The Distributed Ontology, Modeling and Specification Language (DOL) Language overview

Mihai Codescu² Oliver Kutz² Christoph Lange³ <u>Till Mossakowski</u>¹ Fabian Neuhaus¹

¹University of Magdeburg, Germany ²Free University of Bolzano, Italy ³University of Bonn, Germany

FroCoS/TABLEAUX tutorial, Wrocław, 2015-09-21

Resources

Resources

- http://ontoiop.org Initial standardization initiative
- https://github.com/tillmo/DOL repository for development of the DOL standard
- http://www.omg.org/spec/DOL future place for DOL standard
- http://www.omg.org/techprocess/meetings/ schedule/OntoIOp_RFP.html process at OMG (for members only)
- http://hets.eu Tool Hets
- http://ontohub.org Ontohub platform

Motivation

The Big Picture of Interoperability

Modeling	Specification	Knowledge engineering
Objects/data	Software	Concepts/data
Models	Specifications	Ontologies
Metamodels	Specification languages	Ontology languages

Diversity and the need for interoperability occur at all these levels!

Ontologies

Class: Person
Class: Female

Class: Woman EquivalentTo: Person and Female
Class: Man EquivalentTo: Person and not Woman

ObjectProperty: hasParent

ObjectProperty: hasChild InverseOf: hasParent

ObjectProperty: hasHusband

Class: Mother

EquivalentTo: Woman and hasChild some Person

Class: Father

EquivalentTo: Man and hasChild some Person

Class: Parent

EquivalentTo: Father or Mother

Relation between OWL and FOL ontologies

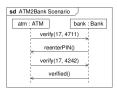
Common practice: annotate OWL ontologies with informal FOL:

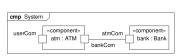
- Keet's mereotopological ontology [1],
- Dolce Lite and its relation to full Dolce [2],
- BFO-OWL and its relation to full BFO.

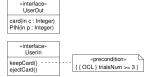
OWL gives better tool support, FOL greater expressiveness.

But: informal FOL axioms are not available for machine processing!

- [1] C.M. Keet, F.C. Fernández-Reyes, and A. Morales-González. Representing mereotopological relations in owl ontologies with ontoparts. In *Proceedings of the 9th Extended Semantic Web Conference (ESWC'12), 29-31 May 2012, Heraklion, Crete, Greece*, volume 7295 of *Lecture Notes in Computer Science*, pages 240–254. Springer, 2012.
- [2] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Descriptve ontology for linguistic and cognitive engineering. http://www.loa.istc.cnr.it/DOLCE.html.



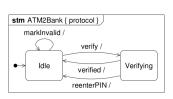


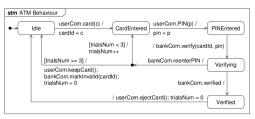


(a) Interaction

(b) Composite structure

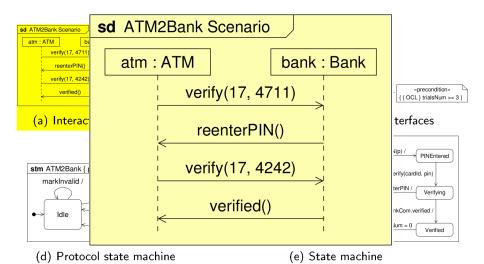
(c) Interfaces

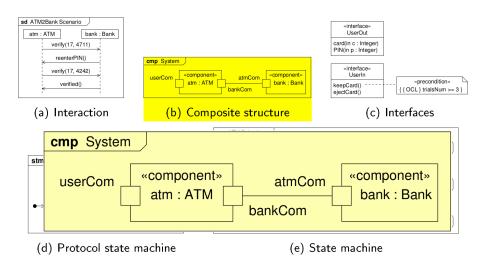


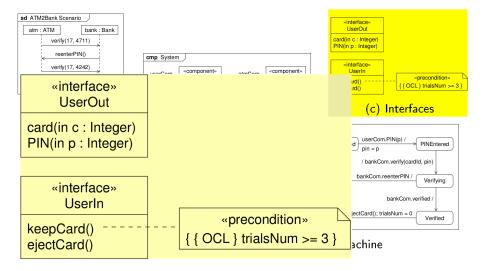


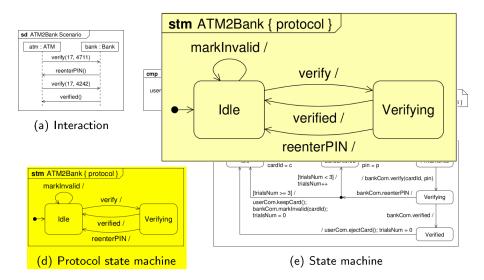
(d) Protocol state machine

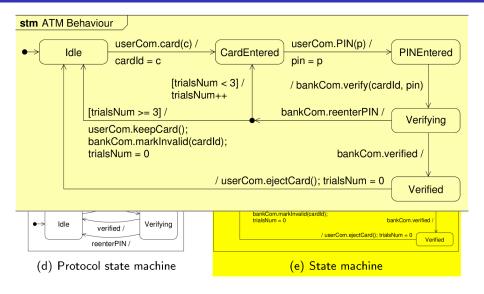
(e) State machine











Specification of sorting in CASL/FOL

```
sort Elem
free type List[Elem] ::= [] | __::__(Elem; List[Elem])
pred __<=__ : Elem * Elem</pre>
pred __elem__ : Elem * List[Elem}
preds is_ordered : List[Elem];
      permutation : List[Elem] * List[Elem]
op sorter : List[Elem]->List[Elem]
forall x,y:Elem; L,L1,L2:List[Elem]
. not x elem []
. x \in \mathbb{C}(y) := X = y \setminus x \in \mathbb{C}
. is_ordered(x::y::L) <=> x<=y /\ is_ordered(y::L)</pre>
. permutation(L1,L2) <=>
          (forall x:Elem . x elem L1 <=> x elem L2)
. is_ordered(sorter(L))
  permutation(L,sorter(L))
```

Specification of insert sort in CASL/FOL

Is insert sort correct w.r.t. the sorting specification?

```
sort Flem
free type List[Elem] ::= [] | __::__(Elem; List[Elem])
ops insert : Elem*List[Elem] -> List[Elem];
    insert_sort : List[Elem]->List[Elem]
forall x,y:Elem; L:List[Elem]
. insert(x,[]) = x::[]
x <= y => insert(x,y::L) = x::insert(y,L)
. not x \le y \implies insert(x,y::L) = y::insert(x,L)
. insert_sort([]) = []
. insert_sort(x::L) = insert(x.insert_sort(L))
```

What have ontologies, models and specifications in common?

- formalised in some logical system
- signature with non-logical symbols (domain vocabulary)
- axioms expressing the domain-specific facts
- semantics: class of structures (models) interpreting signature symbols in some semantic domain
- we are interested in those structures (models) satisfying the axioms

We henceforth call them "OMS"!

Motivation: Diversity of Operations on and Relations among OMS

Various operations and relations on OMS are in use:

- structuring: union, translation, hiding, ...
- refinement
- matching and alignment
 - of many OMS covering one domain
- module extraction
 - get relevant information out of large OMS
- approximation
 - model in an expressive language, reason fast in a lightweight one
- ontology-based database access/data management
- distributed OMS
 - bridges between different modellings

OntolOp

Mossakowski

Need for a Unifying Meta Language

Not yet another OMS language, but a meta language covering

- diversity of OMS languages
- translations between these
- diversity of operations on and relations among OMS

Current standards like the OWL API or the alignment API only cover parts of this

The

Ontology, Modeling and Specification Integration and Interoperability (OntolOp) initiative addresses this

The OntolOp initiative (ontolop.org)

- started in 2011 as ISO 17347 within ISO/TC 37/SC 3
- now continued as OMG standard
 - OMG has more experience with formal semantics
 - OMG documents will be freely available
 - focus extended from ontologies only to formal models and specifications (i.e. logical theories)
 - request for proposals (RFP) has been issued in December 2013
 - proposals answering RFP due in December 2014
- ullet 50 experts participate, \sim 15 have contributed
- OntolOp is open for your ideas, so join us!
- Distributed Ontology, Modeling and Specification Language
 - DOL = one specific answer to the RFP requirements
 - there may be other answers to the RFP
 - DOL is based on some graph of institutions and (co)morphisms
 - DOL has a model-level and a theory-level semantics

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Concl

DOL

Overview of DOL

- OMS
 - basic OMS (flattenable)
 - references to named OMS
 - extensions, unions, translations (flattenable)
 - reductions, minimization, maximization (elusive)
 - approximations, module extractions (flattenable)
 - combinations (flattenable)

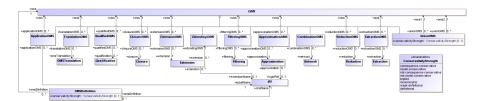
only OMS with flattenable components are flattenable

- OMS mappings (between OMS)
 - interpretations, refinements, alignments, . . .
- OMS networks (based on OMS and mappings)
- OMS libraries (based on OMS, mappings, networks)
 - OMS definitions (giving a name to an OMS)
 - definitions of interpretations, refinements, alignments
 - definitions of module relations

