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Scope of Craig interpolation (by axiomatizability)

Computer science uses logic in many ways

programming languages
formal specification and verification
databases, WWW, artificial intelligence
ontologies
algorithms & complexity
(semi-)automated theorem proving
metatheory
. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥

modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ

hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ

temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ

first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ

description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .

higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .

type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ

Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .

dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗

linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

Plenty of logics are used in computer science

propositional logics p, ¬ϕ, ϕ ∧ψ, ϕ ∨ψ, ϕ → ψ, >, ⊥
modal logics . . . , 2ϕ, �ϕ
hybrid logics . . . , i , @i .ϕ
temporal logics . . . , Fϕ, Gϕ, ϕUψ

QBF . . . , ∃p.ϕ, ∀p.ϕ
first-order logics . . . , t = u, P(t1, . . . , tn), ∃x .ϕ, ∀x .ϕ
description logics C v D C ::= A |CtD |¬C |∃R.C | . . .
higher-order logics . . . , P t , ∃P.ϕ, ∀P.ϕ, ιx .ϕ t ::= f t |λx .t | . . .
type theories . . . , ∀α.∀f : α → α.ϕ
Hoare logics {ϕ}P{ψ} P ::= x := t |while ϕ do P | . . .
dynamic logics [P]ϕ, 〈P〉ϕ P ::= a |P? |PQ |P ∪Q |P∗
linear logic !ϕ, ?ϕ, ϕ⊗ψ, ϕ⊕ψ, ϕ&ψ, ϕ

&

ψ

. . .



Scope of Craig interpolation (by axiomatizability)

What do these logics have in common?

formulas / sentences
entailment, logical consequence
models
soundness, completeness
conservative extensions
. . .

Are there definitions and theorems that we can
introduce once and for all
and then apply them to many logics?
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What is a logic, after all?

Definition (Gentzen, Tarski, Scott)
An entailment relation (ER) (S,`) is a binary relation
` ⊆P(S)×S on a set S of sentences.

(S,`) is Tarskian, if
1 reflexivity: for any ϕ ∈ S, {ϕ} ` ϕ,
2 monotonicity: if Γ ` ϕ and Γ′ ⊇ Γ then Γ′ ` ϕ,
3 transitivity: if Γ ` ϕi , for i ∈ I, and Γ∪{ϕi | i ∈ I} ` ψ, then

Γ ` ψ.

Definition
A theory Γ⊆ S is consistent if Γ 6` ϕ for some ϕ.
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ER for propositional logic

Example (Propositional logic)
Propositional logic (PL) has sentences given by the following
grammar

ϕ ::= p | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ1→ ϕ2 | > | ⊥

where p denotes propositional variables.

` is the minimal Tarskian entailment relation satisfying:

Γ ` ϕ, Γ ` ψ

Γ ` ϕ ∧ψ

Γ,ϕ ` χ, Γ,ψ ` χ

Γ,ϕ ∨ψ ` χ

Γ ` ϕ → ψ

Γ,ϕ ` ψ

Γ ` > ⊥ ` ϕ

Γ ` ¬ϕ

Γ,ϕ ` ⊥
Γ ` ¬¬ϕ

Γ ` ϕ
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ER for modal logic

Example (Modal logic)

ϕ ::= p | ¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ1→ ϕ2 | > | ⊥ |2ϕ | �ϕ

` is the minimal Tarskian entailment relation satisfying the rules
for propositional logic plus:

Γ `2(ϕ → ψ)→ (2ϕ →2ψ)

` ϕ

`2ϕ

Γ ` �ϕ
Γ ` ¬2¬ϕ
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ER for first-order logic
(without function symbols)

Example (First-order logic)
t ::= x | c
ϕ ::= P(t1, . . . , tn) | ∃x .ϕ | ∀x .ϕ |

¬ϕ | ϕ1∧ϕ2 | ϕ1∨ϕ2 | ϕ1→ ϕ2 | > | ⊥

` is the minimal Tarskian entailment relation satisfying the rules
for propositional logic plus:

