,Φ(Σ2)) → (L2,Σ3) 7→ (L3,Φ
′(Σ3)) . . .

where the “7→” components denote institution morphisms and the “→” components denote intra-
institution signature inclusions. Each HET-SYMB-MAP-ITEMS gets a required source signature, which
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initially is the signature of the (source) specification of the enclosing construct, and then is the
source signature of the Grothendieck signature morphism constructed from the preceding list of
HET-SYMB-MAP-ITEMS.

A logic translation LOGIC-TRANSLATION is written:

logic MOR

MOR must determine an institution comorphism. The source logic of the institution comorphism
must match the required source logic as determined by the list of preceding HET-SYMB-MAP-ITEMS.
The institution comorphism contributes to the Grothendieck signature morphism denoted by the
enclosing symbol mapping by mapping to its target logic. The resulting signature is the new required
source signature. Note that institution comorphisms are defined in a way that models are mapped
against their signature translation. The signature translation of the comorphism is analogous to the
signature translation as determined by a homogeneous SYMB-MAP-ITEMS*, and the model translation
of the comorphism is analogous to the model reduction as determined (also in a contravariant way)
by a homogeneous SYMB-MAP-ITEMS.

A.2.3 Translations

TRANSLATION ::= translation SPEC RENAMING

RENAMING ::= renaming HET-SYMB-MAP-ITEMS+

In this way, heterogeneous translations can be formed.

A.2.4 Fitting Arguments

FIT-SPEC ::= fit-spec SPEC HET-SYMB-MAP-ITEMS*

For heterogeneous (i.e. those involving logic translations) fitting maps, as well as for hetero-
geneous views, the rules determining a unique signature morphism between two given signatures
(Sect. I:4.1.3 of the Casl Reference Manual [CoF04]) do not apply. Rather, each homogeneous
sub-part of the symbol mapping has to explicitly map all the symbols of the appropriate source
signature.

View Definitions

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE HET-SYMB-MAP-ITEMS*

See the remark about heterogeneous fitting maps above.

A.2.5 Heterogeneous Architectural Specifications

The syntax and semantics of architectural specifications remains as for Casl, except that the un-
derlying logic is the Grothendieck logic. Like for structured specifications above, the syntax and
semantics of fitting maps has changed:

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM HET-SYMB-MAP-ITEMS*

A.2.6 Heterogeneous Specification Libraries

There is one new construct at the level of specification libraries.

LIB-ITEM ::= ... | LOGIC-SELECTION

LOGIC-SELECTION ::= logic-select LOGIC

A logic selection is written:

logic L
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L must denote a logic in the logic graph, which is used as current logic for the subsequent
library items (until the next LOGIC-SELECTION). The selection of the current logic does not affect
downloads from other libraries. Vice versa, downloads (as well as other library items that are
not logic selections) can change the current logic only locally. That is, the current logic remains
unchanged for the next library item (until a logic selection occurs).

A.3 Abstract Syntax

The abstract syntax is central to the definition of a formal language. It stands between the concrete
representations of documents, such as marks on paper or images on screens, and the abstract entities,
semantic relations, and semantic functions used for defining their meaning.

The abstract syntax has the following objectives:

• to identify and separately name the abstract syntactic entities;

• to simplify and unify underlying concepts, putting like things with like, and reducing unnec-
essary duplication.

There are many possible ways of constructing an abstract syntax, and the choice of form is a matter
of judgement, taking into account the somewhat conflicting aims of simplicity and economy of
semantic definition.

The abstract syntax is presented as a set of production rules in which each sort of entity is
defined in terms of its subsorts:

SOME-SORT ::= SUBSORT-1 | ... | SUBSORT-n

or in terms of its constructor and components:

SOME-CONSTRUCT ::= some-construct COMPONENT-1 ... COMPONENT-n

The productions form a context-free grammar; algebraically, the nonterminal symbols of the gram-
mar correspond to sorts (of trees), and the terminal symbols correspond to constructor operations.
The notation COMPONENT* indicates repetition of COMPONENT any number of times; COMPONENT+ indi-
cates repetition at least once. (These repetitions could be replaced by auxiliary sorts and constructs,
after which it would be straightforward to transform the grammar into a Casl FREE-DATATYPE spec-
ification.)

The context conditions for well-formedness of specifications are not determined by the grammar
(these are considered as part of semantics).

The grammar here has the property that there is a sort for each construct (although an exception
is made for constant constructs with no components). Appendix A.4 provides an abbreviated gram-
mar defining the same abstract syntax. It was obtained by eliminating each sort that corresponds
to a single construct, when this sort occurs only once as a subsort of another sort.

The following nonterminal symbol corresponds to the Casl syntax, and are left unspecified
here: SIMPLE-ID. The grammars are given as extensions of the corresponding grammars for the
Casl syntax, see part II of of the Casl Reference Manual [CoF04].

A.3.1 Structured Specifications

SPEC ::= ... | LOGIC-QUALIFICATION | DATA-SPEC

LOGIC-QUALIFICATION ::= logic-qual LOGIC SPEC

LOGIC ::= SIMPLE-LOGIC | SUBLOGIC

SIMPLE-LOGIC ::= simple-logic LOGIC-NAME

SUBLOGIC ::= sublogic LOGIC-NAME LOGIC-NAME
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LOGIC-NAME ::= SIMPLE-ID

DATA-SPEC ::= data-spec SPEC SPEC

MORPHISM ::= NAMED-MORPHISM | QUALIFIED-MORPHISM

| ANONYMOUS-MORPHISM | DEFAULT-MORPHISM

NAMED-MORPHISM ::= named-mor MORPHISM-NAME

QUALIFIED-MORPHISM ::= qual-mor MORPHISM-NAME LOGIC LOGIC

ANONYMOUS-MORPHISM ::= anonymous-mor LOGIC LOGIC

DEFAULT-MORPHISM ::= default-mor LOGIC

MORPHISM-NAME ::= SIMPLE-ID

HET-SYMB-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-REDUCTION

HOM-SYMB-ITEMS ::= hom-symb-items SYMB-ITEMS*

LOGIC-REDUCTION ::= logic-reduction MORPHISM

HET-SYMB-MAP-ITEMS ::= HOM-SYMB-ITEMS | LOGIC-TRANSLATION

HOM-SYMB-MAP-ITEMS ::= hom-symb-map-items SYMB-MAP-ITEMS*

LOGIC-TRANSLATION ::= logic-translation MORPHISM

RESTRICTION ::= HIDDEN | REVEALED

HIDDEN ::= hidden HET-SYMB-ITEMS+

REVEALED ::= revealed SYMB-MAP-ITEMS+

RENAMING ::= renaming HET-SYMB-MAP-ITEMS+

FIT-ARG ::= FIT-SPEC | FIT-VIEW

FIT-SPEC ::= fit-spec SPEC HET-SYMB-MAP-ITEMS*

FIT-VIEW ::= fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE HET-SYMB-MAP-ITEMS*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM HET-SYMB-MAP-ITEMS*

A.3.2 Specification Libraries

LIB-ITEM ::= ... | LOGIC-SELECTION

LOGIC-SELECTION ::= logic-select LOGIC

A.4 Abbreviated Abstract Syntax

A.4.1 Structured Specifications

SPEC ::= ... | logic-qual LOGIC SPEC

| data-spec SPEC SPEC

LOGIC ::= simple-logic LOGIC-NAME

| sublogic LOGIC-NAME LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

MORPHISM ::= named-mor MORPHISM-NAME

| qual-mor MORPHISM-NAME LOGIC LOGIC

| anonymous-mor LOGIC LOGIC
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| default-mor LOGIC

MORPHISM-NAME ::= SIMPLE-ID

HET-SYMB-ITEMS ::= hom-symb-items SYMB-ITEMS*

| logic-reduction MORPHISM

HET-SYMB-MAP-ITEMS ::= hom-symb-map-items SYMB-MAP-ITEMS*

| logic-translation MORPHISM

RESTRICTION ::= hidden HET-SYMB-ITEMS+

| revealed SYMB-MAP-ITEMS+

RENAMING ::= renaming HET-SYMB-MAP-ITEMS+

FIT-ARG ::= fit-spec SPEC HET-SYMB-MAP-ITEMS*

| fit-view VIEW-NAME FIT-ARG*

VIEW-DEFN ::= view-defn VIEW-NAME GENERICITY VIEW-TYPE HET-SYMB-MAP-ITEMS*

FIT-ARG-UNIT ::= fit-arg-unit UNIT-TERM HET-SYMB-MAP-ITEMS*

A.4.2 Specification Libraries

LIB-ITEM ::= ... | logic-select LOGIC

A.5 Concrete Syntax

The concrete syntax of HetCasl is based on concrete syntaxes for basic specifications, symbol lists
and symbol mappings for each of the logics in the logic graph.

A parser for HetCasl is available via the Heterogeneous Tool Set (Hets) web page

http://www.tzi.de/cofi/hets

It is based upon parsers for basic specifications, symbol lists and symbol mappings for each of the
logics in the logic graph.

Sect. A.5.1 below provides a context-free grammar for the HetCasl input syntax in terms of
changes and additions to the context-free grammar of Casl (see Chap. II:3 of [CoF04]). It has
been derived from the ‘abbreviated’ abstract syntax grammar in Appendix A.4.

The lexical syntax, comments and annotations, the literal syntax, and the display format is
identical that of Casl, resp. that of the respective logic in the logic graph.

A.5.1 Context-Free Syntax

The following meta-notation for context-free grammars is used:

Nonterminal symbols are written as uppercase words, possibly hyphenated, e.g., SORT, BASIC-SPEC.

Terminal symbols are written as lowercase words, e.g. free, assoc.

Sequences of symbols are written with spaces between the symbols. The empty sequence is
denoted by the reserved nonterminal symbol EMPTY.

Optional symbols are underlined, e.g. end, ;. This is used also for the optional plural ‘s’ at the
end of some lowercase words used as terminal symbols, e.g. sorts.
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Repetitions are indicated by ellipsis ‘...’, e.g. MIXFIX...MIXFIX denotes one or more occurrences
of MIXFIX, and [SPEC]...[SPEC] denotes one or more occurrences of [SPEC]. Repetitions of-
ten involve separators, e.g. SORT,...,SORT denotes one or more occurrences of SORT separated
by ‘,’.

Alternative sequences are separated by vertical bars, e.g. idem | unit TERM where the alterna-
tives are idem and unit TERM.

Production rules are written with the nonterminal symbol followed by ‘::=’, followed by one or
more alternatives. When a production extends a previously-given production for the same
nonterminal symbol, this is indicated by writing ‘...’ as its first alternative.

Start symbols are not specified.

A.5.2 Structured Specifications

SPEC ::= ... | logic LOGIC : GROUP-SPEC

| data GROUP-SPEC SPEC

LOGIC ::= LOGIC-NAME

| LOGIC-NAME . LOGIC-NAME

LOGIC-NAME ::= SIMPLE-ID

MORPHISM ::= MORPHISM-NAME

| MORPHISM-NAME : LOGIC -> LOGIC

| LOGIC -> LOGIC

| -> LOGIC

MORPHISM-NAME ::= SIMPLE-ID

HET-SYMB-ITEMS ::= SYMB-ITEMS ,..., SYMB-ITEMS

| logic MORPHISM

HET-SYMB-MAP-ITEMS ::= SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

| logic MORPHISM

RESTRICTION ::= hide HET-SYMB-ITEMS ,..., HET-SYMB-ITEMS

| reveal SYMB-MAP-ITEMS ,..., SYMB-MAP-ITEMS

RENAMING ::= with HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS

FIT-ARG ::= SPEC fit HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS

| SPEC

| view VIEW-NAME

| view VIEW-NAME [ FIT-ARG ]...[ FIT-ARG ]

VIEW-DEFN ::= view VIEW-NAME : VIEW-TYPE end

| view VIEW-NAME : VIEW-TYPE =

HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS end

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE end

| view VIEW-NAME SOME-GENERICS : VIEW-TYPE =

HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS end

FIT-ARG-UNIT ::= UNIT-TERM

| UNIT-TERM fit HET-SYMB-MAP-ITEMS ,..., HET-SYMB-MAP-ITEMS
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A.5.3 Specification Libraries

LIB-ITEM ::= ... | logic LOGIC

A.5.4 Lexical Syntax

For parsing outside basic specifications, symbol lists and symbol mappings, the lexical syntax is
almost identical to that of Casl. There are two additional keywords:

logic data

and the keywords specific to the Casl logic are removed from the list of keywords.
For parsing basic specifications, symbol lists and symbol mappings in a logic, the lexical syntax

of that logic is used.
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Appendix B

Selected Code of the
Heterogeneous Tool Set Hets

B.1 Haskell Code of Type Class Logic

{-# OPTIONS -fallow-undecidable-instances #-}

{- |

Module : /repository/HetCATS/Logic/Logic.hs

Copyright : (c) Till Mossakowski, and Uni Bremen 2002-2003

Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt

Maintainer : till@tzi.de

Stability : provisional

Portability : non-portable (various -fglasgow-exts extensions)

Provides data structures for logics (with symbols). Logics are

class with an "identitiy" type (usually interpreted

by a singleton set) which serves to treat logics as

data. All the functions in the type class take the

identity as first argument in order to determine the logic.