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Concli

OMS

Abstract syntax of OMS



Concrete syntax of OMS

```
BasicOMS
                   ::= <language and serialization specific>
ClosableOMS
                   ::= BasicOMS | OMSRef [ImportName]
                   ::= '%(' IRI ')%'
ImportName
0MSRef
                   ::= IRI
ExtendingOMS ::= ClosableOMS | RelativeClosureOMS
RelativeClosureOMS ::= ClosureType '{' ClosableOMS '}'
OMS
                   ::= ExtendingOMS
                      OMS Closure
                      OMS OMSTranslation
                      OMS Reduction
                      OMS Approximation
                      OMS Filtering
                      OMS 'and' [ConservativityStrength] OMS
                      OMS 'then' ExtensionOMS
                      Qualification* ':' GroupOMS
                       'combine' NetworkElements [ExcludeExtensions]
                      Group0MS
                   ::= '{' OMS '}' | OMSRef
GroupOMS
```

Basic OMS

- written in some OMS language from the logic graph
- semantics is inherited from the OMS language
- e.g. in OWL:

Class: Woman EquivalentTo: Person and Female
ObjectProperty: hasParent

e.g. in Common Logic:

Syntax of extensions

```
BasicOMS
OMS
```

```
::= <language and serialization specific>
::= ...
| OMS 'then' BasicOMS
| ...
```

Extensions

- O_1 then O_2 : extension of O_1 by new symbols and axioms O_2
- example in OWL:

Class Person
Class Female

then

Class: Woman EquivalentTo: Person and Female

Full syntax of extensions

```
BasicOMS
                   ::= <language and serialization specific>
ClosableOMS
                   ::= BasicOMS | OMSRef [ImportName]
ExtendingOMS
                   ::= ClosableOMS | RelativeClosureOMS
0MS
                   ::= ...
                       OMS 'then' ExtensionOMS
                   ::= [ExtConservativityStrength] [ExtensionName] ExtendingOMS
ExtensionOMS
ExtensionName
                   ::= '%(' IRI ')%'
ExtConservativityStrength ::= '%ccons' | '%mcons'
                       '%notccons' | '%notmcons'
                     | '%mono' | '%wdef' | '%def'
                       '%implied'
```

Extensions with annotations

- O_1 then %mcons O_2 : model-conservative extension
 - each O_1 -model has an expansion to O_1 then O_2
- O_1 then %ccons O_2 : consequence-conservative extension
 - O_1 then $O_2 \models \varphi$ implies $O_1 \models \varphi$, for φ in the language of O_1
- O_1 then %def O_2 : definitional extension
 - ullet each O_1 -model has a unique expansion to O_1 then O_2
- O_1 then %implies O_2 : like %mcons, but O_2 must not extend the signature
- example in OWL:

Class Person Class Female

then %def

Class: Woman EquivalentTo: Person and Female

References to Named OMS

- Reference to an OMS existing on the Web
- written directly as a URL (or IRI)
- Prefixing may be used for abbreviation

```
http://owl.cs.manchester.ac.uk/co-ode-files/
ontologies/pizza.owl
```

```
co-ode:pizza.owl
```

Syntax of unions

Unions

- O_1 and O_2 : union of two stand-alone OMS (for extensions O_2 needs to be basic)
- Signatures (and axioms) are united
- model classes are intersected

algebra: Monoid and algebra: Commutative

Syntax of translations

Translations

• O with σ , where σ is a symbol map (signature morphism)

BankOntology with Bank |-> FinancialBank
and
RiverOntology with Bank |-> RiverBank
% necessary disambiguation when uniting ontologies

Full syntax of translations

```
0MS
                    | OMS OMSTranslation
OMSTranslation ::= 'with' LanguageTranslation* SymbolMap
LanguageTranslation ::= 'translation' OMSLanguageTranslation
SymbolMap
          ::= GeneralSymbolMapItem ( ',' GeneralSymbolMapItem )*
GeneralSymbolMapItem ::= Symbol | SymbolMapItem
SymbolMapItem
                  ::= Symbol '|->' Symbol
Symbol
                  ::= IRI
LanguageTranslation ::= 'translation' OMSLanguageTranslation
OMSLanguageTranslation ::= OMSLanguageTranslationRef | '->' LoLaRef
OMSLanguageTranslationRef ::= IRI
LoLaRef
                  ::= LanguageRef | LogicRef
LanguageRef
                 ::= TRT
LogicRef
                 ::= IRI
```

Translations

- O with σ , where σ is a signature morphism
- O with translation ρ , where ρ is a logic translation

```
ObjectProperty: isProperPartOf
    Characteristics: Asymmetric
    SubPropertyOf: isPartOf
with translation trans:SROIQtoCL
then
  (if (and (isProperPartOf x y) (isProperPartOf y z))
        (isProperPartOf x z))
%% transitivity; can't be expressed in OWL together
%% with asymmetry
```

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Hide - Extract - Forget - Select

	hide/reveal	remove/extract	forget/keep	select/reject
semantic	model	conservative	uniform	theory
background	reduct	extension	interpolation	filtering
relation to original	interpretable	subtheory	interpretable	subtheory
approach	model level	theory level	theory level	theory level
type of OMS	elusive	flattenable	flattenable	flattenable
signature of result	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$\geq \Sigma$
change of logic	possible	not possible	possible	not possible
application	specification	ontologies	ontologies	blending

Syntax of reduction

Reduction: Hide/reveal

- intuition: some logical or non-logical symbols are hidden, but the semantic effect of sentences (also those involving these symbols) is kept
- O reveal Σ , where Σ is a subsignature of that of O
- O hide Σ , where Σ is a subsignature of that of O
- O hide along μ , where μ is a logic projection

Reduction: example

hide inv

Semantics: class of all monoids that can be extended with an inverse, i.e. class of all groups. The effect is second-order quantification:

Syntax of module extraction

Module Extraction: remove/extract

O extract Σ

- Σ : interface signature (subsignature of that of O)
- O extract Σ is the minimal depleting Σ -module of O
- Note: O is a Σ -conservative extension of O extract Σ .
- Dually: O remove Σ (here, Σ specifies the symbols that are not in the interface signature)

Module Extraction: example

remove inv

The semantics is the following theory:

The module needs to be enlarged to the whole OMS.

Module Extraction: 2nd example

Here, adding inv is conservative.

Syntax of approximation

```
OMS ::= ...
| OMS Approximation
| ...

Approximation ::= 'forget' InterfaceSignature ['keep' LogicRef]
| 'keep' InterfaceSignature ['keep' LogicRef]
| 'keep' LogicRef

InterfaceSignature ::= SymbolItems
LogicRef ::= IRI
```

Approximaation: forget/keep

- O keep Σ , where Σ is a subsignature of that of O
- O keep Σ keep L, where Σ is a subsignature of that of O, and L is a sublogic of that of O
- O keep L, where L is a sublogic of that of O
 - intuition: theory of O is interpolated in smaller signature/logic
- dually
 - O forget Σ
 - O forget Σ keep L

Interpolation: example

Computing interpolants can be hard, even undecidable.

Syntax of filtering

```
OMS ::= ...

| OMS Filtering
| ...
Filtering ::= 'select' SymbolList
| 'select' BasicOMS
| 'reject' SymbolList
| 'reject' BasicOMS
```

Filtering

- ullet O select T, where T is a subtheory (fragment) of that of O
 - ullet intuition: axioms involving only symbols in Sig(T) are kept
 - moreover, all axioms contained in T are kept as well
- O reject T, where T is a subtheory (fragment) of that of O
 - intuition: all axioms involving symbols in Sig(T) are deleted
 - moreover, all axioms contained in T are deleted as well

Filtering: example

```
sort Elem
ops 0:Elem; __+_:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x
                   . x+(y+z) = (x+y)+z
                   x+inv(x) = 0
reject inv
The semantics is the following theory:
sort Flem
ops 0:Elem; __+_:Elem*Elem->Elem
forall x,y,z:elem . x+0=x
                   x+(y+z) = (x+y)+z
```

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Hide - Extract - Forget - Select

	hide/reveal	remove/extract	forget/keep	select/reject
semantic	model	conservative	uniform	theory
background	reduct	extension	interpolation	filtering
relation to original	interpretable	subtheory	interpretable	subtheory
approach	model level	theory level	theory level	theory
				level
type of OMS	elusive	flattenable	flattenable	flattenable
signature	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$\geq \Sigma$
of result				
change of	possible	not possible	possible	not
logic				possible
application	specification	ontologies	ontologies	blending

Reduction: specification example

```
spec List = sort Elem
 free type List[Elem] ::= [] | __::__(Elem; List[Elem])
 pred __elem__ : Elem * List[Elem]
 forall x,y:Elem; L,L1,L2:List[Elem]
  . not x elem [] . x elem (y :: L) \ll x = y \ / x elem L
spec Sorting = List then
 preds is_ordered : List[Elem];
       permutation : List[Elem] * List[Elem]
 op sorter : List[Elem]->List[Elem]
 forall x,y:Elem; L,L1,L2:List[Elem]
  . is_ordered(x::y::L) <=> x<=y /\ is_ordered(y::L)
  . permutation(L1,L2) <=>
           (forall x:Elem . x elem L1 <=> x elem L2)
  . is_ordered(sorter(L)) . permutation(L,sorter(L))
hide permutation, is_ordered
```