Γ ` ϕ(t)

Γ ` ∃x .ϕ(x)

Γ,ϕ(c) ` ψ

Γ,∃x .ϕ(x) ` ψ
(c does not occur in Γ, ϕ, ψ)

Γ ` ∀x .ϕ(x)

Γ ` ϕ(t)

Γ ` ϕ(c)

Γ ` ∀x .ϕ(x)
(c does not occur in Γ, ϕ)
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Morphisms of entailment relations

Definition
An entailment relation morphism α : (S1,`1)−→(S2,`2) is a
function α : S1−→S2 such that

Γ `1
ϕ implies α(Γ) `2

α(ϕ)

If the converse holde, α is conservative.
ERs and ER morphisms form a category ER.

Observation:
If we have a conservative ER morphism and a theorem
prover for `2, we can borrow it for `1.

For propositional and first-order logic, there are many
automated theorem provers, but not for modal logic.
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Translating modal logic into first-order logic

Example
A conservative ER morphism Modal→ FOL is defined by

αx (p) = p(x)
αx (2ϕ) = ∀y .R(x ,y)→ αy (ϕ)
αx (�ϕ) = ∃y .R(x ,y)∧αy (ϕ)
αx (¬ϕ) = ¬αx (ϕ)
. . .
α(ϕ) = ∀x .αx (ϕ)

Proof of ER property: induction over proofs.
Proof of conservativity property is more complicated
⇒ use model theory.
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Adding model theory

Definition (Goguen, Burstall)
A satisfaction system (S,M , |=) consists of

a set of S of sentences,
a category M of models and model homomorphisms, and
a binary relation |=⊆ |M |×S, the satisfaction relation.

Definition (Logical consequence)
Γ |= ϕ iff for all M ∈M , M |= Γ implies M |= ϕ.
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Logics

Definition (Logical consequence)
A logic (S,`,M , |=) consists of

an entailment relation (S,`), and
a satisfaction system (S,M , |=),

such that soundness holds:

Γ ` ϕ implies Γ |= ϕ

A logic is complete, if

Γ |= ϕ implies Γ ` ϕ
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Satisfaction system for propositional logic

Example (Propositional logic)
sentences as above

models maps from propositional variables to {true, false}
model homomorphisms M1→M2 iff

(M1(p) = true implies M2(p) = true)
satisfaction M |= ϕ iff

M(ϕ) = true according to standard truth tables

Proposition
Propositional logic is sound and complete.
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Satisfaction system for modal logic

Example (Modal logic)
sentences as above
a model M consists of

a non-empty set W of worlds,
a binary accessibility relation R ⊆W ×W ,
a map maps from propositional variables and worlds to
{true, false}

satisfaction
M,w |= p iff M(p,w) = true
M,w |= 2ϕ iff for all v ∈W with R(w ,v), M,v |= ϕ

M,w |= �ϕ iff for somd v ∈W with R(w ,v), M,v |= ϕ

M,w |= ¬ϕ iff M,w 6|= ϕ etc.
M |= ϕ iff for all w ∈W , M,w |= ϕ
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Satisfaction system for modal logic (cont’d)

Proposition
Modal logic is sound and complete.
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Satisfaction system for first-order logic
Example (First-order logic)

sentences as above
models: a first-order M model consist of

a non-empty set |M| called universe,
an element Mc ∈ |M| for each constant c,
an n-ary relation MP on |M| for each n-ary predicate symbol
P

satisfaction
M,ν |= P(t1, . . . , tn) iff (ν#(t1), . . . ,ν#(tn)) ∈MP
M,ν |= ∀x .ϕ iff for all ξ differing from ν at most for
x , M,ξ |= ϕ

M,ν |= ∃x .ϕ iff forsome ξ differing from ν at most for x ,
M,ξ |= ϕ

M,ν |= ¬ϕ iff M,ν 6|= ϕ etc.
M |= ϕ iff for all ν , M,ν |= ϕ
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Satisfaction system for first-order logic
(cont’d)