For logic (co)morphisms see Comorphism.hs

References:

J. A. Goguen and R. M. Burstall

Institutions: Abstract Model Theory for Specification and

Programming

JACM 39, p. 95--146, 1992

(general notion of logic - model theory only)

J. Meseguer

General Logics

Logic Colloquium 87, p. 275--329, North Holland, 1989

(general notion of logic - also proof theory;

notion of logic representation, called map there)

T. Mossakowski:
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Specification in an arbitrary institution with symbols

14th WADT 1999, LNCS 1827, p. 252--270

(treatment of symbols and raw symbols, see also CASL semantics)

T. Mossakowski, B. Klin:

Institution Independent Static Analysis for CASL

15h WADT 2001, LNCS 2267, p. 221-237, 2002.

(what is needed for static anaylsis)

S. Autexier and T. Mossakowski

Integrating HOLCASL into the Development Graph Manager MAYA

FroCoS 2002, to appear

(interface to provers)

Todo:

ATerm, XML

Weak amalgamability

Metavars

raw symbols are now symbols, symbols are now signature symbols

provide both signature symbol set and symbol set of a signature

-}

module Logic.Logic (module Logic.Logic, module Logic.Languages) where

import Common.Id

import Common.GlobalAnnotations

import Common.Lib.Set

import Common.Lib.Map

import Common.Lib.Graph

import Common.Lib.Pretty

import Common.AnnoState

import Common.Result

import Common.AS_Annotation

import Common.Print_AS_Annotation

import Logic.Languages

import Logic.Prover -- for one half of class Sentences

import Common.PrettyPrint

import Data.Dynamic

import Common.DynamicUtils

-- for Conversion to ATerms

import Common.ATerm.Lib -- (ATermConvertible)

-- passed to ensures_amalgamability

import Common.Amalgamate

import Common.Taxonomy

import Taxonomy.MMiSSOntology (MMiSSOntology)

-- Categories are given by a quotient,
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-- i.e. we need equality

-- Should we allow arbitrary composition graphs and build paths?

class (PrintLaTeX a, Typeable a, ATermConvertible a) => PrintTypeConv a

class (Eq a, PrintTypeConv a) => EqPrintTypeConv a

instance (PrintLaTeX a, Typeable a, ATermConvertible a) => PrintTypeConv a

instance (Eq a, PrintTypeConv a) => EqPrintTypeConv a

class (Language lid, Eq sign, Eq morphism)

=> Category lid sign morphism | lid -> sign, lid -> morphism where

ide :: lid -> sign -> morphism

comp :: lid -> morphism -> morphism -> Result morphism

-- diagrammatic order

dom, cod :: lid -> morphism -> sign

legal_obj :: lid -> sign -> Bool

legal_mor :: lid -> morphism -> Bool

-- abstract syntax, parsing and printing

class (Language lid, PrintTypeConv basic_spec,

EqPrintTypeConv symb_items,

EqPrintTypeConv symb_map_items)

=> Syntax lid basic_spec symb_items symb_map_items

| lid -> basic_spec, lid -> symb_items,

lid -> symb_map_items

where

-- parsing

parse_basic_spec :: lid -> Maybe(AParser st basic_spec)

parse_symb_items :: lid -> Maybe(AParser st symb_items)

parse_symb_map_items :: lid -> Maybe(AParser st symb_map_items)

-- default implementations

parse_basic_spec _ = Nothing

parse_symb_items _ = Nothing

parse_symb_map_items _ = Nothing

-- sentences (plus prover stuff and "symbol" with "Ord" for efficient lookup)

class (Category lid sign morphism, Ord sentence,

Ord symbol,

PrintTypeConv sign, PrintTypeConv morphism,

PrintTypeConv sentence, PrintTypeConv symbol,

Eq proof_tree, Show proof_tree, ATermConvertible proof_tree,

Typeable proof_tree)

=> Sentences lid sentence proof_tree sign morphism symbol

| lid -> sentence, lid -> sign, lid -> morphism,

lid -> symbol, lid -> proof_tree

where

-- sentence translation

map_sen :: lid -> morphism -> sentence -> Result sentence

map_sen l _ _ = statErr l "map_sen"

-- simplification of sentences (leave out qualifications)

simplify_sen :: lid -> sign -> sentence -> sentence
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simplify_sen _ _ = id -- default implementation

-- parsing of sentences

parse_sentence :: lid -> Maybe (AParser st sentence)

parse_sentence _ = Nothing

-- print a sentence with comments

print_named :: lid -> GlobalAnnos -> Named sentence -> Doc

print_named _ = printText0

sym_of :: lid -> sign -> Set symbol

symmap_of :: lid -> morphism -> EndoMap symbol

sym_name :: lid -> symbol -> Id

provers :: lid -> [Prover sign sentence proof_tree symbol]

provers _ = []

cons_checkers :: lid -> [ConsChecker sign sentence morphism proof_tree]

cons_checkers _ = []

consCheck :: lid -> Theory sign sentence ->

morphism -> [Named sentence] -> Result (Maybe Bool)

consCheck l _ _ _ = statErr l "consCheck"

-- static analysis

statErr :: (Language lid, Monad m) => lid -> String -> m a

statErr lid str = fail ("Logic." ++ str ++ " nyi for: " ++ language_name lid)

class ( Syntax lid basic_spec symb_items symb_map_items

, Sentences lid sentence proof_tree sign morphism symbol

, Ord raw_symbol, PrintLaTeX raw_symbol, Typeable raw_symbol)

=> StaticAnalysis lid

basic_spec sentence proof_tree symb_items symb_map_items

sign morphism symbol raw_symbol

| lid -> basic_spec, lid -> sentence, lid -> symb_items,

lid -> symb_map_items, lid -> proof_tree,

lid -> sign, lid -> morphism, lid -> symbol, lid -> raw_symbol

where

-- static analysis of basic specifications and symbol maps

basic_analysis :: lid ->

Maybe((basic_spec, -- abstract syntax tree

sign, -- efficient table for env signature

GlobalAnnos) -> -- global annotations

Result (basic_spec,sign,sign,[Named sentence]))

-- the resulting bspec has analyzed axioms in it

-- sign’s: sigma_local, sigma_complete, i.e.

-- the second output sign united with the input sign

-- should yield the first output sign

-- the second output sign is the accumulated sign

-- default implementation

basic_analysis _ = Nothing

sign_to_basic_spec :: lid -> sign -> [Named sentence] -> basic_spec

stat_symb_map_items ::

lid -> [symb_map_items] -> Result (EndoMap raw_symbol)

stat_symb_map_items _ _ = fail "Logic.stat_symb_map_items"

stat_symb_items :: lid -> [symb_items] -> Result [raw_symbol]

stat_symb_items l _ = statErr l "stat_symb_items"

-- architectural sharing analysis
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ensures_amalgamability :: lid ->

([CASLAmalgOpt], -- the program options

Diagram sign morphism, -- the diagram to be analyzed

[(Node, morphism)], -- the sink

Diagram String String) -- the descriptions of nodes and edges

-> Result Amalgamates

ensures_amalgamability l _ = statErr l "ensures_amalgamability"

-- symbols and symbol maps

symbol_to_raw :: lid -> symbol -> raw_symbol

id_to_raw :: lid -> Id -> raw_symbol

matches :: lid -> symbol -> raw_symbol -> Bool

-- operations on signatures and morphisms

empty_signature :: lid -> sign

signature_union :: lid -> sign -> sign -> Result sign

signature_union l _ _ = statErr l "signature_union"

morphism_union :: lid -> morphism -> morphism -> Result morphism

morphism_union l _ _ = statErr l "morphism_union"

final_union :: lid -> sign -> sign -> Result sign

final_union l _ _ = statErr l "final_union"

-- see CASL reference manual, III.4.1.2

is_subsig :: lid -> sign -> sign -> Bool

inclusion :: lid -> sign -> sign -> Result morphism

inclusion l _ _ = statErr l "inclusion"

generated_sign, cogenerated_sign ::

lid -> Set symbol -> sign -> Result morphism

generated_sign l _ _ = statErr l "generated_sign"

cogenerated_sign l _ _ = statErr l "cogenerated_sign"

induced_from_morphism ::

lid -> EndoMap raw_symbol -> sign -> Result morphism

induced_from_morphism l _ _ = statErr l "induced_from_morphism"

induced_from_to_morphism ::

lid -> EndoMap raw_symbol -> sign -> sign -> Result morphism

induced_from_to_morphism l _ _ _ =

statErr l "induced_from_to_morphism"

-- generate taxonomy from theory

theory_to_taxonomy :: lid

-> TaxoGraphKind

-> MMiSSOntology

-> sign -> [Named sentence]

-> Result MMiSSOntology

theory_to_taxonomy l _ _ _ _ = statErr l "theory_to_taxonomy"

-- sublogics

class (Ord l, Show l) => LatticeWithTop l where

meet, join :: l -> l -> l

top :: l

-- a dummy instance

instance LatticeWithTop () where

meet _ _ = ()

join _ _ = ()
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top = ()

-- logics

class (StaticAnalysis lid

basic_spec sentence proof_tree symb_items symb_map_items

sign morphism symbol raw_symbol,

LatticeWithTop sublogics, ATermConvertible sublogics,

Typeable sublogics)

=> Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree

| lid -> sublogics, lid -> basic_spec, lid -> sentence,

lid -> symb_items, lid -> symb_map_items, lid -> proof_tree,

lid -> sign, lid -> morphism, lid ->symbol, lid -> raw_symbol

where

-- for a process logic, return its data logic

data_logic :: lid -> Maybe AnyLogic

data_logic _ = Nothing

sublogic_names :: lid -> sublogics -> [String]

sublogic_names lid _ = [language_name lid]

-- the first name is the principal name

all_sublogics :: lid -> [sublogics]

all_sublogics _ = [top]

is_in_basic_spec :: lid -> sublogics -> basic_spec -> Bool

is_in_basic_spec _ _ _ = False

is_in_sentence :: lid -> sublogics -> sentence -> Bool

is_in_sentence _ _ _ = False

is_in_symb_items :: lid -> sublogics -> symb_items -> Bool

is_in_symb_items _ _ _ = False

is_in_symb_map_items :: lid -> sublogics -> symb_map_items -> Bool

is_in_symb_map_items _ _ _ = False

is_in_sign :: lid -> sublogics -> sign -> Bool

is_in_sign _ _ _ = False

is_in_morphism :: lid -> sublogics -> morphism -> Bool

is_in_morphism _ _ _ = False

is_in_symbol :: lid -> sublogics -> symbol -> Bool

is_in_symbol _ _ _ = False

min_sublogic_basic_spec :: lid -> basic_spec -> sublogics

min_sublogic_basic_spec _ _ = top

min_sublogic_sentence :: lid -> sentence -> sublogics

min_sublogic_sentence _ _ = top

min_sublogic_symb_items :: lid -> symb_items -> sublogics

min_sublogic_symb_items _ _ = top

min_sublogic_symb_map_items :: lid -> symb_map_items -> sublogics

min_sublogic_symb_map_items _ _ = top

min_sublogic_sign :: lid -> sign -> sublogics

min_sublogic_sign _ _ = top

min_sublogic_morphism :: lid -> morphism -> sublogics
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min_sublogic_morphism _ _ = top

min_sublogic_symbol :: lid -> symbol -> sublogics

min_sublogic_symbol _ _ = top

proj_sublogic_basic_spec :: lid -> sublogics

-> basic_spec -> basic_spec

proj_sublogic_basic_spec _ _ b = b

proj_sublogic_symb_items :: lid -> sublogics

-> symb_items -> Maybe symb_items

proj_sublogic_symb_items _ _ _ = Nothing

proj_sublogic_symb_map_items :: lid -> sublogics

-> symb_map_items -> Maybe symb_map_items

proj_sublogic_symb_map_items _ _ _ = Nothing

proj_sublogic_sign :: lid -> sublogics -> sign -> sign

proj_sublogic_sign _ _ s = s

proj_sublogic_morphism :: lid -> sublogics -> morphism -> morphism

proj_sublogic_morphism _ _ m = m

proj_sublogic_epsilon :: lid -> sublogics -> sign -> morphism

proj_sublogic_epsilon li _ s = ide li s

proj_sublogic_symbol :: lid -> sublogics -> symbol -> Maybe symbol

proj_sublogic_symbol _ _ _ = Nothing

top_sublogic :: lid -> sublogics

top_sublogic _ = top

----------------------------------------------------------------

-- Derived functions

----------------------------------------------------------------

empty_theory :: StaticAnalysis lid

basic_spec sentence proof_tree symb_items symb_map_items

sign morphism symbol raw_symbol =>

lid -> Theory sign sentence

empty_theory lid = (empty_signature lid,[])