Relations among the different notions

```
Mod(O \text{ hide } \Sigma)
= Mod(O \text{ remove } \Sigma)|_{Sig(O)\setminus\Sigma}
\subseteq Mod(O \text{ forget } \Sigma)
\subseteq Mod(O \text{ reject } \Sigma)
```

Pros and Cons

	hide/reveal	remove/extract	forget/keep	select/reject
information	none	none	minimal	large
loss				
computability	bad	good/depends	depends	easy
signature of	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$= \Sigma$
result				
change of	possible	not possible	possible	not
logic				possible
conceptual	simple	complex	farily	simple
simplicity	(but		simple	
	unintuitive)			

Syntax of closure

```
ClosableOMS
                    ::= BasicOMS | OMSRef [ImportName]
ExtendingOMS
                    ::= ClosableOMS | RelativeClosureOMS
RelativeClosureOMS ::= ClosureType '{' ClosableOMS '}'
0MS
                    ::= ...
                        OMS Closure
                    ::= ClosureType CircClosure [CircVars]
Closure
ClosureType
                    ::= 'minimize'
                        'closed-world'
                        'maximize'
                        'free'
                        'cofree'
CircClosure
                    ::= Svmbol+
CircVars
                    ::= 'vars' Symbol+
```

Minimizations (circumscription)

```
• O_1 then minimize { O_2 }
 • forces minimal interpretation of non-logical symbols in O_2
  Class: Block
  Individual: B1 Types: Block
  Individual: B2 Types: Block DifferentFrom: B1
then minimize {
        Class: Abnormal
        Individual: B1 Types: Abnormal }
then
  Class: Ontable
  Class: BlockNotAbnormal EquivalentTo:
    Block and not Abnormal SubClassOf: Ontable
then %implied
  Individual: B2 Types: Ontable
```

Maximizations

- O_1 then maximize $\{O_2\}$
- ullet forces maximal interpretation of non-logical symbols in O_2

```
Class: Block
  Individual: B1 Types: Block
  Individual: B2 Types: Block DifferentFrom: B1
then maximize {
        Class: Normal
        Individual: B2 Types: Normal }
then
  Class: Ontable SubClassOf: Block and Normal
then %implied
  Individual: B1 Types: not Ontable
```

Freeness

- O_1 then free { O_2 }
- forces initial interpretation of non-logical symbols in O_2

```
sort Elem
then free {
    sort Bag
    ops mt:Bag;
        __union__:Bag*Bag->Bag, assoc, comm, unit mt
    }
```

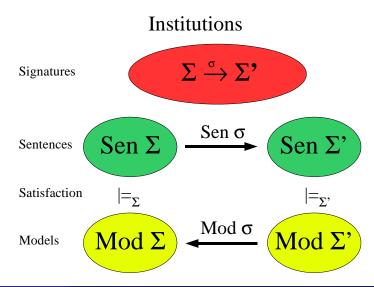
Cofreeness

- O_1 then cofree { O_2 }
- ullet forces final interpretation of non-logical symbols in O_2

```
sort Elem
then cofree {
    sort Stream
    ops head:Stream->Elem;
        tail:Stream->Stream
    }
```

Semantics of OMS

Institutions (intuition)



Institutions (formal definition)

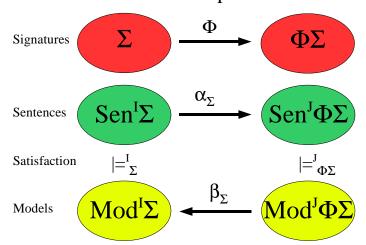
An institution $\mathcal{I} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$ consists of:

- a category **Sign** of signatures;
- a functor Sen: Sign → Set, giving a set Sen(Σ) of Σ-sentences for each signature Σ ∈ |Sign|, and a function
 Sen(σ): Sen(Σ) → Sen(Σ') that yields σ-translation of Σ-sentences to Σ'-sentences for each σ: Σ → Σ';
- a functor $\operatorname{\mathsf{Mod}}\colon\operatorname{\mathsf{Sign}}^{op}\to\operatorname{\mathsf{Set}},$ giving a set $\operatorname{\mathsf{Mod}}(\Sigma)$ of $\Sigma\operatorname{\mathsf{-models}}$ for each signature $\Sigma\in|\operatorname{\mathsf{Sign}}|,$ and a functor $-|_\sigma=\operatorname{\mathsf{Mod}}(\sigma)\colon\operatorname{\mathsf{Mod}}(\Sigma')\to\operatorname{\mathsf{Mod}}(\Sigma);$ for each $\sigma\colon\Sigma\to\Sigma';$
- for each $\Sigma \in |\mathbf{Sign}|$, a satisfaction relation $\models_{\mathcal{I},\Sigma} \subseteq \mathbf{Mod}(\Sigma) \times \mathbf{Sen}(\Sigma)$

such that for any signature morphism $\sigma \colon \Sigma \to \Sigma'$, Σ -sentence $\varphi \in \mathbf{Sen}(\Sigma)$ and Σ' -model $M' \in \mathbf{Mod}(\Sigma')$: $M' \models_{\mathcal{I},\Sigma'} \sigma(\varphi) \iff M'|_{\sigma} \models_{\mathcal{I},\Sigma} \varphi \qquad [Satisfaction condition]$

Institution comorphisms (embeddings, encodings)

Institution comorphisms



Institution comorphisms (embeddings, encodings)

Definition

Let $\mathcal{I} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$ and $\mathcal{I}' = \langle \mathbf{Sign}', \mathbf{Sen}', \mathbf{Mod}', \langle \models_{\Sigma'}' \rangle_{\Sigma' \in |\mathbf{Sign}'|} \rangle$ be institutions. An institution comorphism $\rho \colon \mathcal{I} \to \mathcal{I}'$ consists of:

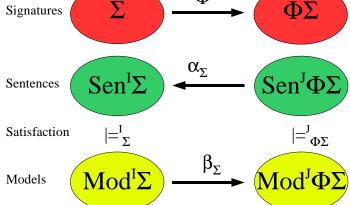
- a functor $\Phi \colon \mathbf{Sign} \to \mathbf{Sign}'$;
- a natural transformation $\alpha \colon \mathbf{Sen} \to \Phi$; \mathbf{Sen}' , and
- a natural transformation $\beta : (\Phi)^{op} ; \mathbf{Mod}' \to \mathbf{Mod}$,

such that for any $\Sigma \in |\mathbf{Sign}|$, any $\varphi \in \mathbf{Sen}(\Sigma)$ and any $M' \in \mathbf{Mod}'(\Phi(\Sigma))$:

$$M' \models'_{\Phi(\Sigma)} \alpha_{\Sigma}(\varphi) \iff \beta_{\Sigma}(M') \models_{\Sigma} \varphi$$
[Satisfaction condition]

Institution morphisms (projections)

Institution morphisms



Institution morphisms (projections)

Definition

Let $\mathcal{I} = \langle \mathbf{Sign}, \mathbf{Sen}, \mathbf{Mod}, \langle \models_{\Sigma} \rangle_{\Sigma \in |\mathbf{Sign}|} \rangle$ and $\mathcal{I}' = \langle \mathbf{Sign}', \mathbf{Sen}', \mathbf{Mod}', \langle \models_{\Sigma'}' \rangle_{\Sigma' \in |\mathbf{Sign}'|} \rangle$ be institutions. An institution morphism $\mu \colon \mathcal{I} \to \mathcal{I}'$ consists of:

- a functor μ^{Sign} : Sign \rightarrow Sign';
- ullet a natural transformation $\mu^{\mathit{Sen}} \colon \mu^{\mathit{Sign}} \, ; \, \mathsf{Sen}' o \mathsf{Sen}, \, \mathsf{and}$
- a natural transformation $\mu^{Mod} \colon \mathbf{Mod} \to (\mu^{Sign})^{op}$; \mathbf{Mod}' ,

such that for any signature $\Sigma \in |\mathbf{Sign}|$, any $\varphi' \in \mathbf{Sen}'(\mu^{Sign}(\Sigma))$ and any $M \in \mathbf{Mod}(\Sigma)$:

$$M \models_{\Sigma} \mu^{\mathit{Sen}}_{\Sigma}(\varphi') \iff \mu^{\mathit{Mod}}_{\Sigma}(M) \models'_{\mu^{\mathit{Sign}}(\Sigma)} \varphi' \\ [\mathit{Satisfaction condition}]$$

Unions, differences and inclusive institutions

We assume that for each institution, there exists (possibly partial) union and difference operations on signatures. E.g. an inclusion system on signatures would be a good framework where this can be required.

Definition (adopted from Goguen, Roșu)

An weakly inclusive category is a category having a broad subcategory which is a partially ordered class.

An weakly inclusive institution is one with an inclusive signature category such that the sentence functor preserves inclusions.