Proposition
First-order logic is sound and complete.
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Morphisms of satisfaction systems

Definition (Goguen, Burstall)
A satisfaction system morphism
(α,β ) : (S1,M1, |=1)−→(S2,M2, |=2) consists of

a sentence translation function α : S1−→S2, and
a model reduction functor β : M2−→M1, such that

M2 |=2 α(ϕ1) iff β (M2) |=1 ϕ1

(satisfaction condition).
This gives us a category Sat of satisfaction systems and
satisfaction system morphisms.
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Translating modal logic into first-order logic

Example
A satisfaction system morphism Modal→ FOL is defined by

sentence translation as above
a first-order model is reduced to a modal model by

taking the universe as set of worlds
taking the interpretation of the binary predicate R as
accessibility relation
taking the interpretation of the unary predicate p as
interpretation of the propositional variable p

Proposition
The satisfaction condition holds.
Proof: induction over formulas.
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Semantic proof of conservative ER morphism
property

Theorem (Cerioli, Meseguer)
Let (S1,`1,M1, |=1) and (S2,`2,M2, |=2) be two sound and
complete logics and a satisfaction system morphism

(α,β ) : (S1,M1, |=1)−→(S2,M2, |=2)

be given.
If β is surjectivive, then α is a conservative ER morphism

α : (S1,`1)−→(S2,`2).
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Indexing over signatures

We have been imprecise at various places.

Strictly speaking, we need to index over signatures. Signatures
are vocabularies of non-logical (=user-defined) symbols.
Entailment:

set Sig of signatures, and
family of ERs (Sen(Σ),`Σ)Σ∈Sig

Satisfaction:
set Sig of signatures, and
family of satisfaction systems (Sen(Σ),Mod(Σ), |=Σ)Σ∈Sig
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However, this is not the whole story!
Within this framework, we can study

abstract logical connectives
logic translations
logic combination
consistency strength, expressiveness
. . .

However, we cannot study
conservative extensions
modular logical theories
abstract quantifiers
Craig interpolation, Robinson consistency, Beth definability
elementary diagrams
. . .



Scope of Craig interpolation (by axiomatizability)

However, this is not the whole story!
Within this framework, we can study

abstract logical connectives
logic translations
logic combination
consistency strength, expressiveness
. . .

However, we cannot study
conservative extensions
modular logical theories
abstract quantifiers
Craig interpolation, Robinson consistency, Beth definability
elementary diagrams
. . .



Scope of Craig interpolation (by axiomatizability)

Indexing over signature morphisms

Definition (Fiadeiro, Meseguer)
An entailment system is a functor I : Sig−→ER, where Sig is the
category of signatures.

This gives us
a graph Sig of signatures and signature morphisms,
for each signature Σ, an identity morphism idΣ : Σ−→Σ,
a composition operation ◦ on signature morphisms,
for each Σ ∈ Sig, an ER (Sen(Σ),`Σ),
for each signature morphism σ1 : Σ1−→Σ2 ∈ Sig,
an ER morphism I(σ) : (Sen(Σ1),`Σ1)−→(Sen(Σ2),`Σ2), by
abuse of notation also denoted by σ .
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Sample entailment systems

Example (Entailment system for propositional logic)
signatures sets of propositional variables

ERs (Sen(Σ),`Σ) as before, but built over Σ

ER morphisms σ(ϕ) replaces symbols in ϕ along σ .
We have

Γ `Σ1 ϕ implies σ(Γ) `Σ2 σ(ϕ)

Further examples:
modal logic, first-order logic, and many more.
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Indexing over signature morphisms (cont’d)

Definition (Goguen, Burstall)
An institution is a functor I : Sig−→Sat .