----------------------------------------------------------------

-- Existential type covering any logic

----------------------------------------------------------------

data AnyLogic = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

Logic lid

instance Show AnyLogic where

show (Logic lid) = language_name lid

instance Eq AnyLogic where

Logic lid1 == Logic lid2 = language_name lid1 == language_name lid2

tyconAnyLogic :: TyCon

tyconAnyLogic = mkTyCon "Logic.Logic.AnyLogic"
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instance Typeable AnyLogic where

typeOf _ = mkTyConApp tyconAnyLogic []

----------------------------------------------------------------

-- Typeable instances

----------------------------------------------------------------

namedTc :: TyCon

namedTc = mkTyCon "Common.AS_Annotation.Named"

instance Typeable s => Typeable (Named s) where

typeOf s = mkTyConApp namedTc [typeOf ((undefined :: Named a -> a) s)]

setTc :: TyCon

setTc = mkTyCon "Common.Lib.Set.Set"

instance Typeable a => Typeable (Set a) where

typeOf s = mkTyConApp setTc [typeOf ((undefined:: Set a -> a) s)]

mapTc :: TyCon

mapTc = mkTyCon "Common.Lib.Map.Map"

instance (Typeable a, Typeable b) => Typeable (Map a b) where

typeOf m = mkTyConApp mapTc [typeOf ((undefined :: Map a b -> a) m),

typeOf ((undefined :: Map a b -> b) m)]

{- class hierarchy:

Language

__________/

Category

| /

Sentences Syntax

\ /

StaticAnalysis (no sublogics)

\

\

Logic

-}

B.2 Haskell Code of Type Class Comorphism

{-|

Module : /repository/HetCATS/Logic.Comorphism.hs

Copyright : (c) Till Mossakowski, Uni Bremen 2002-2004

Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt

Maintainer : hets@tzi.de

Stability : provisional

Portability : non-portable (via Logic)

Provides data structures for institution comorphisms.
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These are just collections of

functions between (some of) the types of logics.

-}

{- References: see Logic.hs

Todo:

Weak amalgamability, also for comorphisms

comorphism modifications

comorphisms out of sublogic relationships

restrictions of comorphisms to sublogics

morphisms and other translations via spans

-}

module Logic.Comorphism where

import Logic.Logic

import Common.Lib.Set

import Common.Result

import Data.Maybe

import Data.Dynamic

import Common.DynamicUtils

import Common.AS_Annotation (Named, mapNamedM)

class (Language cid,

Logic lid1 sublogics1

basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1,

Logic lid2 sublogics2

basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2) =>

Comorphism cid

lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2

| cid -> lid1, cid -> lid2

where

-- source and target logic and sublogic

-- the source sublogic is the maximal one for which the comorphism works

-- the target sublogic is the resulting one

sourceLogic :: cid -> lid1

sourceSublogic :: cid -> sublogics1

targetLogic :: cid -> lid2

targetSublogic :: cid -> sublogics2

-- finer information of target sublogics corresponding to source sublogics

mapSublogic :: cid -> sublogics1 -> sublogics2

-- default implementation

mapSublogic cid _ = targetSublogic cid

-- the translation functions are partial

-- because the target may be a sublanguage

236



-- map_basic_spec :: cid -> basic_spec1 -> Result basic_spec2

-- cover theoroidal comorphisms as well

map_sign :: cid -> sign1 -> Result (sign2,[Named sentence2])

map_theory :: cid -> (sign1,[Named sentence1])

-> Result (sign2,[Named sentence2])

--default implementations

map_sign cid sign = map_theory cid (sign,[])

map_theory cid (sign,sens) = do

(sign’,sens’) <- map_sign cid sign

sens’’ <- mapM (mapNamedM $ map_sentence cid sign) sens

return (sign’,sens’++sens’’)

map_morphism :: cid -> morphism1 -> Result morphism2

map_sentence :: cid -> sign1 -> sentence1 -> Result sentence2

-- also covers semi-comorphisms

-- with no sentence translation

-- - but these are spans!

map_symbol :: cid -> symbol1 -> Set symbol2

constituents :: cid -> [String]

-- default implementation

constituents cid = [language_name cid]

data IdComorphism lid sublogics =

IdComorphism lid sublogics deriving Show

idComorphismTc :: TyCon

idComorphismTc = mkTyCon "Logic.Comorphism.IdComorphism"

instance Typeable (IdComorphism lid sub) where

typeOf _ = mkTyConApp idComorphismTc []

instance Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

Language (IdComorphism lid sublogics) where

language_name (IdComorphism lid sub) =

case sublogic_names lid sub of

[] -> error "language_name IdComorphism"

h : _ -> "id_" ++ language_name lid ++ "." ++ h

instance Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

Comorphism (IdComorphism lid sublogics)

lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree

lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree

where

sourceLogic (IdComorphism lid _sub) = lid

targetLogic (IdComorphism lid _sub) = lid

sourceSublogic (IdComorphism _lid sub) = sub
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targetSublogic (IdComorphism _lid sub) = sub

map_sign _ = \sigma -> return (sigma,[])

map_morphism _ = return

map_sentence _ = \_ -> return

map_symbol _ = single

constituents _ = []

data CompComorphism cid1 cid2 = CompComorphism cid1 cid2 deriving Show

tyconCompComorphism :: TyCon

tyconCompComorphism = mkTyCon "Logic.Comorphism.CompComorphism"

instance Typeable (CompComorphism cid1 cid2) where

typeOf _ = mkTyConApp tyconCompComorphism []

instance (Comorphism cid1

lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2,

Comorphism cid2

lid4 sublogics4 basic_spec4 sentence4 symb_items4 symb_map_items4

sign4 morphism4 symbol4 raw_symbol4 proof_tree4

lid3 sublogics3 basic_spec3 sentence3 symb_items3 symb_map_items3

sign3 morphism3 symbol3 raw_symbol3 proof_tree3)

=> Language (CompComorphism cid1 cid2) where

language_name (CompComorphism cid1 cid2) =

language_name cid1++";"

++language_name cid2

instance (Comorphism cid1

lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2 basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2,

Comorphism cid2

lid4 sublogics4 basic_spec4 sentence4 symb_items4 symb_map_items4

sign4 morphism4 symbol4 raw_symbol4 proof_tree4

lid3 sublogics3 basic_spec3 sentence3 symb_items3 symb_map_items3

sign3 morphism3 symbol3 raw_symbol3 proof_tree3)

=> Comorphism (CompComorphism cid1 cid2)

lid1 sublogics1 basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid3 sublogics3 basic_spec3 sentence3 symb_items3 symb_map_items3

sign3 morphism3 symbol3 raw_symbol3 proof_tree3 where

sourceLogic (CompComorphism cid1 _) =

sourceLogic cid1

targetLogic (CompComorphism _ cid2) =

targetLogic cid2

sourceSublogic (CompComorphism cid1 _) =

sourceSublogic cid1

targetSublogic (CompComorphism _ cid2) =
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targetSublogic cid2

map_sentence (CompComorphism cid1 cid2) =

\si1 se1 ->

do (si2,_) <- map_sign cid1 si1

se2 <- map_sentence cid1 si1 se1

(si2’, se2’) <- mcoerce (targetLogic cid1) (sourceLogic cid2)

"Mapping sentence along comorphism" (si2, se2)

map_sentence cid2 si2’ se2’

map_sign (CompComorphism cid1 cid2) =

\si1 ->

do (si2, se2s) <- map_sign cid1 si1

(si2’, se2s’) <- mcoerce (targetLogic cid1) (sourceLogic cid2)

"Mapping signature along comorphism"(si2, se2s)

(si3, se3s) <- map_sign cid2 si2’

se3s’ <- mapM (mapNamedM $ map_sentence cid2 si2’) se2s’

return (si3, se3s ++ se3s’)

map_theory (CompComorphism cid1 cid2) =

\ti1 ->

do ti2 <- map_theory cid1 ti1

ti2’ <- mcoerce (targetLogic cid1) (sourceLogic cid2)

"Mapping theory along comorphism" ti2

map_theory cid2 ti2’

map_morphism (CompComorphism cid1 cid2) = \ m1 ->

do m2 <- map_morphism cid1 m1

m3 <- mcoerce (targetLogic cid1) (sourceLogic cid2)

"Mapping signature morphism along comorphism"m2

map_morphism cid2 m3

map_symbol (CompComorphism cid1 cid2) = \ s1 ->

let mycast = fromJust . mcoerce (targetLogic cid1) (sourceLogic cid2)

"Mapping symbol along comorphism"

in unions

(map (map_symbol cid2 . mycast)

(toList (map_symbol cid1 s1)))

constituents (CompComorphism cid1 cid2) =

constituents cid1 ++ constituents cid2

B.3 Haskell Code of Grothendieck Logic

{-# OPTIONS -fallow-overlapping-instances -fallow-incoherent-instances #-}

{- |

Module : /repository/Logic/Grothendieck.hs

Copyright : (c) Till Mossakowski, and Uni Bremen 2002-2004

Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt

Maintainer : till@tzi.de

Stability : provisional

Portability : non-portable (overlapping instances, dynamics, existentials)

The Grothendieck logic is defined to be the
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heterogeneous logic over the logic graph.

This will be the logic over which the data

structures and algorithms for specification in-the-large

are built.

References:

R. Diaconescu:

Grothendieck institutions

J. applied categorical structures 10, 2002, p. 383-402.

T. Mossakowski:

Heterogeneous development graphs and heterogeneous borrowing

Fossacs 2002, LNCS 2303, p. 326-341

T. Mossakowski: Foundations of heterogeneous specification

Submitted

T. Mossakowski:

Relating CASL with Other Specification Languages:

the Institution Level

Theoretical Computer Science 286, 2002, p. 367-475

Todo:

-}

module Logic.Grothendieck where

import Logic.Logic

import Logic.Prover

import Logic.Comorphism

import Common.PrettyPrint

import Common.Lib.Pretty

import Common.Lib.Graph

import qualified Common.Lib.Map as Map

import qualified Common.Lib.Set as Set

import Common.Result

import Common.AS_Annotation

import Common.ListUtils

import Data.Dynamic

import Common.DynamicUtils

import qualified Data.List as List

import Data.Maybe

import Control.Monad

------------------------------------------------------------------

--"Grothendieck" versions of the various parts of type class Logic

------------------------------------------------------------------

-- | Grothendieck basic specifications

data G_basic_spec = forall lid sublogics

basic_spec sentence symb_items symb_map_items
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sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_basic_spec lid basic_spec

instance Show G_basic_spec where

show (G_basic_spec _ s) = show s

instance PrettyPrint G_basic_spec where

printText0 ga (G_basic_spec _ s) = printText0 ga s

-- | Grothendieck sentences

data G_sentence = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_sentence lid sentence

instance Show G_sentence where

show (G_sentence _ s) = show s

-- | Grothendieck sentence lists

data G_l_sentence_list = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_l_sentence_list lid [Named sentence]

instance Show G_l_sentence_list where

show (G_l_sentence_list _ s) = show s

instance Eq G_l_sentence_list where

(G_l_sentence_list i1 nl1) == (G_l_sentence_list i2 nl2) =

coerce i1 i2 nl1 == Just nl2

eq_G_l_sentence_set :: G_l_sentence_list -> G_l_sentence_list -> Bool

eq_G_l_sentence_set (G_l_sentence_list i1 nl1) (G_l_sentence_list i2 nl2) =

case coerce i1 i2 nl1 of

Just nl1’ -> Set.fromList nl1’ == Set.fromList nl2

Nothing -> False

-- | Grothendieck signatures

data G_sign = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>
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G_sign lid sign

tyconG_sign :: TyCon

tyconG_sign = mkTyCon "Logic.Grothendieck.G_sign"

instance Typeable G_sign where

typeOf _ = mkTyConApp tyconG_sign []

instance Eq G_sign where

(G_sign i1 sigma1) == (G_sign i2 sigma2) =

coerce i1 i2 sigma1 == Just sigma2

-- | prefer a faster subsignature test if possible

is_subgsign :: G_sign -> G_sign -> Bool

is_subgsign (G_sign i1 sigma1) (G_sign i2 sigma2) =

maybe False (is_subsig i1 sigma1) $ coerce i2 i1 sigma2

instance Show G_sign where

show (G_sign _ s) = show s

instance PrettyPrint G_sign where

printText0 ga (G_sign _ s) = printText0 ga s

langNameSig :: G_sign -> String

langNameSig (G_sign lid _) = language_name lid

-- | Grothendieck signature lists

data G_sign_list = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_sign_list lid [sign]