We also assume that model categories are weakly inclusive.

 $M|_{\Sigma}$ means $M|_{\iota}$ where $\iota: \Sigma \to Sig(M)$ is the inclusion.

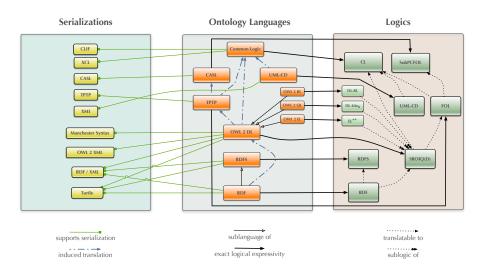
Heterogeneous logical environments

A heterogeneous logical environment consists of

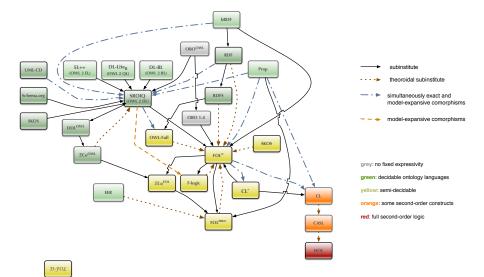
- a logic graph, consisting of institutions, institution comporphisms (translations) and institution morphisms (projections),
- an OMS language graph, and
- supports relations.

The support relations specify which language supports which logics and which serializations, and which language translation supports which logic translation or reduction.

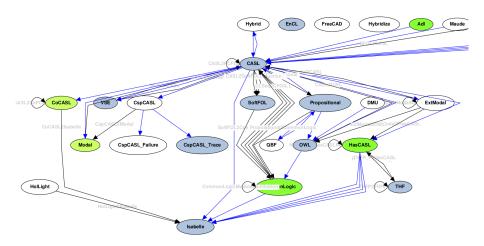
Moreover, each language has a default logic and a default serialization. There are also default translations.



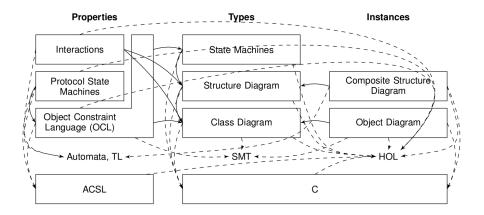
Ontologies: An Initial Logic Graph



Specifications: An Initial Logic Graph



UML models: An Initial Logic Graph



Semantic domains of DOL

- semantics of a flattenable OMS has form (I, Σ, Ψ) (theory-level)
- semantics of an elusive OMS has form (I, Σ, \mathcal{M}) (model-level)
 - institution /
 - \bullet signature Σ in I
 - set Ψ of Σ -sentences
 - class \mathcal{M} of Σ -models

We can obtain the model-level semantics from the theory-level semantics by taking $\mathcal{M} = \{M \in \mathbf{Mod}(\Sigma) \mid M \models \Psi\}$.

- semantics of an OMS declaration/relation has form $\Gamma \colon IRI \longrightarrow (OMS \uplus OMS \times OMS \times SigMor)$
 - OMS is the class of all triples (I, Σ, Ψ) , (I, Σ, \mathcal{M})
 - for interpretations etc., domain, codomain and signature morphism is recorded: $OMS \times OMS \times SigMor$

Semantics of basic OMS

We assume that $[\![O]\!]_{basic} = (I, \Sigma, \Psi)$ for some OMS language based on I. The semantics consists of

- the institution /
- a signature Σ in I
- a set Ψ of Σ -sentences

This direct leads to a theory-level semantics for the OMS:

$$\llbracket O \rrbracket_{\Gamma}^T = \llbracket O \rrbracket_{\textit{basic}}$$

Generally, if a theory-level semantics is given: $[\![O]\!]_{\Gamma}^T = (I, \Sigma, \Psi)$, this leads to a model-level semantics as well:

$$\llbracket O \rrbracket_{\Gamma}^{M} = (I, \Sigma, \{M \in Mod(\Sigma) \mid M \models \Psi\})$$

Semantics of extensions

$$O_1$$
 flattenable $\llbracket O_1$ then $O_2 \rrbracket_{\Gamma}^T = (I, \Sigma_1 \cup \Sigma_2, \Psi_1 \cup \Psi_2)$ where

•
$$[\![O_1]\!]_{\Gamma}^T = (I, \Sigma_1, \Psi_1)$$

$$\bullet \hspace{0.1cm} \llbracket \textit{O}_2 \rrbracket_{\textit{basic}} = (\textit{I}, \Sigma_2, \Psi_2)$$

$$O_1$$
 elusive $[\![O_1]$ then $O_2]\!]_\Gamma^M = (I, \Sigma_1 \cup \Sigma_2, \mathcal{M}')$ where

- $[\![O_1]\!]_{\Gamma}^M = (I, \Sigma_1, \mathcal{M}_1)$
- $[O_2]_{basic} = (I, \Sigma_2, \Psi_2)$
- $\bullet \ \mathcal{M}' = \{ M \in \mathsf{Mod}(\Sigma_1 \cup \Sigma_2) \, | \, M \models \Psi_2, M|_{\Sigma_1} \in \mathcal{M}_1 \}$

Semantics of extensions (cont'd)

%mcons (%def, %mono) leads to the additional requirement that each model in \mathcal{M}_1 has a (unique, unique up to isomorphism) $\Sigma_1 \cup \Sigma_2$ -expansion to a model in \mathcal{M}' .

%implies leads to the additional requirements that

$$\Sigma_2 \subseteq \Sigma_1$$
 and $\mathcal{M}' = \mathcal{M}_1$.

%ccons leads to the additional requirement that

$$\mathcal{M}' \models \varphi \text{ implies } \mathcal{M}_1 \models \varphi \text{ for any } \Sigma_1\text{-sentence } \varphi.$$

Theorem

%mcons implies %ccons, but not vice versa.

References to Named OMS

- Reference to an OMS existing on the Web
- written directly as a URL (or IRI)
- Prefixing may be used for abbreviation

```
http://owl.cs.manchester.ac.uk/co-ode-files/
ontologies/pizza.owl
```

```
co-ode:pizza.owl
```

Semantics Reference to Named OMS: $[iri]_{\Gamma} = \Gamma(iri)$

Semantics of unions

$$O_1$$
, O_2 flattenable $\llbracket O_1 \text{ and } O_2 \rrbracket_{\Gamma}^T = (I, \Sigma_1 \cup \Sigma_2, \Psi_1 \cup \Psi_2)$, where $\bullet \llbracket O_i \rrbracket_{\Gamma}^T = (I, \Sigma_i, \Psi_i) \ (i = 1, 2)$ one of O_1 , O_2 elusive $\llbracket O_1 \text{ and } O_2 \rrbracket_{\Gamma}^M = (I, \Sigma_1 \cup \Sigma_2, \mathcal{M})$, where $\bullet \llbracket O_i \rrbracket_{\Gamma}^M = (I, \Sigma_i, \mathcal{M}_i) \ (i = 1, 2)$

• $\mathcal{M} = \{ M \in \mathsf{Mod}(\Sigma_1 \cup \Sigma_2) \mid M|_{\Sigma_i} \in \mathcal{M}_i, i = 1, 2 \}$

Semantics of translations

- O flattenable Let $\llbracket O \rrbracket_{\Gamma}^T = (I, \Sigma, \Psi)$
 - homogeneous translation $[\![O \text{ with } \sigma: \Sigma \to \Sigma']\!]_{\Gamma}^T = (I, \Sigma', \sigma(\Psi))$
 - heterogeneous translation $\llbracket O \text{ with translation } \rho: I \to I' \rrbracket_{\Gamma}^T = (I', \rho^{Sig}(\Sigma), \rho^{Sen}(\Psi))$
 - O elusive Let $\llbracket O
 rbracket^M_\Gamma = (I, \Sigma, \mathcal{M})$
 - homogeneous translation $[\![O \text{ with } \sigma: \Sigma \to \Sigma']\!]_{\Gamma}^M = (I, \Sigma', \mathcal{M}')$ where $\mathcal{M}' = \{M \in \mathbf{Mod}(\Sigma') | M|_{\sigma} \in \mathcal{M}\}$
 - heterogeneous translation $[\![O \text{ with translation } \rho: I \to I']\!]_{\Gamma}^M = (I', \rho^{Sig}(\Sigma), \mathcal{M}') \text{ where}$ $\mathcal{M}' = \{M \in \mathbf{Mod}^{I'}(\rho^{Sig}(\Sigma)) \mid \rho^{Mod}(M) \in \mathcal{M}\}$

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Hide - Extract - Forget - Select

	hide/reveal	remove/extract	forget/keep	select/reject
semantic	model	conservative	uniform	theory
background	reduct	extension	interpolation	filtering
relation to original	interpretable	subtheory	interpretable	subtheory
approach	model level	theory level	theory level	theory level
type of OMS	elusive	flattenable	flattenable	flattenable
signature of result	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$\geq \Sigma$
change of logic	possible	not possible	possible	not possible
application	specification	ontologies	ontologies	blending