This gives us
a graph Sig of signatures and signature morphisms, (. . . )
for each Σ ∈ Sig, a satisfaction system
(Sen(Σ),Mod(Σ), |=Σ),
for each signature morphism σ1 : Σ1−→Σ2 ∈ Sig,
a satisfaction system morphism
I(σ) : (Sen(Σ1),Mod(Σ1), |=Σ1)−→(Sen(Σ2),Mod(Σ2), |=Σ2),
by abuse of notation also denoted by (σ ,_|σ ).
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Sample institutions

Example (Institutions for propositional logic)
signatures sets of propositional variables
Sat. systems (Sen(Σ),Mod(Σ), |=Σ) as before, but built over Σ

Sat. syst. morphisms σ(ϕ) replaces symbols in ϕ along σ

M|σ interprets p as M|σ (p) := Mσ(p)

We have
M2|σ |=Σ1 ϕ1 iff M2 |=Σ2 σ(ϕ1)

Further examples:
modal logic, first-order logic, and many more.
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Indexing over signature morphisms (cont’d)

Definition (Meseguer)
A logic is an institution equipped with an entailment system,
agreeing on signatures and sentences.
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Abstraction via institutions

Institution independent notions and theorems,
languages, calculi, and software tools

———————————————————————-

Semantics, calculi and proof tools of particular institutions
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Structured ontologies, models, specifications
(OMS) over an arbitrary institution

DOLnotation
O ::= 〈Σ,Γ〉 basic specification

| O1∪O2 union O1 and O2

| σ(O) translation O with σ

| O|σ hiding O hide σ
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. . . and their semantics

Definition (Signature and model class of an OMS)
Sig(〈Σ,Γ〉) = Σ
Mod(〈Σ,Γ〉) = {M ∈Mod(Σ) |M |= Γ}
Sig(O1∪O2) = Sig(O1) = Sig(O2)
Mod(O1∪O2) = Mod(O1)∩Mod(O2)

Sig(σ : Σ1−→Σ2(O)) = Σ2
Mod(σ(O)) = {M ∈Mod(Σ2) | M|σ ∈Mod(O)}
Sig(O|σ : Σ1−→Σ2) = Σ1
Mod(O|σ : Σ1−→Σ2) = {M|σ | M ∈Mod(O)}
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Distributed Ontology, Model and Specification
Language

DOL
DOL has been adopted as an OMG-Standard (under my
leadership)
combines modularity, interoperability and language
heterogeneity
continuous formal semantics, based on institutions

Ontologies, models and specifications are logical theories
cooperation of different communities:

Ontologies, UML, specification

T. Mossakowski, C. Lange, O. Kutz (2012). Three Semantics for
the Core of the Distributed Ontology Language, FOIS 2012.
Best paper award
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Theory Morphisms

Definition
A theory morphism σ : (Σ1,Γ1)→ (Σ2,Γ2) is a signature
morphism σ : Σ1→ Σ2 such that

for M ∈Mod(Σ2,Γ2), we have M|σ ∈Mod(Σ1,Γ1)

Extensions are theory morphisms:

(Σ,Γ) then (∆Σ,∆Γ)

leads to the theory morphism

(Σ,Γ)
ι // (Σ∪∆Σ, ι(Γ)∪∆Γ)

Proof: M |= ι(Γ)∪∆Γ implies M|ι |= Γ by the satisfaction
condition.
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Interpretations (views, refinements)
interpretation name : O1 to O2 = σ

σ is a signature morphism (if omitted, assumed to be
identity)
expresses that σ is a theory morphism O1→O2

logic CASL.FOL=
spec RichBooleanAlgebra =
BooleanAlgebra

then %def
pred __ <= __ : Elem * Elem;
forall x,y:Elem
. x <= y <=> x cap y = x %(leq_def)%

end
interpretation order_in_BA :
PartialOrder to RichBooleanAlgebra

end
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Family Ontology

logic OWL
ontology Family2 =
Class: Person
Class: Woman SubClassOf: Person
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Woman and hasChild some Person
Individual: mary Types: Woman Facts: hasChild john
Individual: john Types: Person
Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean
Mother

end
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Interpretation in OWL

logic OWL
ontology Family_alt =
Class: Human
Class: Female
Class: Woman EquivalentTo: Human and Female
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Female and hasChild some Human
end

interpretation i : Family_alt to Family2 =
Human |-> Person, Female |-> Woman

end
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Criterion for Theory Morphisms