-- | Grothendieck extended signatures

data G_ext_sign = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_ext_sign lid sign (Set.Set symbol)

tyconG_ext_sign :: TyCon

tyconG_ext_sign = mkTyCon "Logic.Grothendieck.G_ext_sign"

instance Typeable G_ext_sign where

typeOf _ = mkTyConApp tyconG_ext_sign []

instance Eq G_ext_sign where

(G_ext_sign i1 sigma1 sys1) == (G_ext_sign i2 sigma2 sys2) =

coerce i1 i2 sigma1 == Just sigma2

&& coerce i1 i2 sys1 == Just sys2
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instance Show G_ext_sign where

show (G_ext_sign _ s _) = show s

instance PrettyPrint G_ext_sign where

printText0 ga (G_ext_sign _ s _) = printText0 ga s

langNameExtSig :: G_ext_sign -> String

langNameExtSig (G_ext_sign lid _ _) = language_name lid

-- | Grothendieck theories

data G_theory = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_theory lid sign [Named sentence]

-- | compute sublogic of a theory

sublogicOfTh :: G_theory -> G_sublogics

sublogicOfTh (G_theory lid sigma sens) =

let sub = foldr Logic.Logic.join

(min_sublogic_sign lid sigma)

(map (min_sublogic_sentence lid . sentence) sens)

in G_sublogics lid sub

-- | simplify a theory (throw away qualifications)

simplifyTh :: G_theory -> G_theory

simplifyTh (G_theory lid sigma sens) =

G_theory lid sigma (map (mapNamed (simplify_sen lid sigma)) sens)

-- | Grothendieck symbols

data G_symbol = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_symbol lid symbol

instance Show G_symbol where

show (G_symbol _ s) = show s

instance Eq G_symbol where

(G_symbol i1 s1) == (G_symbol i2 s2) =

coerce i1 i2 s1 == Just s2

-- | Grothendieck symbol lists

data G_symb_items_list = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items
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sign morphism symbol raw_symbol proof_tree =>

G_symb_items_list lid [symb_items]

instance Show G_symb_items_list where

show (G_symb_items_list _ l) = show l

instance PrettyPrint G_symb_items_list where

printText0 ga (G_symb_items_list _ l) =

fsep $ punctuate comma $ map (printText0 ga) l

instance Eq G_symb_items_list where

(G_symb_items_list i1 s1) == (G_symb_items_list i2 s2) =

coerce i1 i2 s1 == Just s2

-- | Grothendieck symbol maps

data G_symb_map_items_list = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_symb_map_items_list lid [symb_map_items]

instance Show G_symb_map_items_list where

show (G_symb_map_items_list _ l) = show l

instance PrettyPrint G_symb_map_items_list where

printText0 ga (G_symb_map_items_list _ l) =

fsep $ punctuate comma $ map (printText0 ga) l

instance Eq G_symb_map_items_list where

(G_symb_map_items_list i1 s1) == (G_symb_map_items_list i2 s2) =

coerce i1 i2 s1 == Just s2

-- | Grothendieck diagrams

data G_diagram = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_diagram lid (Diagram sign morphism)

-- | Grothendieck sublogics

data G_sublogics = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_sublogics lid sublogics

tyconG_sublogics :: TyCon
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tyconG_sublogics = mkTyCon "Logic.Grothendieck.G_sublogics"

instance Typeable G_sublogics where

typeOf _ = mkTyConApp tyconG_sublogics []

instance Show G_sublogics where

show (G_sublogics lid sub) = case sublogic_names lid sub of

[] -> error "show G_sublogics"

h : _ -> show lid ++ "." ++ h

instance Eq G_sublogics where

(G_sublogics lid1 l1) == (G_sublogics lid2 l2) =

coerce lid1 lid2 l1 == Just l2

instance Ord G_sublogics where

compare (G_sublogics lid1 l1) (G_sublogics lid2 l2) =

case coerce lid1 lid2 l2 of

Just l2’ -> compare l1 l2’ {-if l1==l2’ then EQ

else if l1 <<= l2’ then LT

else GT-}

Nothing -> error "Attempt to compare sublogics of different logics"

-- | Homogeneous Grothendieck signature morphisms

data G_morphism = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_morphism lid morphism

instance Show G_morphism where

show (G_morphism _ l) = show l

----------------------------------------------------------------

-- Existential types for the logic graph

----------------------------------------------------------------

-- | Existential type for comorphisms

data AnyComorphism = forall cid lid1 sublogics1

basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2

basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .

Comorphism cid

lid1 sublogics1 basic_spec1 sentence1

symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2 basic_spec2 sentence2

symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>

Comorphism cid
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instance Eq AnyComorphism where

Comorphism cid1 == Comorphism cid2 =

constituents cid1 == constituents cid2

-- need to be refined, using comorphism translations !!!

instance Show AnyComorphism where

show (Comorphism cid) =

language_name cid

++" : "++language_name (sourceLogic cid)

++" -> "++language_name (targetLogic cid)

tyconAnyComorphism :: TyCon

tyconAnyComorphism = mkTyCon "Logic.Grothendieck.AnyComorphism"

instance Typeable AnyComorphism where

typeOf _ = mkTyConApp tyconAnyComorphism []

-- | compute the identity comorphism for a logic

idComorphism :: AnyLogic -> AnyComorphism

idComorphism (Logic lid) = Comorphism (IdComorphism lid (top_sublogic lid))

-- | Test whether a comporphism is the identity

isIdComorphism :: AnyComorphism -> Bool

isIdComorphism (Comorphism cid) =

constituents cid == []

-- | Compose comorphisms

compComorphism :: Monad m => AnyComorphism -> AnyComorphism -> m AnyComorphism

compComorphism cm1@(Comorphism cid1) cm2@(Comorphism cid2) =

case coerce (targetLogic cid1) (sourceLogic cid2) (targetSublogic cid1) of

Just sl1 ->

if sl1 <= sourceSublogic cid2

then case (isIdComorphism cm1,isIdComorphism cm2) of

(True,_) -> return cm2

(_,True) -> return cm1

_ -> return $ Comorphism (CompComorphism cid1 cid2)

else fail ("Sublogic mismatch in composition of "++language_name cid1++

" and "++language_name cid2)

Nothing -> fail ("Logic mismatch in composition of "++language_name cid1++

" and "++language_name cid2)

-- | Logic graph

data LogicGraph = LogicGraph {

logics :: Map.Map String AnyLogic,

comorphisms :: Map.Map String AnyComorphism,

inclusions :: Map.Map (String,String) AnyComorphism,

unions :: Map.Map (String,String) (AnyComorphism,AnyComorphism)

}

emptyLogicGraph :: LogicGraph

emptyLogicGraph = LogicGraph Map.empty Map.empty Map.empty Map.empty

-- | find a logic in a logic graph
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lookupLogic :: Monad m => String -> String -> LogicGraph -> m AnyLogic

lookupLogic error_prefix logname logicGraph =

case Map.lookup logname (logics logicGraph) of

Nothing -> fail (error_prefix++" in LogicGraph logic \""

++logname++"\" unknown")

Just lid -> return lid

-- | union to two logics

logicUnion :: LogicGraph -> AnyLogic -> AnyLogic -> Result (AnyComorphism,AnyComorphism)

logicUnion lg l1@(Logic lid1) l2@(Logic lid2) =

case logicInclusion lg l1 l2 of

Result _ (Just c) -> return (c,idComorphism l2)

_ -> case logicInclusion lg l2 l1 of

Result _ (Just c) -> return (idComorphism l1,c)

_ -> case Map.lookup (ln1,ln2) (unions lg) of

Just u -> return u

Nothing -> case Map.lookup (ln2,ln1) (unions lg) of

Just (c2,c1) -> return (c1,c2)

Nothing -> fail ("Union of logics "++ln1++" and "++ln2++" does not exist")

where ln1 = language_name lid1

ln2 = language_name lid2

-- | find a comorphism in a logic graph

lookupComorphism :: Monad m => String -> LogicGraph -> m AnyComorphism

lookupComorphism coname logicGraph = do

let nameList = splitBy ’;’ coname

cs <- sequence $ map lookupN nameList

case cs of

c:cs1 -> foldM compComorphism c cs1

_ -> fail ("Illgegal comorphism name: "++coname)

where

lookupN name =

case name of

’i’:’d’:’_’:logic -> do

let mainLogic = takeWhile (/= ’.’) logic

l <- maybe (fail ("Cannot find Logic "++mainLogic)) return

$ Map.lookup mainLogic (logics logicGraph)

return $ idComorphism l

_ -> maybe (fail ("Cannot find logic comorphism "++name)) return

$ Map.lookup name (comorphisms logicGraph)

-- | auxiliary existential type needed for composition of comorphisms

data AnyComorphismAux lid1 sublogics1

basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2

basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =

forall cid .

Comorphism cid

lid1 sublogics1 basic_spec1 sentence1

symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1
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lid2 sublogics2 basic_spec2 sentence2

symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>

ComorphismAux cid lid1 lid2 sign1 morphism2

tyconAnyComorphismAux :: TyCon

tyconAnyComorphismAux = mkTyCon "Logic.Grothendieck.AnyComorphismAux"

instance Typeable (AnyComorphismAux lid1 sublogics1

basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2

basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2)

where typeOf _ = mkTyConApp tyconG_sign []

instance Show (AnyComorphismAux lid1 sublogics1

basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2

basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2)

where show _ = "<AnyComorphismAux>"

------------------------------------------------------------------

-- The Grothendieck signature category

------------------------------------------------------------------

-- | Grothendieck signature morphisms

data GMorphism = forall cid lid1 sublogics1

basic_spec1 sentence1 symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2

basic_spec2 sentence2 symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2 .