Semantics of reductions

Let
$$\llbracket O \rrbracket^M_\Gamma = (I, \Sigma, \mathcal{M})$$

homogeneous reduction

$$\llbracket O \text{ reveal } \Sigma' \rrbracket_{\Gamma}^{M} = (I, \Sigma', \mathcal{M}|_{\Sigma'})$$

 $\llbracket O \text{ hide } \Sigma' \rrbracket_{\Gamma}^{M} = \llbracket O \text{ reveal } \Sigma \setminus \Sigma' \rrbracket_{\Gamma}^{M}$

heterogeneous reduction

$$\llbracket O \text{ hide along } \rho: I \to I' \rrbracket_{\Gamma}^{M} = (I', \rho^{Sig}(\Sigma), \rho^{Mod}(\mathcal{M}))$$

 $\mathcal{M}|_{\Sigma'}$ may be impossible to capture by a theory (even if \mathcal{M} is). The proof calculus for refinements involving reduction needs invention of some OMS O'':

$$\frac{O \leadsto O''}{O \text{ hide } \Sigma \leadsto O'} \quad \text{if } \iota \colon O' \longrightarrow O'' \text{ is a conservative extension}$$

where $\iota: \Sigma \to Sig(O)$ is the inclusion

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Modules

Definition

 $O' \subseteq O$ is a Σ -module of (flat) O iff O is a model-theoretic Σ -conservative extension of O', i.e. for every model M of O', $M|_{\Sigma}$ can be expanded to an O-model.

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Depleting modules

Definition

Let O_1 and O_2 be two OMS and $\Sigma \subseteq Sig(O_i)$.

Then O_1 and O_2 are Σ -inseparable $(O_1 \equiv_{\Sigma} O_2)$ iff

$$Mod(O_1)|_{\Sigma} = Mod(O_2)|_{\Sigma}$$

Definition

 $O' \subseteq O$ is a depleting Σ -module of (flat) O iff $O \setminus O' \equiv_{\Sigma \cup Sig(O')} \emptyset$.

Theorem

- Depleting Σ-modules are Σ-conservative.
- 2 The minimum depleting Σ -module always exists.

Semantics of module extraction (remove/extract)

Note: O must be flattenable!

Let
$$[\![O]\!]_\Gamma^T = (I, \Sigma, \Psi)$$
. $[\![O \text{ extract } \Sigma_1]\!]_\Gamma^T = (I, \Sigma_2, \Psi_2)$ where $(\Sigma_2, \Psi_2) \subseteq (\Sigma, \Psi)$ is the minimum depleting Σ_1 -module of (Σ, Ψ)

$$\llbracket O \text{ remove } \Sigma_1 \rrbracket_{\Gamma}^T = \llbracket O \text{ extract } \Sigma \setminus \Sigma_1 \rrbracket_{\Gamma}^T$$

Tools can extract any module (i.e. using locality). Any two modules will have the same Σ -consequences.

Semantics of interpolation (forget/keep)

```
Note: O must be flattenable!
Let \llbracket O \rrbracket_{\Gamma}^{T} = (I, \Sigma, \Psi).
```

homogeneous interpolation

$$[\![O \text{ keep in } \Sigma']\!]_{\Gamma}^T = (I, \Sigma', \{\varphi \in \operatorname{Sen}(\Sigma') \mid \Psi \models \varphi\})$$

(note: any logically equivalent theory will also do)
 $[\![O \text{ forget } \Sigma']\!]_{\Gamma}^T = [\![O \text{ keep in } \Sigma \setminus \Sigma']\!]_{\Gamma}^T$

heterogeneous interpolation

Semantics of select/reject

Note: O must be flattenable! Let $\llbracket O \rrbracket_{\Gamma}^T = (I, \Sigma, \Psi)$. $\llbracket O \text{ select } (\Sigma', \Phi) \rrbracket_{\Gamma}^T = (I, \Sigma, Sen(\iota)^{-1}(\Psi) \cup \Phi)$ where $\iota : \Sigma' \to \Sigma$ is the inclusion $\llbracket O \text{ reject } (\Sigma', \Phi) \rrbracket_{\Gamma}^T = (I, \Sigma \setminus \Sigma', Sen(\iota)^{-1}(\Psi) \setminus \Phi)$ where $\iota : \Sigma \setminus \Sigma' \to \Sigma$ is the inclusion Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Hide - Extract - Forget - Select

	hide/reveal	remove/extract	forget/keep	select/reject
semantic	model	conservative	uniform	theory
background	reduct	extension	interpolation	filtering
relation to original	interpretable	subtheory	interpretable	subtheory
approach	model level	theory level	theory level	theory level
type of OMS	elusive	flattenable	flattenable	flattenable
signature of result	$=\Sigma$	$\geq \Sigma$	$=\Sigma$	$\geq \Sigma$
change of logic	possible	not possible	possible	not possible
application	specification	ontologies	ontologies	blending

Semantics of minimizations

Let
$$\llbracket O_1 \rrbracket_{\Gamma}^M = (I, \Sigma_1, \mathcal{M}_1)$$

Let $\llbracket O_1$ then $O_2 \rrbracket_{\Gamma}^M = (I, \Sigma_2, \mathcal{M}_2)$
Then $\llbracket O_1$ then minimize $O_2 \rrbracket_{\Gamma}^M = (I, \Sigma_2, \mathcal{M})$

where

$$\mathcal{M} = \{ M \in \mathcal{M}_2 \, | \, M \text{ is minimal in } \{ M' \in \mathcal{M}_2 \, | \, M'|_{\Sigma_1} = M|_{\Sigma_1} \} \}$$

Dually: maximization.

Semantics of freeness

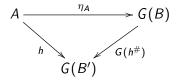
Let
$$\llbracket O_1 \rrbracket_\Gamma^M = (I, \Sigma_1, \mathcal{M}_1)$$

Let $\llbracket O_1$ then $O_2 \rrbracket_\Gamma^M = (I, \Sigma_2, \mathcal{M}_2)$
Let $\iota : \Sigma_1 \to \Sigma_2$ be the inclusion
Then

$$\llbracket O_1 \text{ then free } O_2
bracket^M_\Gamma = (I, \Sigma_2, \mathcal{M})$$

where $\mathcal{M} = \{M \in \mathcal{M}_2 \mid M \text{ is } Mod(\iota)\text{-free over } M|_{\iota} \text{ with unit } id\}$

Given a functor $G: \mathbf{B} \longrightarrow \mathbf{A}$, an object $B \in \mathbf{B}$ is called G-free (with unit $\eta_A: A \longrightarrow G(B)$) over $A \in \mathbf{A}$, if for any object $B' \in \mathbf{B}$ and any morphism $h: A \longrightarrow G(B')$, there is a unique morphism $h^\#: B \longrightarrow B'$ such that $\eta_A: G(h^\#) = h$.



Semantics of cofreeness

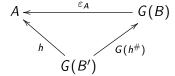
Let
$$\llbracket O_1 \rrbracket_\Gamma^M = (I, \Sigma_1, \mathcal{M}_1)$$

Let $\llbracket O_1$ then $O_2 \rrbracket_\Gamma^M = (I, \Sigma_2, \mathcal{M}_2)$
Let $\iota : \Sigma_1 \to \Sigma_2$ be the inclusion
Then

$$\llbracket O_1 \text{ then cofree } O_2
bracket^M_\Gamma = (I, \Sigma_2, \mathcal{M})$$

 $\mathcal{M} = \{ M \in \mathcal{M}_2 \mid M \text{ is } Mod(\iota) \text{-cofree over } M|_{\iota} \text{ with counit } id \}$

Given a functor $G: \mathbf{B} \longrightarrow \mathbf{A}$, an object $B \in \mathbf{B}$ is called G-cofree (with counit $\varepsilon_A \colon G(B) \longrightarrow A$) over $A \in \mathbf{A}$, if for any object $B' \in \mathbf{B}$ and any morphism $h \colon G(B') \longrightarrow A$, there is a unique morphism $h^\# \colon B' \longrightarrow B$ such that $G(h^\#)$; $\varepsilon_A = h$.