Theorem
A signature morphism σ : Σ1→ Σ2 is a theory morphism
σ : (Σ1,Γ1)→ (Σ2,Γ2) iff

Γ2 |=Σ2 σ(Γ1)

Proof.
By the satisfaction condition.
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Conservative Extensions

Definition
A theory morphism σ : T1→ T2 is consequence-theoretically
conservative (ccons), if for each φ1 ∈ Sen(Σ1)

T2 |= σ(φ1) implies T1 |= φ1.

(no “new” facts over the “old” signature)

Definition
A theory morphism σ : T1→ T2 is model-theoretically
conservative (mcons), if for each M1 ∈Mod(T1), there is a
σ -expansion

M2 ∈Mod(T2) with (M2)|σ = M1
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A General Theorem

Theorem
If σ : T1→ T2 is mcons, then it is also ccons.

Proof.
Assume that σ : T1→ T2 is mcons.
Let φ1 be a formula, such that T2 |=Σ2 σ(φ1).
Let M1 be a model M1 ∈Mod(T1). By assumption there is a
model M2 ∈Mod(T2) with M2|σ = M1. Since T2 |=Σ2 σ(φ1), we
have M2 |= σ(φ1). By the satisfaction condition M2|σ |=Σ1 φ1.
Hence M1 |= φ1. Altogether T1 |=Σ1 φ1.
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Logical notions for OMS

Definition (Logical consequence for OMS)

O |= ϕ iff M |= ϕ for all M ∈Mod(O)

Definition (OMS refinement)

O∼∼∼>O′ iff Mod(O′)⊆Mod(O)
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Proof calculus for entailment (Borzyszkowski)

(CR)
{O ` ϕi}i∈I {ϕi}i∈I ` ϕ

O ` ϕ
(basic)

ϕ ∈ Γ

〈Σ,Γ〉 ` ϕ

(sum1)
O1 ` ϕ

O1∪O2 ` ϕ
(sum2)

O1 ` ϕ

O1∪O2 ` ϕ

(trans)
O ` ϕ

σ(O) ` σ(ϕ)
(derive)

O ` σ(ϕ)

O|σ ` ϕ

Soundness means: O ` ϕ implies O |= ϕ

Completeness means: O |= ϕ implies O ` ϕ
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Proof calculus for refinement (Borzyszkowski)

(Basic)
O ` Γ

〈Σ,Γ〉; O
(Sum)

O1 ; O O2 ; O
O1∪O2 ; O

(Trans)
O ; O′|σ

σ(O) ; O′

(Derive)
O ; O′′

O|σ ; O′
if σ : O′−→O′′

is a conservative extension

Soundness means: O1 ; O2 implies O1∼∼∼>O2
Completeness means: O1∼∼∼>O2 implies O1 ; O2
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Craig-Robinson interpolation

Definition

Ψ Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

(1) Ψ1 |= ϕ1(Ψ)

(2) ϕ2(Ψ)∪Γ2 |= Ψ2 Σ2
θ2

// Σ′ (0) θ1(Ψ1)∪θ2(Γ2) |= θ2(Ψ2)

A commutative square admits Craig-Robinson interpolation,
if for all finite Ψ1 ⊆ Sen(Σ1), Ψ2,Γ2 ⊆ Sen(Σ2),
if (0), then there exists a finite Ψ⊆ Sen(Σ) with (1) and (2).

I has Craig-Robinson interpolation if all signature pushouts admit
Craig-Robinson interpolation.
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Soundness and Completeness

Theorem (Borzyszkowski, Tarlecki, Diaconescu)
Under the assumptions that

the institution admits Craig-Robinson interpolation,
the institution is weakly semi-exact, and
the entailment system is complete,

the calculus for structured entailment and refinement is sound
and complete.