Comorphism cid

lid1 sublogics1 basic_spec1 sentence1

symb_items1 symb_map_items1

sign1 morphism1 symbol1 raw_symbol1 proof_tree1

lid2 sublogics2 basic_spec2 sentence2

symb_items2 symb_map_items2

sign2 morphism2 symbol2 raw_symbol2 proof_tree2 =>

GMorphism cid sign1 morphism2

instance Eq GMorphism where

GMorphism cid1 sigma1 mor1 == GMorphism cid2 sigma2 mor2

= Comorphism cid1 == Comorphism cid2 &&

coerce cid1 cid1 (sigma1, mor1) == Just (sigma2, mor2)

hasIdComorphism :: GMorphism -> Bool

hasIdComorphism (GMorphism cid _ _) =

isIdComorphism (Comorphism cid)
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data Grothendieck = Grothendieck deriving Show

instance Language Grothendieck

instance Show GMorphism where

show (GMorphism cid s m) = show cid ++ "(" ++ show s ++ ")" ++ show m

instance PrettyPrint GMorphism where

printText0 ga (GMorphism cid s m) =

ptext (show cid)

<+> -- ptext ":" <+> ptext (show (sourceLogic cid)) <+>

-- ptext "->" <+> ptext (show (targetLogic cid)) <+>

ptext "(" <+> printText0 ga s <+> ptext ")"

$$

printText0 ga m

instance Category Grothendieck G_sign GMorphism where

ide _ (G_sign lid sigma) =

GMorphism (IdComorphism lid (top_sublogic lid)) sigma (ide lid sigma)

comp _

(GMorphism r1 sigma1 mor1)

(GMorphism r2 _sigma2 mor2) =

do let lid1 = sourceLogic r1

lid2 = targetLogic r1

lid3 = sourceLogic r2

lid4 = targetLogic r2

ComorphismAux r1’ _ _ sigma1’ mor1’ <-

(coerce lid2 lid3 $ ComorphismAux r1 lid1 lid2 sigma1 mor1)

mor1’’ <- map_morphism r2 mor1’

mor <- comp lid4 mor1’’ mor2

return (GMorphism (CompComorphism r1’ r2) sigma1’ mor)

dom _ (GMorphism r sigma _mor) =

G_sign (sourceLogic r) sigma

cod _ (GMorphism r _sigma mor) =

G_sign lid2 (cod lid2 mor)

where lid2 = targetLogic r

legal_obj _ (G_sign lid sigma) = legal_obj lid sigma

legal_mor _ (GMorphism r sigma mor) =

legal_mor lid2 mor &&

case maybeResult $ map_sign r sigma of

Just (sigma’,_) -> sigma’ == cod lid2 mor

Nothing -> False

where lid2 = targetLogic r

-- | Embedding of homogeneous signature morphisms as Grothendieck sig mors

gEmbed :: G_morphism -> GMorphism

gEmbed (G_morphism lid mor) =

GMorphism (IdComorphism lid (top_sublogic lid)) (dom lid mor) mor

-- | Embedding of comorphisms as Grothendieck sig mors

gEmbedComorphism :: AnyComorphism -> G_sign -> Result GMorphism
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gEmbedComorphism (Comorphism cid) (G_sign lid sig) = do

sig’ <- mcoerce (sourceLogic cid) lid "gEmbedComorphism: logic mismatch" sig

(sigTar,_) <- map_sign cid sig’

let lidTar = targetLogic cid

return (GMorphism cid sig’ (ide lidTar sigTar))

-- | heterogeneous union of two Grothendieck signatures

gsigUnion :: LogicGraph -> G_sign -> G_sign -> Result G_sign

gsigUnion lg gsig1@(G_sign lid1 sigma1) gsig2@(G_sign lid2 sigma2) =

if language_name lid1 == language_name lid2

then homogeneousGsigUnion gsig1 gsig2

else do

(Comorphism cid1,Comorphism cid2) <- logicUnion lg (Logic lid1) (Logic lid2)

let lidS1 = sourceLogic cid1

lidS2 = sourceLogic cid2

lidT1 = targetLogic cid1

lidT2 = targetLogic cid2

sigma1’ <- mcoerce lid1 lidS1 "Union of signaturesa" sigma1

sigma2’ <- mcoerce lid2 lidS2 "Union of signaturesb" sigma2

(sigma1’’,_) <- map_sign cid1 sigma1’

(sigma2’’,_) <- map_sign cid2 sigma2’

sigma2’’’ <- mcoerce lidT1 lidT2 "Union of signaturesc" sigma2’’

sigma3 <- signature_union lidT1 sigma1’’ sigma2’’’

return (G_sign lidT1 sigma3)

-- | homogeneous Union of two Grothendieck signatures

homogeneousGsigUnion :: G_sign -> G_sign -> Result G_sign

homogeneousGsigUnion (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do

sigma2’ <- mcoerce lid2 lid1 "Union of signaturesd" sigma2

sigma3 <- signature_union lid1 sigma1 sigma2’

return (G_sign lid1 sigma3)

-- | union of a list of Grothendieck signatures

gsigManyUnion :: LogicGraph -> [G_sign] -> Result G_sign

gsigManyUnion _ [] =

fail "union of emtpy list of signatures"

gsigManyUnion lg (gsigma : gsigmas) =

foldM (gsigUnion lg) gsigma gsigmas

-- | homogeneous Union of a list of morphisms

homogeneousMorManyUnion :: [G_morphism] -> Result G_morphism

homogeneousMorManyUnion [] =

fail "homogeneous union of emtpy list of morphisms"

homogeneousMorManyUnion (G_morphism lid mor : gmors) = do

mors <- let coerce_lid (G_morphism lid1 mor1) =

mcoerce lid lid1 "Union of signature morphisms" mor1

in sequence (map coerce_lid gmors)

bigMor <- let mor_union s1 s2 = do

s1’ <- s1

morphism_union lid s1’ s2

in foldl mor_union (return mor) mors

return (G_morphism lid bigMor)
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-- | inclusion between two logics

logicInclusion :: LogicGraph -> AnyLogic -> AnyLogic -> Result AnyComorphism

logicInclusion logicGraph l1@(Logic lid1) (Logic lid2) =

let ln1 = language_name lid1

ln2 = language_name lid2 in

if ln1==ln2 then

return (idComorphism l1)

else case Map.lookup (ln1,ln2) (inclusions logicGraph) of

Just (Comorphism i) ->

return (Comorphism i)

Nothing ->

fail ("No inclusion from "++ln1++" to "++ln2++" found")

-- | inclusion morphism between two Grothendieck signatures

ginclusion :: LogicGraph -> G_sign -> G_sign -> Result GMorphism

ginclusion logicGraph (G_sign lid1 sigma1) (G_sign lid2 sigma2) = do

Comorphism i <- logicInclusion logicGraph (Logic lid1) (Logic lid2)

sigma1’ <- mcoerce lid1 (sourceLogic i) "Inclusion of signatures" sigma1

(sigma1’’,_) <- map_sign i sigma1’

sigma2’ <- mcoerce lid2 (targetLogic i) "Inclusion of signatures" sigma2

mor <- inclusion (targetLogic i) sigma1’’ sigma2’

return (GMorphism i sigma1’ mor)

-- | Composition of two Grothendieck signature morphisms

-- | with itermediate inclusion

compInclusion :: LogicGraph -> GMorphism -> GMorphism -> Result GMorphism

compInclusion lg mor1 mor2 = do

incl <- ginclusion lg (cod Grothendieck mor1) (dom Grothendieck mor2)

mor <- comp Grothendieck mor1 incl

comp Grothendieck mor mor2

-- | Composition of two Grothendieck signature morphisms

-- | with itermediate homogeneous inclusion

compHomInclusion :: GMorphism -> GMorphism -> Result GMorphism

compHomInclusion mor1 mor2 = compInclusion emptyLogicGraph mor1 mor2

-- | Translation of a G_l_sentence_list along a GMorphism

translateG_l_sentence_list :: GMorphism -> G_l_sentence_list

-> Result G_l_sentence_list

translateG_l_sentence_list (GMorphism cid sign1 morphism2)

(G_l_sentence_list lid sens) = do

let tlid = targetLogic cid

--(sigma2,_) <- map_sign cid sign1

sens’ <- mcoerce lid (sourceLogic cid) "Translation of sentence list" sens

sens’’ <- mapM (mapNamedM $ map_sentence cid sign1) sens’

sens’’’ <- mapM (mapNamedM $ map_sen tlid morphism2) sens’’

return (G_l_sentence_list tlid sens’’’)

-- | Join two G_l_sentence_list’s

joinG_l_sentence_list :: G_l_sentence_list -> G_l_sentence_list

-> Maybe G_l_sentence_list

joinG_l_sentence_list (G_l_sentence_list lid1 sens1)
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(G_l_sentence_list lid2 sens2) = do

sens2’ <- mcoerce lid1 lid2 "Union of sentence lists" sens2

return (G_l_sentence_list lid1 (sens1++sens2’))

-- | Flatten a list of G_l_sentence_list’s

flatG_l_sentence_list :: [G_l_sentence_list] -> Maybe G_l_sentence_list

flatG_l_sentence_list [] = Nothing

flatG_l_sentence_list (gl:gls) = foldM joinG_l_sentence_list gl gls

-- | Find all (composites of) comorphisms starting from a given logic

findComorphismPaths :: LogicGraph -> G_sublogics -> [AnyComorphism]

findComorphismPaths lg (G_sublogics lid sub) =

List.nub $ map fst $ iterateComp (0::Int) [(idc,[idc])]

where

idc = Comorphism (IdComorphism lid sub)

coMors = Map.elems $ comorphisms lg

-- compute possible compositions, but only up to depth 5

iterateComp n l = -- (l::[(AnyComorphism,[AnyComorphism])]) =

if n>5 || l==newL then newL else iterateComp (n+1) newL

where

newL = List.nub (l ++ (concat (map extend l)))

-- extend comorphism list in all directions, but no cylces

extend (coMor,comps) =

let addCoMor c =

case compComorphism coMor c of

Nothing -> Nothing

Just c1 -> Just (c1,c:comps)

in catMaybes $ map addCoMor $ filter (not . (‘elem‘ comps)) $ coMors

------------------------------------------------------------------

-- Provers

------------------------------------------------------------------

-- | provers and consistency checkers for specific logics

data G_prover = forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_prover lid (Prover sign sentence proof_tree symbol)

| forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

G_cons_checker lid (ConsChecker sign sentence morphism proof_tree)
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------------------------------------------------------------------

-- Coercion

------------------------------------------------------------------

-- | coerce a theory into a "different" logic

coerceTheory :: forall lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree .

Logic lid sublogics

basic_spec sentence symb_items symb_map_items

sign morphism symbol raw_symbol proof_tree =>

lid -> G_theory -> Result (sign, [Named sentence])

coerceTheory lid (G_theory lid2 sign2 sens2)

= mcoerce lid lid2 "Coercion of theories" (sign2,sens2)

B.4 Haskell Data Structure for Heterogeneous Development

Graphs

{-|

Module : /repository/HetCATS/Static/DevGraph.hs

Copyright : (c) Till Mossakowski, Uni Bremen 2002-2004

Licence : similar to LGPL, see HetCATS/LICENCE.txt or LIZENZ.txt

Maintainer : hets@tzi.de

Stability : provisional

Portability : non-portable(Logic)

Central data structure for development graphs.

Follows Sect. IV:4.2 of the CASL Reference Manual.

-}

{-

References:

T. Mossakowski, S. Autexier and D. Hutter:

Extending Development Graphs With Hiding.

H. Hussmann (ed.): Fundamental Approaches to Software Engineering 2001,

Lecture Notes in Computer Science 2029, p. 269-283,

Springer-Verlag 2001.

T. Mossakowski, S. Autexier, D. Hutter, P. Hoffman:

CASL Proof calculus. In: CASL reference manual, part IV.

Available from http://www.cofi.info

todo:

Integrate stuff from Saarbrücken

Should AS be stored in GloblaContext as well?

-}
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module Static.DevGraph where

import Logic.Logic

import Logic.Grothendieck

import Syntax.AS_Library

import Common.GlobalAnnotations

import Common.Lib.Graph as Graph

import qualified Common.Lib.Map as Map

import qualified Common.Lib.Set as Set

import Common.Id

import Common.PrettyPrint

import Common.PPUtils

import Common.Result

import Common.Lib.Pretty

-- * Types for structured specification analysis

data DGNodeLab = DGNode {

dgn_name :: Maybe SIMPLE_ID,

dgn_sign :: G_sign,

dgn_sens :: G_l_sentence_list,

dgn_origin :: DGOrigin

}

| DGRef {

dgn_renamed :: Maybe SIMPLE_ID,

dgn_libname :: LIB_NAME,

dgn_node :: Node

} deriving (Show,Eq)

data DGLinkLab = DGLink {

-- dgl_name :: String,

-- dgl_src, dgl_tar :: DGNodeLab, -- already in graph structure

dgl_morphism :: GMorphism,

dgl_type :: DGLinkType,

dgl_origin :: DGOrigin }

deriving (Eq,Show)

data ThmLinkStatus = Open | Proven [DGLinkLab] deriving (Eq, Show)

data DGLinkType = LocalDef

| GlobalDef

| HidingDef

| FreeDef NodeSig -- the "parameter" node

| CofreeDef NodeSig -- the "parameter" node

| LocalThm ThmLinkStatus Conservativity ThmLinkStatus

| GlobalThm ThmLinkStatus Conservativity ThmLinkStatus

| HidingThm GMorphism ThmLinkStatus

| FreeThm GMorphism Bool

-- DGLink S1 S2 m2 (DGLinkType m1 p) n

-- corresponds to a span of morphisms

-- S1 <--m1-- S --m2--> S2
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deriving (Eq,Show)

data Conservativity = None | Cons | Mono | Def

deriving (Eq,Show)

data DGOrigin = DGBasic | DGExtension | DGTranslation | DGUnion | DGHiding

| DGRevealing | DGRevealTranslation | DGFree | DGCofree

| DGLocal | DGClosed | DGClosedLenv | DGLogicQual | DGLogicQualLenv

| DGData

| DGFormalParams | DGImports | DGSpecInst SIMPLE_ID | DGFitSpec

| DGView SIMPLE_ID | DGFitView SIMPLE_ID | DGFitViewImp SIMPLE_ID

| DGFitViewA SIMPLE_ID | DGFitViewAImp SIMPLE_ID | DGProof

deriving (Eq,Show)

type DGraph = Graph DGNodeLab DGLinkLab

data NodeSig = NodeSig (Node,G_sign) | EmptyNode AnyLogic

deriving (Eq,Show)
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Appendix C

Free and Cofree Specifications

C.1 Free extensions and liberality

We have mostly left out the institution independent structuring construct of free extensions so far.
We treat it separately because in many structuring languages, it is not included, and moreover, it
is not preserved so well along institution comorphisms (see Sect. 2.6).