OMS Libraries

Syntax of DOL libraries

```
Document
                   ::= DOLLibrary | NativeDocument
NativeDocument
                   ::= <language and serialization specific>
D0LLibrary
                   ::= [PrefixMap] 'library' LibraryName
                           Qualification LibraryItem*
LibraryItem
                   ::= LibraryImport | Definition | Qualification
Definition
                   ::= OMSDefinition | NetworkDefinition | MappingDefinition
                   ::= 'import' LibraryName
LibraryImport
Oualification
                   ::= LanguageQualification
                       LogicQualification
                     | SyntaxQualification
LanguageQualification ::= 'language' LanguageRef
LogicQualification ::= 'logic' LogicRef
SyntaxQualification ::= 'serialization' SyntaxRef
OMSDefinition
                   ::= OMSkevword OMSName '='
                       [ConservativityStrength] OMS 'end'
0MSkevword
                   ::= 'ontoloav'
                       'onto'
                       'specification'
                       'spec'
                       'model'
                       'oms'
```

OMS definitions

- OMS IRI = O end
- assigns name IRI to OMS O, for later reference $\Gamma(IRI) := \llbracket O \rrbracket_{\Gamma}$

```
ontology co-code:Pizza =
  Class: VegetarianPizza
  Class: VegetableTopping
  ObjectProperty: hasTopping
  ...
```

end

Syntax of mappings

```
MappingDefinition ::= InterpretationDefinition
                       EntailmentDefinition
                       EquivalenceDefinition
                       ModuleRelDefinition
                       AlignmentDefinition
InterpretationDefinition ::= InterpretationKeyword
                             InterpretationName
                             [Conservative] ':'
                             InterpretationType '='
                             LanguageTranslation*
                             [SymbolMap] 'end'
InterpretationKeyword ::= 'interpretation' | 'view' | 'refinement'
InterpretationName ::= IRI
InterpretationType ::= GroupOMS 'to' GroupOMS
```

Interpretations (refinements)

- interpretation $Id: O_1$ to $O_2 = \sigma$
- \bullet σ is a signature morphism or a logic translation
- expresses that O_2 logically implies $\sigma(O_1)$

```
interpretation i : TotalOrder to Nat = Elem \mapsto Nat
interpretation geometry_of_time %mcons :
% Interpretation of linearly ordered time intervals.
  int:owltime le
 % ... that begin and end with an instant as lines
%% that are incident with linearly ...
  to { ord:linear_ordering and bi:complete_graphical
% ... ordered points in a special geometry, ...
       and int:mappings/owltime_interval_reduction }
  = ProperInterval \mapsto Interval end
```

An interpretation in UML

```
%prefix( : <http://www.example.org/uml#>
         uml: <http://www.uml.org/spec/UML/>
%% descriptions of logics ...
             <http://www.omg.org/spec/DOL/logics/>
         log:
logic log:uml
interpretation abstract_to_concrete_atm :
  psm to
  { atm with Idle |-> Idle, CardEntered |-> Idle,
              PINEntered |-> Idle, Verified |-> Idle,
              Verifying |-> Verifying
     hide card, PIN } = translation psm2atm
end
```

An interpretation in CASL

```
spec InsertSort =
  list
then
  ops insert : Elem*List[Elem] -> List[Elem];
      insert_sort : List[Elem]->List[Elem]
  vars x,y:Elem; L:List[Elem]
  . insert(x,[]) = x::[]
  . insert(x,y::L) = x::insert(y,L) when x \le y::L
  . insert_sort([]) = []
  . insert_sort(x::L) = insert(x,insert_sort(L))
 hide insert
interpretation InsertSortCorrectness :
     Sorting to InsertSort =
    sorter |-> insert_sort
```

Semantics of interpretations

Let
$$[\![O_i]\!]_{\Gamma}^M = (I, \Sigma_i, \mathcal{M}_i) \ (i = 1, 2)$$

[interpretation $IRI: O_1$ to $O_2 = \sigma$] $_{\Gamma}^{M}$

is defined iff

$$Mod(\sigma)(\mathcal{M}_2)\subseteq \mathcal{M}_1$$

In this case, $\Gamma(IRI) := ((I, \Sigma_1, \mathcal{M}_1), (I, \Sigma_2, \mathcal{M}_2), \sigma).$

Syntax of OMS networks (diagrams)

OMS networks (diagrams)

```
 \begin{array}{ll} \textbf{network N} = \\ N_1, \ldots, N_m, O_1, \ldots, O_n, M_1, \ldots, M_p \\ \textbf{excluding } N_1', \ldots, N_i', O_1', \ldots, O_j', M_1', \ldots, M_k' \end{array}
```

- N; are other networks
- O_i are OMS (possibly prefixed with labels, like n:O)
- M_i are mappings (views, interpretations)

Combinations

- combine N
- N is a network
- semantics is the (a) colimit of the diagram N

```
ontology AlignedOntology1 =
  combine N
```

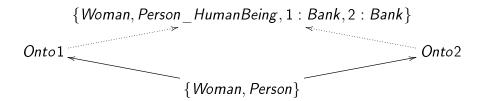
There is a natural semantics of diagrams: compatible families of models.

Then in exact institutions, models of diagrams are in bijective correspondence to models of the colimit.

Sample combination

```
ontology Source =
 Class: Person
 Class: Woman SubClassOf: Person
ontology Onto1 =
 Class: Person Class: Bank
 Class: Woman SubClassOf: Person
interpretation I1 : Source to Onto1 =
   Person |-> Person, Woman |-> Woman
ontology Onto2 =
 Class: HumanBeing Class: Bank
 Class: Woman SubClassOf: HumanBeing
interpretation I2 : Source to Onto2 =
   Person |-> HumanBeing, Woman |-> Woman
ontology CombinedOntology =
  combine Source, Onto1, Onto2, I1, I2
```

Resulting colimit



Syntax of alignments

```
AlignmentDefinition ::= 'alignment' AlignmentName
                        [AlignmentCardinalityPair] ':'
                        AlianmentType
                        ['=' Correspondence (',' Correspondence )*]
                        ['assuming' AlignmentSemantics] 'end'
AlianmentName
                   ::= TRT
AlignmentCardinalityPair ::= AlignmentCardinalityForward
                             AlignmentCardinalityBackward
AlignmentCardinalityForward ::= AlignmentCardinality
AlignmentCardinalityBackward ::= AlignmentCardinality
AlignmentCardinality ::= '1' | '?' | '+' | '*'
AlignmentType ::= GroupOMS 'to' GroupOMS
AlignmentSemantics ::= 'SingleDomain'
                      'GlobalDomain'
                       'ContextualizedDomain'
Correspondence
                   ::= CorrespondenceBlock | SingleCorrespondence | '*'
CorrespondenceBlock ::= 'relation' [Relation] [Confidence] '{'
                        Correspondence (',' Correspondence )* '}'
SingleCorrespondence ::= SymbolRef [Relation] [Confidence] SymbolRef
GeneralizedTerm
                   ::= SymbolRef
                   ::= '>' | '<' | '=' | '%' | 'ni' | 'in' | IRI
Relation
Confidence
                   ::= Double
```

Alignments

- alignment $Id\ card_1\ card_2:\ O_1\ {\bf to}\ O_2=c_1,\ldots c_n$ assuming SingleDomain | GlobalDomain | ContextualizedDomain
- $card_i$ is (optionally) one of 1, ?, +, *
- the c_i are correspondences of form sym_1 rel conf sym_2
 - sym_i is a symbol from O_i
 - rel is one of >, <, =, %, \ni , \in , \mapsto , or an Id
 - conf is an (optional) confidence value between 0 and 1

```
Syntax of alignments follows the alignment API
http://alignapi.gforge.inria.fr
alignment Alignment1 : { Class: Woman } to { Class: Person } =
   Woman < Person
end</pre>
```

Alignment: Example

```
ontology S = Class: Person
  Individual: alex Types: Person
 Class: Child
ontology T = Class: HumanBeing
 Class: Male SubClassOf: HumanBeing
 Class: Employee
alignment A : S to T =
 Person = HumanBeing
 alex in Male
 Child < not Employee
 assuming GlobalDomain
```

Networks, revisited

network N = $N_1, \dots, N_m, O_1, \dots, O_n, M_1, \dots, M_p, A_1, \dots, A_r$ excluding $N'_1, \dots, N'_i, O'_1, \dots, O'_i, M'_1, \dots, M'_k$

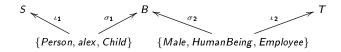
- N_i are other networks
- O_i are OMS (possibly prefixed with labels, like n:O)
- M_i are mappings (views, equivalences)
- \bullet A_i are alignments

The resulting diagram N includes (institution-specific) W-alignment diagrams for each alignment A_i . Using **assuming**, assumptions about the domains of all OMS can be specified:

SingleDomain aligned symbols are mapped to each other GlobalDomain aligned OMS a relativized

ContextualizedDomain alignments are reified as binary relations

Diagram of a SingleDomain alignment



where

ontology B =

Class: Person_ HumanBeing

Class: Employee

Class: Child

SubClassOf: ¬ *Employee*

Individual: alex Types: Male

Resulting colimit

The colimit ontology of the diagram of the alignment above is:

ontology B = **Class**: Person_HumanBeing

Class: Employee

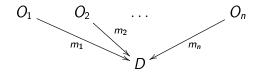
Class: Male SubClassOf: Person_HumanBeing

Class: Child SubClassOf: ¬ Employee

Individual: alex Types: Male, Person_HumanBeing

Background: Simple semantics of diagrams

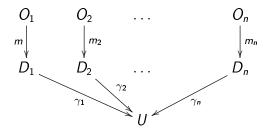
Framework: institutions like OWL, FOL, ...
Ontologies are interpreted over the same domain



- model for A: (m_1, m_2) such that $m_1(s) R m_2(t)$ for each s R t in A
- model for a diagram: family (m_i) of models such that (m_i, m_j) is a model for A_{ii}
- local models of O_j modulo a diagram: jth-projection on models of the diagram

Integrated semantics of diagrams

Framework: different domains reconciled in a global domain



• model for a diagram: family (m_i) of models with equalizing function γ such that $(\gamma_i m_i, \gamma_j m_i)$ is a model for A_{ii}

Relativization of an OWL ontology

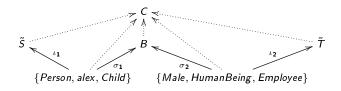
Let O be an ontology, define its relativization \tilde{O} :

- concepts are concepts of O with a new concept \top_O ;
- roles and individuals are the same
- axioms:
 - each concept C is subsumed by \top_O ,
 - each individual i is an instance of $\top_{\mathcal{O}}$,
 - each role r has domain and range \top_O .

and the axioms of *O* where the following replacement of concept is made:

- each occurrence of \top is replaced by \top_{O} ,
- each concept $\neg C$ is replaced by $\top_O \setminus C$, and
- each concept $\forall R.C$ is replaced by $\top_O \sqcap \forall R.C$.