For refinement, we need an oracle for conservative extensions.
Weak semi-exactness = Mod maps pushouts to weak pullbacks
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Heterogeneous specification

Definition
A heterogeneous logical environment (H L E ) (or indexed
coinstitution) is diagram of institutions and comorphisms.
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Some H L E for ontologies

CL

HOL

Prop

SROIQ
(OWL 2 DL)

FOL=

FOLms=

OBOOWL

EL++
(OWL 2 EL)

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

DDLOWL

ECoOWL

ECoFOL F-logic

bRDF

RDF

RDFS

OWL-Full

EER

subinstitution

theoroidal subinstitution

simultaneously exact and 
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic 

OBO 1.4

CASL

UML-CD

CL-

Schema.org

SKOS

SKOS

D-FOL
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Some H L E for UML and Java

Eigenschaften Typen Instanzen

HOLAutomata, TL SMT

Message Sequence
Charts (MSCs)

Protocol State
Machines

Object Constraint
Language (OCL)

Java Modelling
Language (JML)

Java

Class Diagram

Structure Diagram

State Machines

Composite Structure

Object Diagram

Diagram
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Institution comorphisms

Definition

An institution comorphism ρ : I →I ′ consists of:
a functor Φ: Sign→ Sign′;
a natural transformation α : Sen→ Sen′ ◦Φ; and
a natural transformation β : Mod′ ◦ (Φ)op→Mod,

such that
M ′ |=′Φ(Σ) αΣ(ϕ) ⇐⇒ βΣ(M ′) |=Σ ϕ

[Satisfaction condition]
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Institution comorphisms

SenIΣ SenJΦΣ

ModIΣ ModJΦΣ

αΣ

βΣ

|=I
Σ |=J

ΦΣ

Signatures

Sentences

Satisfaction

Models

Institution com orphism  s  

Σ ΦΣΦ
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Heterogeneous structuring operations

heterogeneous translation: For any I -specification O, ρ(O) is
a specification with:

Sig[ρ(O)] := Φ(Sig[O])

Mod [ρ(O)] := β
−1
Sig[O](Mod [O])

heterogeneous hiding: For any I ′-specification O′ and
signature Σ with Sig[O′] = Φ(Σ), O′|Σρ is a
specification with:

Sig[O′|Σρ ] := Σ

Mod [O′|Σρ ] := β
Σ

(Mod [O′])
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A heterogeneous proof calculus

(het-trans)
O ` ϕ

ρ(O) ` α(ϕ)
(het-derive)

O ` α(ϕ)

O|Σρ ` ϕ

(borrowing)
ρ(O) ` α(ϕ)

O ` ϕ
if ρ is model-expansive

(Het-snf )
O′ ` σ(α(ϕ))

O ` ϕ
if hsnf (O) = (O′|σ )|Σρ
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A heterogeneous proof calculus for
refinement

(Het-Trans)
O ; O′|Σρ

ρ(O) ; O′

(Het-Derive)
O ; O′′

O|Σρ ; O′
if ρ : O′−→O′′ is a
conservative extension

Conservativity of ρ = (Φ,α,β ) : O′−→O′′ means that for each
model M ′ ∈Mod(SP ′), there is a model M ′′ ∈Mod(SP ′′) with
β (M ′′) = M ′.
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Heterogeneous completeness

Theorem
For a heterogeneous logical environment
H L E : G −→coI N S (with some of the institutions having
entailment systems), the proof calculi for heterogeneous
specifications are sound for I H L E/≡. If

1 H L E is quasi-exact,
2 all institution comorphisms in H L E are weakly exact,
3 there is a set L of institutions in H L E that come with

complete entailment systems,
4 all institutions in L are quasi-semi-exact,
5 from each institution in H L E , there is some

model-expansive comorphism in H L E going into some
institution in L ,

the proof calculus for entailments between heterogeneous
specifications and sentences is complete over I H L E.
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Institutional model theory

1 Choose a proof of a meta theorem in logic.
2 Extract its essence by leaving out the irrelevant details and

by identifying the conceptual structure and the causalities
underlying the result.