The structured free construct restricts the model class to initial or free models. That is, if Sp1

is a specification with signature Σ1, then the models of Sp1 then free {Sp2} are those models M of
Sp1 then Sp2 that are free overM |Σ1 w.r.t. the reduct functor |Σ1 associated to the inclusion of Σ1

into the signature of Sp1 then Sp2. This allows for the specification of datatypes that are generated
freely w.r.t. given axioms, as, for example, in the specification of finite sets over a state sort which
is part of the specification of nondeterministic automata in Figure C.1. Here, the assoc, comm,
idem and unit attributes specify the operation ∪ to be associative, commutative, idempotent
and have unit {}.

Free extensions can formally be defined w.r.t. an arbitrary functor: Given categories A and B
and a functor G:B−→A, an object B ∈ B is called G-free (with unit ηA:A−→G(B)) over A ∈ A,
if for any object B′ ∈ B and any morphism h:A−→G(B′), there is a unique morphism h#:B−→B′

such that G(h#) ◦ ηA = h.

A
ηA

h

G(B)

G(h#)

G(B′)

In this case, the unit ηA is called a G-universal arrow. We will mostly omit the specification of the
unit. An object B ∈ B is called persistently G-free, if it is G-free over some A ∈ A with the unit
being an isomorphism. It is called strongly persistently G-free if it is G-free with unit id over G(B)
(id denotes the identity).

Proposition C.1 Given a functor G:B−→A, an object B ∈ B is persistently G-free if and only
if it is strongly persistently G-free.

A
ηA

ηA

G(B)

G((f◦ηA)#)G(B)

id

f

G(B′)
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Proof: The “if” direction is clear. For the “only if” direction, let ηA:A−→G(B) be a G-universal
isomorphism. If f :G(B)−→G(B′) is a morphism, (f ◦ ηA)# is the unique morphism g:B −→B′

with id ◦G(g) = f . Hence, id:G(B)−→G(B) is G-universal as well. 2

We now extend the kernel language of Sect. 5.1 as follows. For any signature morphism σ: Σ −→
Σ′ and Σ′-specification SP ′, free SP ′ along σ is a specification with:

Sig(free SP ′ along σ) = Σ′

Mod(free SP ′ along σ) = {M ′ ∈ Mod(SP ′) |
M ′ is strongly persistently (Mod(σ):Mod(SP ′)−→Mod(Σ))-free }

These specifications are called data SP ′ over σ in [ST88b]. Since the unit has to be the
identity, the freeness condition for M ′ means that for any model N ′ ∈ Mod(SP ′) and any model
morphism h:M ′|σ −→N ′|σ , there is a unique morphism h#:M ′ −→N ′ such that (h#)|σ = h. By
Proposition C.1, we can equally use just persistent freeness instead of strongly persistent freeness.

Free extensions allow one to express certain inductive properties in a concise way. For example,
the transitive closure of an arbitrary relation can be specified using the free construct in Casl as
follows:

Example C.2 spec BinaryRelation =

sort Elem
pred ∼ : Elem × Elem

end

spec TransitiveClosure [BinaryRelation] =

free
{ pred ∼∗ : Elem × Elem

∀ x , y , z : Elem
• x ∼ y ⇒ x ∼∗ y
• x ∼∗ y ∧ y ∼∗ z ⇒ x ∼∗ z

}
end 2

The corresponding structured specification is constructed as follows: Let 〈Σ′,Ψ′〉 be the pre-
sentation consisting of all sorts, predicates and axioms declared in either of BinaryRelation and
TransitiveClosure, and let Σ be the signature of BinaryRelation. Then as denotation of the
above specification, we get

free 〈Σ′,Ψ′〉 along σ

where σ is the inclusion of Σ into Σ′.
Another use of the free construct is in the generation of datatypes. For examples, consider the

specification of finite sets over arbitrary elements in Casl:

Example C.3 spec GenerateFiniteSet [sort Elem] =
free

{ type FinSet [Elem] ::= {}
| { }(Elem)
| ∪ (FinSet [Elem]; FinSet [Elem])

op ∪ : FinSet [Elem] × FinSet [Elem] → FinSet [Elem],
assoc, comm, idem,unit {}

}
end

This expands to the following:

spec GenerateFiniteSet [sort Elem] =
free
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{ sort FinSet [Elem]
ops {} : FinSet [Elem];

{ } : Elem → FinSet [Elem];
∪ : FinSet [Elem] × FinSet [Elem] → FinSet [Elem]

forall x , y , z : Elem
• x ∪ (y ∪ z ) = (x ∪ y) ∪ z
• x ∪ y = y ∪ x
• x ∪ x = x
• x ∪ {} = x

}
end

The question whether free models actually exist leads to the notion of liberality [GB92]:

Definition C.4 Given an institution I = (Sign,Sen,Mod, |=),

• a theory morphism σ:T −→T ′ is said to be liberal if, for each T -model M , there is a T ′-model
M ′ that is Mod(σ)-free over M ; it is called strongly persistently liberal if, moreover, M ′ is
strongly persistently Mod(σ)-free;

• the institution I is called liberal if each of its theory morphisms is liberal;

• given a class M of theory morphisms in I , I is called M-liberal if each theory morphism in
M is liberal. 2

The notion of (strongly persistent) liberality can easily be extended from theory morphisms to
specification morphisms.

One could guess that in a liberal institution, free SP along σ is consistent whenever SP is.
However, this is not the case, as the following counterexample shows:

Example C.5 The institution Eq= of equational logic is known to be liberal1 (see [GB92] below).
Let Σ consist of one sort s and one constant c : s, let Σ′ be Σ plus one unary function f : s−→ s,
and let σ: Σ−→Σ′ be the inclusion. Clearly 〈Σ′, ∅〉 is consistent. However, free 〈Σ′, ∅〉 along σ is
inconsistent: any Σ-model is freely extended by adding an ω-chain

{ f(a), f(f(a)), f(f(f(a))), . . . }

over each of its elements a. Thus, a Σ′-model can never be free over its own σ-reduct. 2

To show consistency of free SP along σ, we need strongly persistent liberality:

Proposition C.6 If σ: 〈Σ, ∅〉−→〈Σ′,Ψ′〉 is strongly persistently liberal and 〈Σ′,Ψ′〉 is consistent,
then also

free 〈Σ′,Ψ′〉 along σ

is consistent.

Proof: Let M ′
1 ∈ Mod(〈Σ′,Ψ′〉) by consistency, and let M ′ be Mod(σ)-free over M ′

1|σ with M ′

also being strongly persistently Mod(σ)-free. Then M ′ ∈ Mod(free 〈Σ′,Ψ′〉 along σ), and hence,
free 〈Σ′,Ψ′〉 along σ is consistent. 2

For specifications containing free, it is not so easy to obtain a normal form. This is because in
general free does not commute with the other specification building operations.

1One has to allow empty carrier sets or restrict oneself to strict theory morphisms to get this result, see [Mos02].
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C.2 Borrowing For Structured Specifications (Including free)

It is easy to show borrowing for structured specifications including free under the very strong
assumption of a subinstitution comorphism:

Theorem C.7 Let µ = (Φ, α, β): I−→J be a subinstitution comorphism. Then

• For any specification SP ,

β−1
Sig(SP )(ModI(SP )) = ModJ(µ̂(SP )).

• µ admits borrowing of entailment and refinement for all specifications.

Proof: (1) is straightforward. (2) follows with Proposition 5.2(2). 2

Thus

Subinstitution comorphisms admit borrowing of entailment and refinement for all struc-
tured specifications.

We here use the term liberal (in accordance with [Dia98]) since it stresses the connection with
liberality of institutions. Meseguer [Mes98a] has introduced persistently liberal comorphisms under
the name of extensions. He additionally requires that the isomorphism id ∼= βΣ ◦ γΣ is the unit of
the adjunction; however, in the light of Proposition C.10, this requirement is superfluous.

Let us now study how persistently liberal institution comorphisms interact with liberality,
strengthening a result of [KM95, Mos96b] (we can now drop the assumption of the existence of
ModI(σ)-free models).

Theorem C.8 Let (µ, γ) = ((Φ, α, β), γ): I−→J be a persistently liberal institution comorphism
such that additionally either satisfaction in I is closed under isomorphism or (µ, γ) is even strongly
persistently liberal. Then free constructions can be lifted against (µ, γ) in the following sense:

1. If σ: 〈Σ1,Ψ1〉 −→ 〈Σ2,Ψ2〉 is a theory morphism in I , M1 ∈ ModI(〈Σ1,Ψ1〉), and if M ′
2 ∈

ModJ (µ̂(〈Σ2,Ψ2〉)) is ModJ (Φ(σ))-free over γΣ1(M1), then βΣ2(M
′
2) is ModI(σ)-free over

M1.

2. If σ: 〈Σ1,Ψ1〉−→〈Σ2,Ψ2〉 is a theory morphism in I , then σ is liberal if Φ(σ) is liberal.

3. I is liberal if J is liberal.

4. Let M be a class of signature morphisms in SignI . I is M-liberal if J is Φ(M)-liberal.

In a word:

Free constructions can be lifted against persistently liberal institution comorphisms.

Proof:

ModI(〈Σ2,Ψ2〉)

γΣ2

ModI(σ)

ModJ (µ̂(〈Σ2,Ψ2〉))

ModJ (Φ(σ))

βΣ2

ModI(〈Σ1,Ψ1〉)

γΣ1

ModJ (µ̂(〈Σ1,Ψ1〉))
βΣ1

(1) By the satisfaction condition, βΣi
restricts to βΣi

:ModJ(µ̂(〈Σi,Ψi〉))−→ModI(〈Σi,Ψi〉) for
i = 1, 2. We now show that similarly, γΣi

restricts to γΣi
:ModI(〈Σi,Ψi〉)−→ModJ (µ̂(〈Σi,Ψi〉)):

259



For M ∈ ModI(〈Σi,Ψi〉), either βΣi
(γΣi

(M)) = M , or βΣi
(γΣi

(M)) ∼= M and satisfaction in I is
closed under isomorphism. In both cases, βΣi

(γΣi
(M)) |=Σi

Ψi, and by the satisfaction condition,
γΣi

(M) |= αΣi
(Ψi), hence γΣi

(M) ∈ ModJ (µ̂(〈Σi,Ψi〉)). We now can apply Proposition C.11 (1)
with U = ModI(σ), V = ModJ(Φ(σ)), R = βΣ2 , L = γΣ2 , R

′ = βΣ1 , and L′ = γΣ1 , B = M ′
2 and

X = M1.
(2), (3) and (4) directly follow from (1). 2

Example 2.32 below shows that the assumption of persistent liberality is needed to get this result.
We now come to borrowing for specifications containing free.

Proposition C.9 Let (µ, γ, δ): I −→ J be a persistently bi-liberal institution comorphism such
that γ and δ are natural transformations, let SP be a structured Σ-specification and let ϕ be a
Σ-sentence. Then

1. ModI(SP) = (γΣ)−1(ModJ(µ̂(SP))),

2. βΣ(ModJ (µ̂(SP)) ⊆ ModI(SP )),

3. βΣ(ModJ (µ̂(SP)) ⊇ ModI(SP )),

4. SP |=I
Σ ϕ iff µ̂(SP) |=J

Φ(Σ) αΣ(ϕ).

Proof: We prove (1) and (2) simultaneously by induction over SP .

• SP = 〈Σ,Ψ〉:
(1): M ∈ ModI(SP ) iff M |=Σ Ψ iff βΣ(γΣ(M)) |=Σ Ψ iff (by the satisfaction condition)
γΣ(M) |=Φ(Σ) αΣ(Ψ) iff γΣ(M) ∈ ModJ(µ̂(SP )). (2) follows by the same inductive argument
as used in the proof of Lemma 8.6 in [Bor02].