Example: integrated semantics



where

ontology B =

Class: Things Class: ThingT

Class: Person_HumanBeing SubClassOf: Things, ThingT

Class: Male Class: Employee

Class: Child SubClassOf: Thing τ and \neg Employee

Individual: alex Types: Male

Example: integrated semantics (cont'd)

```
ontology C =
```

Class: Thing S Class: Thing T

Class: Person_HumanBeing SubClassOf: ThingS, ThingC

Class: Male SubClassOf: Person_ HumanBeing

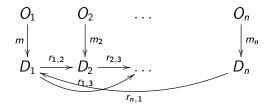
Class: Employee SubClassOf: ThingT Class: Child SubClassOf: ThingS

Class: Child SubClassOf: ThingT and ¬ Employee

Individual: alex Types: Male, Person_HumanBeing

Contextualized semantics of diagrams

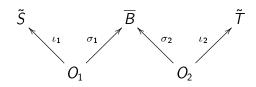
Framework: different domains related by coherent relations



such that

- r_{ii} is functional and injective,
- r_{ii} is the identity (diagonal) relation,
- r_{ii} is the converse of r_{ij} , and
- r_{ik} is the relational composition of r_{ij} and r_{jk}
- model for a diagram: family (m_i) of models with coherent relations (r_{ii}) such that $(m_i, r_{ii}m_i)$ is a model for A_{ii}

Contextualized semantics of diagrams, revisited



where \overline{B} modifies B as follows:

- r_{ij} are added to \overline{B} as roles with domain \top_S and range \top_T
- the correspondences are translated to axioms involving these roles:
 - $s_i = t_i$ becomes $s_i r_{ii} t_i$
 - $a_i \in c_i$ becomes $a_i \in \exists r_{ii}.c_i$
 - . . .
- the properties of the roles are added as axioms in \overline{B}

Adding domain relations to the bridge

```
ontology \overline{B} =
```

Class: ThingS
Class: ThingT

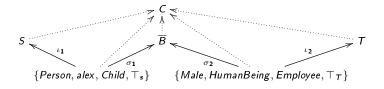
ObjectPropery: r_{ST} Domain: ThingS Range: ThingT Class: Person EquivalentTo: r_{ST} some HumanBeing

Class: Employee

Class: Child SubClassOf: r_{ST} some \neg Employee

Individual: alex Types: r_{ST} some Male

Example: contextualized semantics



where

ontology C =

Class: ThingS Class: ThingT

ObjectPropery: r_{ST} Domain: ThingS Range: ThingT Class: Person EquivalentTo: r_{ST} some HumanBeing

Class: Employee

Class: Child SubClassOf: r_{ST} some \neg Employee Individual: alex Types: r_{ST} some Male, Person

Syntax of equivalences

Equivalences

- equivalence $Id: O_1 \leftrightarrow O_2 = O_3$
- (fragment) OMS O_3 is such that O_i then %def O_3 is a definitional extension of O_i for i = 1, 2;
- this implies that O_1 and O_2 have model classes that are in bijective correspondence

equivalence e : algebra:BooleanAlgebra
$$\leftrightarrow$$
 algebra:BooleanRing = $x \land y = x \cdot y$ $x \lor y = x + y + x \cdot y$ $\neg x = 1 + x$ $x \cdot y = x \land y$ $x + y = (x \lor y) \land \neg(x \land y)$

Syntax of module relations

```
ModuleRelDefinition ::= 'module' ModuleName [Conservative] ':'

ModuleType 'for' InterfaceSignature

ModuleName ::= IRI

ModuleType ::= GroupOMS 'of' GroupOMS
```

Module Relations

- module $Id\ c:\ O_1\ \text{of}\ O_2\ \text{for}\ \Sigma$
- O_1 is a module of O_2 with restriction signature Σ and conservativity c
 - c=%mcons every Σ -reduct of an O_1 -model can be expanded to an O_2 -model
 - c=%ccons every Σ -sentence φ following from O_1 already follows from O_1

This relation shall hold for any module O_1 extracted from O_2 using the **extract** construct.

Syntax of queries (only informative annex!)

```
Term
                   ::= ($<$)an expression specific to an OMS language($>$)
GeneralizedTerm ::= Term | SymbolRef
QueryRelatedDefinition ::= QueryDefinition
                       SubstitutionDefinition
                       ResultDefinition
                   ::= 'query' QueryName '=' 'select' Vars 'where'
QueryDefinition
                       Sentence 'in' GroupOMS
                       ['along' OMSLanguageTranslation] 'end'
SubstitutionDefinition ::= 'substitution' SubstitutionName ':'
                           GroupOMS 'to' GroupOMS '=' SymbolMap
                           'end'
ResultDefinition
                   ::= 'result' ResultName '=' SubstitutionName
                       ( ',' SubstitutionName )* 'for' QueryName
                       ['%complete'] 'end'
OMS
                   ::= ($...$) | OMS 'with' SubstitutionName
OuervName
                   ::= TRT
SubstitutionName ::= IRI
ResultName
                  ::= TRT
                   ::= Symbol ( ',' Symbol )*
Vars
```

Queries

DOL is a logical (meta) language

- focus on ontologies, models, specifications,
- and their logical relations: logical consequence, interpretations,

Queries are different:

. . .

- answer is not "yes" or "no", but an answer substitution
- query language may differ from language of OMS that is queried

Sample query languages

- conjunctive queries in OWL
- Prolog/Logic Programming
- SPARQL

Syntax of queries in DOL

New OMS declarations and relations:

New sentences (however, as structured OMS!):

```
apply(sname, sentence) %% apply substition
```

Open question: how to deal with "construct" queries?

Proof calculus

Structured specifications over an arbitrary institution (covers part of DOL OMS)

$$SP ::= \langle \Sigma, \Gamma \rangle$$
 basic specification $|SP \cup SP|$ union $|\sigma(SP)|$ translation $|SP|_{\sigma}$ hiding

...and their semantics

Definition (Signature and model class of a specification)

$$Sig(\langle \Sigma, \Gamma \rangle) = \Sigma$$

$$Mod(\langle \Sigma, \Gamma \rangle) = \{ M \in Mod(\Sigma) | M \models \Gamma \}$$

$$Sig(SP_1 \cup SP_2) = Sig(SP_1) = Sig(SP_2)$$

$$Mod(SP_1 \cup SP_2) = Mod(SP_1) \cap Mod(SP_2)$$

$$Sig(\sigma \colon \Sigma_1 \longrightarrow \Sigma_2(SP)) = \Sigma_2$$

$$Mod(\sigma(SP)) = \{ M \in Mod(\Sigma_2) \mid M|_{\sigma} \in Mod(SP) \}$$

$$Sig(SP|_{\sigma \colon \Sigma_1 \longrightarrow \Sigma_2}) = \Sigma_1$$

$$Mod(SP|_{\sigma \colon \Sigma_1 \longrightarrow \Sigma_2}) = \{ M|_{\sigma} \mid M \in Mod(SP) \}$$

Definition (Logical consequence, specification refinement)

$$SP \models \varphi$$
 iff $M \models \varphi$ for all $M \in Mod(SP)$

Entailment systems

Definition

Given an institution $\mathcal{I} = (\mathbf{Sign}, \mathbf{Sen}, Mod, \models)$, an entailment system \vdash for \mathcal{I} consists of relations $\vdash_{\Sigma} \subseteq \mathcal{P}(\mathbf{Sen}(\Sigma)) \times \mathbf{Sen}(\Sigma)$ such that

- reflexivity: for any $\varphi \in \mathbf{Sen}(\Sigma)$, $\{\varphi\} \vdash_{\Sigma} \varphi$,
- **2** monotonicity: if $\Gamma \vdash_{\Sigma} \varphi$ and $\Gamma' \supseteq \Gamma$ then $\Gamma' \vdash_{\Sigma} \varphi$,
- **3** transitivity: if $\Gamma \vdash_{\Sigma} \varphi_i$ for $i \in I$ and $\Gamma \cup \{\varphi_i \mid i \in I\} \vdash_{\Sigma} \psi$, then $\Gamma \vdash_{\Sigma} \psi$,
- \vdash -translation: if $\Gamma \vdash_{\Sigma} \varphi$, then for any $\sigma \colon \Sigma \longrightarrow \Sigma'$ in **Sign**, $\sigma(\Gamma) \vdash_{\Sigma'} \sigma(\varphi)$,
- **5** soundness: if $\Gamma \vdash_{\Sigma} \varphi$ then $\Gamma \models_{\Sigma} \varphi$.