3 Formulate the conceptual structure at the level of an
abstract institution.

4 Lift the proof considered to the level of an abstract
institution, shaping an abstract, generic scope of the result.

5 Determine the actual scope by analysing the abstract
conditions used in the proof.
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Craig interpolation (Ci) in abstract institutions

Σ1∩Σ2 //

��

Σ1

��
Σ2 // Σ1∪Σ2

ρ1 `Σ1∪Σ2 ρ2 iff
exists ρ s.th. ρ1 `Σ1 ρ, ρ `Σ2 ρ2.
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Craig interpolation (Ci) in abstract institutions

Σ1∩Σ2 //

��

Σ1

��
Σ2 // Σ1∪Σ2

ρ1 |= Σ1∪Σ2ρ2 iff
exists ρ s.th. ρ1 |= Σ1ρ, ρ |= Σ2ρ2.
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Craig interpolation (Ci) in abstract institutions

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2
θ2

// Σ′

θ1(ρ1) |= Σ′θ2(ρ2) iff
exists ρ s.th. ρ1 |= Σ1ϕ1(ρ), ϕ2(ρ) |= Σ2ρ2.



Scope of Craig interpolation (by axiomatizability)

Craig interpolation (Ci) in abstract institutions

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2
θ2

// Σ′

θ1(E1) |= Σ′θ2(E2) iff
exists E s.th. E1 |= Σ1ϕ1(E), ϕ2(E) |= Σ2E2.
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(L ,R)-interpolation

Expecting Ci for all pushout squares is too much! (single sorted
FOL yes, but many-sorted FOL, EQL, HCL no, etc.)

Solution: restrict (abstractly) ϕ1 ∈L , ϕ2 ∈R.

Σ
ϕ1∈L //

ϕ2∈R
��

Σ1

��
Σ2 // Σ′

many-sorted FOL: L or R injective on the sorts.
EQL, HCL: R injective or L injective on sorts and
‘encapsulates’ operations.
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(L ,R)-interpolation

Expecting Ci for all pushout squares is too much! (single sorted
FOL yes, but many-sorted FOL, EQL, HCL no, etc.)

Solution: restrict (abstractly) ϕ1 ∈L , ϕ2 ∈R.

Σ
ϕ1∈L //

ϕ2∈R
��

Σ1

��
Σ2 // Σ′

many-sorted FOL: L or R injective on the sorts.
EQL, HCL: R injective or L injective on sorts and
‘encapsulates’ operations.
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Remembering Birkhoff

A ∗∗ = HSP(A )

A ∗ = {(∀X )t = t ′ |A |= (∀X )t = t ′};
A ∗∗ = {A | A |= A ∗};
P products, S subalgebras, H homomorphic images
(quotients).
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Birkhoff institutions

Very abstract definition of the (coarse-level) scope of Birkhoff
variety thm.

Institution enhanced with
F (designated) class of filters with {{∗}} ∈F ;
Mod(Σ) has (categorical) F -filtered products;
BΣ ⊆ |Mod(Σ)|× |Mod(Σ)| closed under iso and

M ∗∗ = B−1
Σ (FM )

Captures hundreds of Birkhoff style axiomatizability results (e.g.
Nemeti-Andreka, etc.)
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Generic scope of Ci by axiomatizability

Theorem
Any Birkhoff institution (Sig,Sen,Mod, |=,F ,B) with the weak
model amalgamation property, has (L ,R)-Ci when

1 for each ϕ ∈L , Mod(ϕ) preserves F -filtered products, and
2 – for each ϕ ∈R, Mod(ϕ) lifts B, or

– for each ϕ ∈L , Mod(ϕ) lifts B−1 and model isomorphisms.
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Actual scope of Ci by axiomatizability

Clarification of detailed technical causalities in the proof of Ci by
axiomatizability; their analysis determine the actual scope:

Amalgamation and preservation of filtered products obvious
in concrete situations; at abstract level their role becomes
evident.
Lifting conditions less obvious, but in applications
established smoothly. Semantic in nature they represent the
technical link between the closure by B and the syntactic
restrictions on the signature morphisms.
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Surprising instances

Theorem
Many sorted Horn clause logic has (L ,R)-Ci when

1 R consists of injective signature morphisms, or
2 L consists of injective on the sorts signature morphisms

and ‘encapsulates’ the operations.
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Conclusions

Many more notions and results from logic can be
generalised:

ultraproducts, Los’ theorem
saturated models
Gödel’s completeness theorem

OntoIOp probably will be the first international standard
based on category theory
Also software tools benefit from the category-theoretic
abstraction
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Implicit definability in abstract institutions

Signature morphism ϕ : Σ→ Σ′ defined implicitly by Σ′-theory
E ′ when the corresponding reduct

Mod(ϕ) : Mod(Σ′,E ′)⊆Mod(Σ′)→Mod(Σ)

is injective.
generalization from extensions of signatures with individual
new symbols to any signature morphism;
simpler to do without irrelevant details such as ‘extension’,
‘individual’.
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Explicit definability in abstract institutions

ϕ : Σ→ Σ′ defined explicitly by E ′ when for each pushout

Σ
ϕ∈L //

θ∈R
��

Σ′

θ ′
��

Σ1 ϕ1
// Σ′1

and each ρ ∈ Sen(Σ′1), exists finite Eρ ⊆ Sen(Σ1)

E ′ |=Σ′ (∀θ ′)(ρ ⇔ ϕ1(Eρ)).

(not necessarily to have ∀ and⇔)
θ , θ ′ stand for signature extensions with finite blocks of
first-order variables, however ‘first-order’, ‘extension’, irrelevant
details.
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Beth definability

ϕ has the definability property iff a theory defines ϕ explicitly
whenever it defines it implicitly.

Opposite implication immediate in FOL but highly non-trivial for
abstract institutions (skipped here).
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On the role of implication (2,3)

An institution has implication when for any ρ1, ρ2 there exists ρ

such that
M |= ρ iff M |= ρ2 whenever M |= ρ1.

Implicit reliance upon implication in traditional proof of FOL Beth
definability.

However we may render implication unnecessary by
reformulating interpolation.



Scope of Craig interpolation (by axiomatizability)

Craig-Robinson interpolation (CRi) (2,3)

‘Parameterises’ each instance of interpolation by a set of
‘secondary’ premises:

Σ
ϕ1 //

ϕ2
��

Σ1

θ1
��

Σ2
θ2

// Σ′

θ1(E1)∪θ2(Γ2)|=Σ′θ2(E2) iff
exists E s.th. E1|=Σ1

ϕ1(E), ϕ2(E)∪Γ2|=Σ2
E2.
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Craig-Robinson interpolation (2,3)

CRi => Ci
In any compact institution with implication Ci <=> CRi (e.g.
FOL, etc.)
However CRi may exist in the absence of implication, e.g.
many sorted Horn clause logic has (L ,R)-CRi when L
consists of signature morphisms that are injective on the
sorts and ‘encapsulate’ operations.
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Generic scope of Beth definability by
interpolation

Theorem

In any compact institution with model amalgamation and
(L ,R)-CRi such that L , R that are stable under pushouts, any
signature morphism in L ∩R has the definability property.
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Actual scope of Beth definability by
interpolation

By analysis of the conditions of above thm.
1 Compactness: common property established by various

means:
completeness of finitary proof calculus;
preservation by ultraproducts;

(Both treated at level of abstract institutions).
2 Model amalgamation: common easy property (already

discussed);
3 Stability: pure technical condition, mild in the applications;
4 the only substantial condition is CRi.
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Two actual instances

Corollary
In many-sorted FOL any signature morphism that is injective on
sorts has the definability property.

In a logic without implication:

Corollary
In many-sorted HCL any signature morphism that is injective on
sorts and ‘encapsulates’ the operations has the definability
property.
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