• SP = SP1 ∪ SP2:
(1): M ∈ ModI(SP) iff M ∈ ModI(SP1) ∩ ModI(SP2) iff (by the induction hypothesis)
γΣ(M) ∈ ModJ(µ̂(SP1))∩ModJ (µ̂(SP2)) iff γ(M) ∈ ModJ(µ̂(SP)). (2) follows in the same
way as above.

• SP = translate SP1 by σ: Σ1−→Σ:
(1): M ∈ ModI (SP) iff M |σ ∈ ModI(SP1) iff (by the induction hypothesis) γΣ1(M |σ) ∈
ModJ (µ̂(SP1)) iff (since γ is D-natural and σ ∈ D) (γΣ(M))|Φ(σ) ∈ ModJ(µ̂(SP1)) iff

γΣ(M) ∈ ModJ(µ̂(SP)). (2) follows in the same way as above.

• SP =` SP ′σ: Σ−→Σ1:
(1): M ∈ ModI(SP) implies that there is some M ′ ∈ ModI(SP ′) with M ′|σ = M . Then,
by the induction hypothesis, γΣ1(M

′) ∈ ModJ (µ̂(SP ′)), and since γ is D-natural and σ ∈ D,
(γΣ1 (M

′))|Φ(σ) = γΣ(M ′|σ) = γΣ(M). Thus, γΣ(M) ∈ ModJ(µ̂(SP)).

Conversely, assume that γΣ(M) ∈ ModJ(µ̂(SP)). Then there is some M1 ∈ ModJ (µ̂(SP))
with M1|Φ(σ) = γΣ(M). Hence, βΣ1(M1)|σ = βΣ(M1|Φ(σ)) = βΣ(γΣ(M)) = M . Therefore,

M ∈ ModI (SP).

(2) follows in the same way as above.

• SP = free SP ′ along σ: Σ1−→Σ:
By the induction hypothesis, (1) ModI(SP ′) = (γΣ)−1(ModJ(µ̂(SP ′))), which implies γΣ(ModI(SP ′)) ⊆
ModJ (µ̂(SP ′)), and (2) βΣ(ModJ (µ̂(SP ′))) ⊆ ModI(SP ′). Thus, we can restrict γΣ to
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γΣ:ModI(SP ′)−→ModJ(µ̂(SP ′)), and βΣ to βΣ:ModJ(µ̂(SP ′))−→ModI(SP ′):

ModI (SP ′)
γΣ

ModI(σ)

ModJ (µ̂(SP ′))

ModJ (Φ(σ))

βΣ

ModI(Σ1)

γΣ1

ModJ(Φ(Σ1))
βΣ1

Since the subcategories determined by specifications are full, the thus restricted functor βΣ

is still right adjoint to the restricted γΣ. Concerning (1), M ∈ ModI (SP) iff M is strongly
persistently ModI(σ)-free. Since γ is D-natural and σ ∈ D, we can apply Proposition A.2(3)
of [Mos02] with U = ModI(σ), V = ModJ(Φ(σ)), R = βΣ, L = γΣ, R′ = βΣ1 and L′ = γΣ1 .
From this, we obtain that the above holds iff γΣ(M) is strongly persistently ModJ(Φ(σ))-free.
This in turn holds iff γΣ(M) ∈ ModJ(µ̂(SP)).

Concerning (2), let M ′ ∈ ModJ(µ̂(SP)). Then M ′ is strongly persistently ModJ(Φ(σ))-free.
By Proposition 2.28, βΣ ◦ δΣ ∼= id and βΣ1 ◦ δΣ1

∼= id. Since δ is D-natural and σ ∈ D, we
can apply Proposition A.2(3) of [Mos02] with U = ModJ(Φ(σ)), V = ModI(σ), R = δΣ,
L = βΣ, R′ = δΣ1 and L′ = βΣ1 . Thus, βΣ(M ′) is strongly persistently ModI(σ)-free. Hence,
βΣ(M ′) ∈ ModI(SP).

(3) LetM ∈ ModI(SP). By (1), γΣ(M) ∈ ModJ(µ̂(SP)). By βΣ(γΣ(M)) = M ,M ∈ βΣ(ModJ(µ̂(SP))).
(4) SP |=I

Σ ϕ iff (by definition) M ∈ ModI(SP ) implies M |=I
Σ ϕ iff (by (3)) M ′ ∈ ModJ (µ̂(SP ))

implies βΣ(M ′) |=I
Σ ϕ iff (by the satisfaction condition) M ′ ∈ ModJ (µ̂(SP )) implies M ′ |=J

Φ(Σ)

αΣ(ϕ) iff (by definition) µ̂(SP ) |=J
Φ(Σ) αΣ(ϕ). 2

C.3 Preservation of Freeness

The following propositions are important for proving properties about persistently liberal institution
comorphisms. We will use the following terminology: Given a functor F left adjoint to G, ηG and
εF (or just η and ε, if no confusion can arise) will denote the unit and counit of some corresponding
adjoint situation.

Proposition C.10 Given R:B−→A with left adjoint L such that R ◦L ∼= id, then η, εL, and Rε
are isomorphisms. Moreover, L is full.

Proof: Let δ:R ◦ L−→ id be a natural isomorphism, and let A be an object in A.

RLA
(δ◦η)RLA

RεLA◦δ−1
RLA

id

RLA

RεLA◦δ−1
RLA

RLA
(δ◦η)RLA

RLA

Since Rε ◦ ηR = id for any adjunction, RεLA ◦ δ−1
RLA ◦ δRLA ◦ ηRLA = id. Hence, the upper

triangle commutes. By naturality of δ ◦ η, also the square commutes. Thus, also the lower triangle
commutes. But this shows (δ ◦ η)RLA to be an isomorphism. Since δ is an isomorphism, ηRLA is an
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isomorphism as well. By naturality of η,

RLA
ηRLA

δA

RLRLA

RLδA

A
ηA

RLA

commutes. Hence, ηA is an isomorphism. Since εL ◦ Lη = id and Rε ◦ ηR = id for any adjunction,
εL and Rε are isomorphisms as well.

Fullness of L follows with the dual of [AHS90], 19.14. 2

Proposition C.11 Let the following diagram of categories and functors be given.

A
L

U

B
R

V

X
L′

Y
R′

Assume further that

• U ◦R = R′ ◦ V ,

• R ◦ L ∼= id and R′ ◦ L′ ∼= id,

• L is left adjoint to R, and

• L′ is left adjoint to R′.

Then

1. If B ∈ B is V -free over L′X for some X ∈ X, then RB is U -free over X .

2. A ∈ A is U -free over X ∈ X iff LA is V -free over L′X .

3. If B ∈ B is strongly persistently V -free and V B is in the image of L′, then RB is strongly
persistently U -free.

4. Further assume that L′ ◦ U = V ◦ L. Then A ∈ A is strongly persistently U -free iff LA is
strongly persistently V -free.

Proof: (1)
By Proposition C.10, ηR and εL

L are isomorphisms, and L is full. Assume that B ∈ B is V -free
over L′X , i.e. there is a V -universal arrow ηV

L′X :L′X−→V B. By composition with the R′-universal

arrow ηR′

X :X−→R′L′X we get an R′V -universal arrow ηR′V
X = R′ηV

L′X ◦ ηR′

X :X −→R′V B. By its

universality, there is a morphism g:B−→LRB with R′V g ◦ ηR′V
X = UηR

RB ◦ ηR′V
X .

X
ηR′V

X

ηR′V
X

R′V B

R′V gR′V B = URB
UηR

RB

URLRB = R′V LRB
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Now R′V εL
B ◦ R′V g ◦ ηR′V

X = URεL
B ◦ UηR

RB ◦ ηR′V
X = ηR′V

X . By universality of ηR′V
X , we get

εL
B ◦ g = id, and thus also εL

B ◦ g ◦ εL
B = εL

B . Since L is full, g ◦ εL
B is the L-image of an A-morphism.

By co-universality of εL
B , we get g ◦ εL

B = id. Thus, g:B −→ LRB is an isomorphism. But then,

ηU
X := ηR′V

X :X −→ URB can be shown to be a U -universal arrow as follows: If f :X −→ UA

is an X-morphism, by universality of ηR′V
X , there is a unique morphism f#:B −→ LA satisfying

R′V f# ◦ ηR′V
X = UηR

A ◦ f . Now (ηR
A)−1 ◦ R(f# ◦ g−1) ◦ ηRB is a morphism from RB to A with

U((ηR
A)−1 ◦R(f#◦g−1)◦ηRB)◦ηR′V

X = U(ηR
A)−1 ◦UR(f#)◦UR(g−1)◦UηR

RB ◦URεL
B ◦URg◦ηR′V

X =

U(ηR
A)−1 ◦UR(f#) ◦UR(g−1) ◦URg ◦ ηR′V

X = U(ηR
A)−1 ◦UR(f#) ◦ ηR′V

X = U(ηR
A)−1 ◦UηR

A ◦ f = f .
Since g is an isomorphism, uniqueness follows from that of f#. 2

Proof of (2), “=⇒”:
Let ηU

X :X−→UA be U -universal, and ηR
A :A−→RLA be R-universal. Then

ηV
L′X := L′X

L′ηU
X

L′UA
L′UηR

A

L′URLA = L′R′V LA
εL′

V LA

V LA

is a V -universal arrow: Let f :L′X−→V B be an X-morphism. By co-universality of εL′

V B , there is

some unique f̃ :X−→R′V B = URB with εL′

V B ◦L′f̃ = f . By UR-universality of UηR
A ◦ ηU

X , there is

some unique f̃#:LA−→B with URf̃#◦UηR
A ◦ηU

X = f̃ . By also considering the commutativity of the

square (due to naturality of εL′

), f̃# is the unique morphism from LA to B with V f̃# ◦ ηV
L′X = f .

L′X

ηV
L′X

L′ηU
X

L′f̃

f

L′UA
L′UηR

A

L′URLA = L′R′V LA
εL′

V LA

L′URf̃#=L′R′V f̃#

V LA

V f̃#

L′URB = L′R′V B
εL′

V B

V B

2

Proof of (2), “⇐=”:

Follows from (1) with B = LA, since RLA ∼= A. 2

Proof of (3): Follows from (1) with X such that L′X = V B, where Proposition C.10 ensures that
the unit constructed in the proof is an isomorphism, which leads to strongly persistent freeness by
Proposition C.1. 2

Proof of (4):

Follows from (2) with X = UA, since by assumption, L′UA = V LA, where εL′

V L = εL′

L′U and
proposition C.10 ensure that the unit constructed in the proof is an isomorphism, which leads to
strongly persistent freeness by Proposition C.1. 2

C.4 Rules for Free Theorem Links in Development Graphs

Although there is no general approach to verify that an extension of a specification is conservative
(or monomorphic, or definitional), several schemes for extending specifications have been developed
in the past which guarantee these properties by construction. We only very informally list some
possible rules here:
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• extensions declaring new signature elements are conservative, provided the new symbols are not
constrained in any way (by axioms, by requirements on the subsort and overloading relations,
etc.) to be related to old symbols, and the new symbols themselves are constrained by a
positive theory (i.e. not involving negation),

• free datatypes are monomorphic extensions of the local environment in which they are intro-
duced,

• structured free Horn theories are monomorphic extensions,

• subsort definitions are definitional extensions, and

• inductive definitions over free datatypes are definitional extensions.

There is no hope to tackle freeness in an institution independent way either. But is is possible
to define a Casl-specific elimination oracle for free definition links. It basically introduces a new
node that is used to mimic the quotient term algebra construction.

We cannot expect to get proof support for free specifications that is independent of the underlying
logical system; hence, this section assumes that we are working in the Casl logic.

Elimination Rule for Free Definition Links

Given a free definition link M
σ

free
N with σ: Σ−→ΣM such that M is flattenable and ThS(M)

is in Horn form, replace it with M
id

K, where K is constructed as follows:

M
id

K
ΣM ↪→ΣK

h
N ′

M ′

ι

Let ΣM ′

be a copy of ΣM with all function symbols made total, and ι be a renaming of ΣM ′

that
makes it disjoint from ΣM . Then ΣK is ΣM united with ι(ΣM ′

) and augmented by new operations

makes: s−→ ι(s) (s ∈ Sorts(Σ))
h: ι(s)−→?s (s ∈ Sorts(ΣM ))

ΨK consists of

• an axiomatization of the sorts in ι(ΣM ′

) as free types with all operations as constructors (i.e.
including the makes, if sort ι(s) is axiomatized),

• the following homomorphism equations:

h〈ι(fw,s)〈x1
s1
, . . . , xn

sn
〉〉 = fw,s〈h〈x1

s1
〉, . . . , h〈xn

sn
〉〉

for f :w−→s ∈ ΣM , w = s1 . . . sn

ι(pw)〈x1
s1
, . . . , xn

sn
〉 ⇔ pw〈h〈x1

s1
〉, . . . , h〈xn

sn
〉〉

for p : w ∈ ΣM , w = s1 . . . sn

• surjectivity of the homomorphism functions:

∀y : s.∃x : ι(s).h(x)
e
= y (s ∈ Sorts(ΣM ))
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• the kernel of h is the least partial predicative congruence2 satisfying ThS(M). This is expressed
with the following family of axioms. For any family of ΣK-formulas (Φs(xι(s), yι(s)))s∈Sorts(ΣM )

in two free variables (coding the binary relations for the sorts) and family of ΣK-formulas
(Φp:w(x1

ι(s1), . . . , x
n
ι(sn)))p:w∈ΣM ,w=s1...sn

in n free variables (coding the n-ary relations for the

predicate symbols), we take the axiom

symmetry ∧ transitivity ∧ congruence ∧ satThM ⇒ largerThenKerH

Here, symmetry stands for
∧

s∈Sorts(ΣM )

∀x : ι(s), yι(s).Φs(xι(s), yι(s)) ⇒ Φs(yι(s), xι(s)),

transitivity stands for

∧

s∈Sorts(ΣM )

∀x : ι(s), y : ι(s), z : ι(s).Φs(xι(s), yι(s)) ∧ Φs(yι(s), zι(s)) ⇒ Φs(xι(s), zι(s)),

congruence stands for
∧

f :w−→s∈ΣM ∀x̄ : ι(w), ȳ : ι(x) .

D(ι(fw,s)〈x̄ι(w)〉) ∧D(ι(fw,s)〈ȳι(w)〉) ∧ Φw(x̄ι(w), ȳι(w))
⇒ Φs(ι(fw,s)〈x̄ι(w)〉, ι(fw,s)〈ȳι(w)〉)

and satThM stands for

ThS(M)[
e
= /Φs; p : w/Ψp:w; D(t)/Φs(t, t); t = u/Φs(t, u) ∨ (¬Φs(t, t) ∧ ¬Φs(u, u))]

where for a set of formulas Ψ, Ψ[sy1/sy
′
1; . . . syn, sy

′
n] denotes the simultaneous substitution

of sy′i for syi in all formulas of Ψ (while possibly instantiating the meta-variables t and u).

Finally largerThenKerH stands for

∧

s∈Sorts(ΣM ) ∀x : ι(s), y : ι(s).h(x)
e
= h(y) ⇒ Φs(xι(s), yι(s))

∧
∧

p:w−→∈ΣM ∀x̄ : ι(w).ι(p : w)〈x̄ι(w)〉 ⇒ Ψp:w(x̄ι(w))

Should we axiomatize things in ΣM to be term generated as well? This should already follow
from generatedness of things in ι(ΣM ′

) and surjectivity of the h’s . . .
Aha, and we have to add a definedness condition for f . . . And also definedness of ops for congruence
axioms!

Sketch of soundness proof:
Basically, K mimics the quotient term algebra construction. The term algebra is held in ι(ΣM ′

)
(axiomatized to be an absolutely free algebra), and the (partial!) quotient homomorphism is held
in the operation h.

Simplifications of the rule are possible if we know something about sufficient completeness (cf.
the last rule for definitional extensions) – say something more here!!! In particular, state simpler
versions of this rule for free datatypes (1) without axioms; (2) with just new predicates (3) with
new operations introduced in a sufficiently complete way

Introduction Rule for Free Theorem Links

K
θ

N

M
θ

free σ
N

2A partial predicative congruence consists of a symmetric and transitive binary relation for each sort and a relation
of appropriate type for each predicate symbol.
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spec NonDeterministicAutomata =
sort In
sort State
then free {

type FinSet ::= {} | { }(State) | ∪ (FinSet ; FinSet)
op ∪ : FinSet × FinSet → FinSet ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : In → FinSet)

end

Figure C.1: Specification of non-deterministic automata.

where K is constructed from M and σ similarly as in the elimination rule for free definition links
— the formulas Φs and Φp:w now have to be replaced by new predicate symbols. This is in much
the same way related to the above rule as the rule Sortgen-Intro is related to the rule Induction
in the calculus for many-sorted specifications (see Chap. IV.2 of [CoF04]).

C.5 Cofree specifications

CoCasl’s cofree { . . . } construct dualizes the free { . . . } construct by restricting the model
class of a specification to the cofree, i.e. final ones. This generalizes the cofree cotypes construct to
arbitrary specifications; in particular, final models may be restricted by axioms (e.g. as in Figure C.3
below).

More precisely, the semantics of cofree is defined as follows:

Definition C.12 If Sp1 is a specification with signature Σ1, then the models of Sp1 then cofree {Sp2}
are those models M of Sp1 then Sp2 that are fibre-final over M |Σ1 w.r.t. the reduct functor |Σ1 .
Here, fibre-finality means that M is the final object in the fibre over M |Σ1 . The fibre over M |Σ1 is
the full subcategory of Mod(Sp1 then Sp2) consisting of those models whose Σ1-reduct is M |Σ1 .

This definition deviates somewhat from the semantics of free in that the latter postulates initiality,
i.e. that M is free over M |Σ1 with |Σ1 -universal arrow id : M |Σ1 → M |Σ1 , which is stronger than
fibre-initiality of M . We will see shortly that the more liberal semantics for cofree is essential in
cases where sorts from the local environment occur as argument sorts of selectors. Call a sort from
the local environment an output sort if it occurs only as a result type of selectors. In the cases of
interest, a more general co-universal property concerning, in the notation of the above definition,
morphisms of Σ1-models that are the identity on all sorts except possibly the output sorts, follows
from fibre-finality.

The cofree cotypes construct is equivalent to cofree { cotypes . . . }:

Proposition C.13 If DD is a sequence of cotype declarations, then

cofree { cotypes DD } and cofree cotypes DD
have the same semantics.

Proof: Thanks to the fact that the semantics of the cofree construct is defined via fibre-finality,
the interpretations of additional parameters for observers are fixed (in a given fibre). Hence, we can
apply currying as in Def. 3.22. The result then follows from Props. 3.23 and 3.27. 2

By contrast, the use of cofree { types . . . } should be avoided:
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spec FinalMoore2 =
sorts In,Out
then cofree {
cotype State ::= (next : In → State; observe : Out)
}

end

Figure C.2: Structured cofree specification of the final Moore automaton.

spec BitStream3 =
free type Bit ::= 0 | 1
then cofree {

cotype BitStream ::= (hd : Bit ; tl : BitStream)
∀s : BitStream
• hd(s) = 0 ∧ hd(tl(s)) = 0 ⇒ hd(tl(tl(s))) = 1 }

end

Figure C.3: Structured cofree specification of bit streams in CoCasl.

Example C.14 The specification

free type Bool ::= false | true
then

cofree { type T ::= c1 (s1 :?Bool) | c2 (s2 :?Bool) }

is inconsistent. Indeed, by applying the uniqueness part of finality to a model of the unrestricted
type where T has an element on which both selectors are undefined (this is allowed for types but not
for cotypes), one obtains that any model of the cofree type would be a singleton; however, singleton
models fail to satisfy the finality property e.g. for the model of the unrestricted type where T is
Bool ×Bool and the selectors are the projections.

As an example for the significance of the relaxation of the cofreeness condition, consider the
specification of Moore automata as given in Figure C.2. Here, the observer next depends not only
on the state, but additionally on an input letter.

In the standard theory of coalgebra, next would become a higher-order operation next :State−→
StateIn , and the cofree coalgebra indeed yields the final automaton showing all possible behaviours -
but only for a fixed carrier for In (the inputs). The carrier for Out is also regarded as fixed; however,
one can show that the co-universal property holds also for morphisms that act non-trivially on Out.
If the semantics of cofree required actual cofreeness, i.e. a couniversal property also for morphisms
that act non-trivially on In, the specification would be inconsistent!

Let us now come to a further modification of the stream example. If the axiom were omitted in
the specification in Figure C.3, the model class would be the same as that in Figure 3.9, instantiated
to the case of bits as elements. With the axiom, the streams are restricted to those where two 0’s
are always followed by a 1. Again, this is unique up to isomorphism.

It is straightforward to specify iterated free/cofree constructions, similarly as in [Rei00]. Consider
e.g. the specification of lists of streams of trees in Figure C.4. Alternatively, one could have used
structured free and cofree constructs as well:

SP then free {SP1} then cofree {SP2} then free . . .

267



spec ListStreamTree [sort Elem] =
free type

Tree ::= EmtpyTree
| Tree(left :?Tree; elem :?Elem; right :?Tree)

cofree cotype
Stream ::= (hd : Tree; tl : Stream)

free type
List ::= Nil | Cons(head :?Stream; tail :?List)

end

Figure C.4: Nested free and cofree (co)types.

spec FinalNonDeterministicAutomaton =
sort In
then cofree {

sort State
then free {

type Set ::= {} | { }(State) | ∪ (Set ; Set)
op ∪ : Set × Set → Set ,

assoc, comm, idem,unit {} }
then cotype State ::= (next : In → Set) }

end

Figure C.5: A free type within a cofree specification.

Note that also in the latter case, there won’t be any free within a cofree or vice versa. An example
for free within cofree is shown in Figure C.5. This specification extends the specification of non-
deterministic automata of Figure C.1 by an outer (structured) cofreeness constraint, so that its model
class now consists only of models where the cotype State is ‘the’ final non-deterministic automaton
(determined uniquely up to isomorphism) over the interpretation of In rather than the class of all
non-deterministic automata. Here, like in Figure C.1, the inner free has to be a structured one, since
finite sets cannot be specified as free type directly. In principle, free and cofree can be nested
arbitrarily; however, care must be taken to ensure that this does not lead to inconsistencies. A
general consistency criterion that covers nestings of the type used in Figure C.5 is given in [MSRR].

Proof support for specifications of the form cofree {SP} is not at all trivial. If SP is flattenable
and axiomatized within the modal logic, we can proceed similarly to the case of cofree types:
the model of cofree SP is a subcoalgebra of the coalgebra of all behaviours (as specified by the
corresponding cofree type), namely the largest subcoalgebra that satisfies the modal axioms.

More complex examples, such as nondeterministic automata or trees with unbounded branching,
involve a free specification of output sorts of selectors (like lists or sets) within a cofree {...}. Here,
in a first step, we proceed as above and encode the cofree type over the absolutely free type (only
the branching may now be infinite, being determined by a datatype). Then the cofree type over the
relatively free type is obtained as the quotient modulo the largest congruence [GS]. In terms of tool
support, this means the following:

• Equality of elements in the cofree datatype is obtained as before by coinductive reasoning (or
via terminal sequence induction [Pat02]), the difference with the absolutely free case being
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that the formulas in the free specification (e.g. associativity, commutativity, and idempotence
in the case of finite sets) are now available for such proofs.

• Distinctness of elements is shown, again as before, by establishing that the behaviours are
different. Here, the encoding of free specifications comes in: distinctness of two elements of a
relatively free type is shown by separating the two elements by a congruence.

Remark C.15 Above, we have seen two cases where free specifications within cofree specifications
allow good technical handling:

• the output sorts of selectors for a cofree datatype may be given by a free specification, which
is handled as described above;

• the modal formulas that restrict the elements of the cofree type may involve freely (or cofreely)
specified predicates, which are dealt with in Isabelle by means of least and greatest fixed points.

Beyond these two cases, the situation remains somewhat unclear. E.g., the following specification
is inconsistent:

spec FinalElement = Bool then
cofree {

free type Unit ::= 1
op el : Unit → Bool }

This seems to indicate that input sorts should not be restricted by equational axioms (the freeness
constraint can be replaced by an equation here), or in fact by anything else except modal formulas;
this is in agreement with suggestions made in [Kur01b]. On the other hand, observe that constraining
output sorts is more or less mandatory, e.g. when specifications using freely specified finite sets as
observations.

Also, a proof principle for free specifications containing cofree specifications seems to be much
harder to obtain. Here, we propose to avoid the outer free specification and use a generation axiom
plus some characterization of equality by suitably chosen observers instead.
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