The entailment system is *complete* if, in addition, $\Gamma \models_{\Sigma} \varphi$ implies $\Gamma \vdash_{\Sigma} \varphi$.

Proof calculus for entailment (Borzyszkowski)

$$(CR) \frac{\{SP \vdash \varphi_i\}_{i \in I} \ \{\varphi_i\}_{i \in I} \vdash \varphi}{SP \vdash \varphi} \quad (basic) \frac{\varphi \in \Gamma}{\langle \Sigma, \Gamma \rangle \vdash \varphi}$$

$$(sum1) \frac{SP_1 \vdash \varphi}{SP_1 \cup SP_2 \vdash \varphi} \quad (sum2) \frac{SP_1 \vdash \varphi}{SP_1 \cup SP_2 \vdash \varphi}$$

$$(trans) \frac{SP \vdash \varphi}{\sigma(SP) \vdash \sigma(\varphi)} \quad (derive) \frac{SP \vdash \sigma(\varphi)}{SP|_{\sigma} \vdash \varphi}$$

Soundness means: $SP \vdash \varphi$ implies $SP \models \varphi$ Completeness means: $SP \models \varphi$ implies $SP \vdash \varphi$

Proof calculus for refinement (Borzyszkowski)

$$(Basic) \ \frac{SP \vdash \Gamma}{\langle \Sigma, \Gamma \rangle \leadsto SP} \qquad (Sum) \ \frac{SP_1 \leadsto SP \quad SP_2 \leadsto SP}{SP_1 \cup SP_2 \leadsto SP}$$

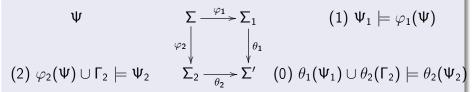
$$(Trans) \ \frac{SP \leadsto SP'|_{\sigma}}{\sigma(SP) \leadsto SP'}$$

$$(Derive) \ \frac{SP \leadsto SP''}{SP|_{\sigma} \leadsto SP'} \qquad \text{if } \sigma \colon SP' \longrightarrow SP'' \\ \text{is a conservative extension}$$

Soundness means: $SP_1 \rightsquigarrow SP_2$ implies $SP_1 \leadsto SP_2$ Completeness means: $SP_1 \leadsto SP_2$ implies $SP_1 \leadsto SP_2$

Craig-Robinson interpolation

Definition



A commutative square admits Craig-Robinson interpolation, if for all finite $\Psi_1 \subseteq Sen(\Sigma_1)$, $\Psi_2, \Gamma_2 \subseteq Sen(\Sigma_2)$, if (0), then there exists a finite $\Psi \subseteq Sen(\Sigma)$ with (1) and (2).

 \mathcal{I} has Craig-Robinson interpolation if all signature pushouts admit Craig-Robinson interpolation.

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Conclu

Soundness and Completeness

Theorem (Borzyszkowski, Tarlecki, Diaconescu)

Under the assumptions that

- the institution admits Craig-Robinson interpolation,
- the institution is weakly semi-exact, and
- the entailment system is complete,

the calculus for structured entailment and refinement is sound and complete.

For refinement, we need an oracle for conservative extensions.

Weak semi-exactness = Mod maps pushouts to weak pullbacks

Problem: Craig interpolation often fails:

- many-sorted FOL (with non-injective signature morphisms)
- many-sorted equational logic

Structured normal form

$$snf(\langle \Sigma, \Gamma \rangle) = \langle \Sigma, \Gamma \rangle|_{iid}$$

$$\frac{snf(SP_1) = SP'_1|_{\sigma_1} \ snf(SP_2) = SP'_2|_{\sigma_2}}{snf(SP_1 \cup SP_2) = (\theta_1(SP'_1) \cup \theta_2(SP'_2))|_{\sigma_1;\theta_1}} \quad \text{if} \quad \begin{cases} Sig[SP_1] \xrightarrow{\sigma_1} Sig[SP'_2] \\ Sig[SP'_2] \xrightarrow{\theta_2} S' \end{cases}$$

$$\frac{snf(SP) = SP'|_{\sigma_1}}{snf(\sigma_2(SP)) = (\theta_1(SP'))|_{\theta_2}} \quad \text{if} \quad \begin{cases} \sigma_2 \\ \sigma_2 \\ Sig[SP'_2] \xrightarrow{\theta_2} S' \end{cases}$$

$$\frac{snf(SP) = SP'|_{\sigma_1}}{snf(SP) = SP'|_{\sigma_2}} \quad \text{if} \quad \begin{cases} \sigma_2 \\ \sigma_2 \\ \sigma_2 \\ \sigma_2 \\ Sig[SP'] \end{cases}$$

$$\frac{som}{som} \left(SP'_1 \right) = (s^2 + s^2)$$

$$\frac{som}{som} \left(SP'_1 \right) = (s^2$$

 $snf(SP|_{\theta}) = SP|_{\theta \cdot \sigma}$

Resources Motivation OntolOp DOL OMS Semantics of OMS Libraries Proof calculus Tool support Conclu

Properties of the structured normal form

Proposition

In any weakly semi-exact institution, SP and snf(SP) are equivalent.

Moreover, we can obtain a stronger completeness result:

Theorem

Under the assumptions that the institution is weakly semi-exact and the entailment system is complete, the calculi for specification entailments and refinement between structured specifications extended by the following structured normal form rule:

$$(snf) \frac{SP' \vdash \sigma(\varphi)}{SP \vdash \varphi} \qquad \text{if } snf(SP) = SP'|_{\sigma}$$

Resources Motivation OntolOp DOL OMS Semantics of OMS OMS Libraries Proof calculus Tool support Concludes

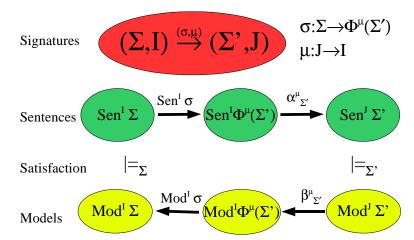
Heterogeneous specification

Definition

A heterogeneous logical environment (\mathcal{HLE}) (or indexed coinstitution) is diagram of institutions and comorphisms.

Grothendieck institution over an \mathcal{HLE}

The Grothendieck Institution



Heterogeneous structuring operations

heterogeneous translation: For any \mathcal{I} -specification SP, $\rho(SP)$ is a specification with:

$$Sig[\rho(SP)] := \Phi(Sig[SP])$$
 $Mod[\rho(SP)] := \beta_{Sig[SP]}^{-1}(Mod[SP])$

heterogeneous hiding: For any \mathcal{I}' -specification SP' and signature Σ with $Sig[SP'] = \Phi(\Sigma)$, $SP'|_{\rho}^{\Sigma}$ is a specification with: $Sig[SP'|_{\rho}^{\Sigma}] := \Sigma$

$$\mathit{Mod}[\mathit{SP}'|_{\rho}^{\Sigma}] := \beta_{\Sigma}(\mathit{Mod}[\mathit{SP}'])$$

This can be interpreted as structuring in the Grothendieck institution.

A heterogeneous proof calculus

$$(het-trans) \frac{SP \vdash \varphi}{\rho(SP) \vdash \alpha(\varphi)} \qquad (het-derive) \frac{SP \vdash \alpha(\varphi)}{SP|_{\rho}^{\Sigma} \vdash \varphi}$$

$$(borrowing) \frac{\rho(SP) \vdash \alpha(\varphi)}{SP \vdash \varphi} \qquad \text{if } \rho \text{ is model-expansive}$$

$$(Het-snf) \frac{SP' \vdash \sigma(\alpha(\varphi))}{SP \vdash \varphi} \qquad \text{if } hsnf(SP) = (SP'|_{\sigma})|_{\rho}^{\Sigma}$$

A heterogeneous proof calculus for refinement

$$(\textit{Het-Trans}) \; \frac{SP \leadsto SP'|_{\rho}^{\Sigma}}{\rho(SP) \leadsto SP'}$$

$$(\textit{Het-Derive}) \; \frac{SP \leadsto SP''}{SP|_{\rho}^{\Sigma} \leadsto SP'} \quad \text{if } \rho \colon SP' \longrightarrow SP'' \text{ is a conservative extension}$$

Conservativity of $\rho = (\Phi, \alpha, \beta) \colon SP' \longrightarrow SP''$ means that for each model $M' \in Mod(SP')$, there is a model $M'' \in Mod(SP'')$ with $\beta(M'') = M'$.

Heterogeneous completeness

Theorem

For a lax heterogeneous logical environment $\mathcal{HLE}: \mathcal{G} \longrightarrow co\mathcal{INS}$ (with some of the institutions having entailment systems), the proof calculi for heterogeneous specifications are sound for $\mathcal{I}^{\mathcal{HLE}}/\equiv$. If

- HLE is lax-quasi-exact,
- $oldsymbol{\circ}$ all institution comorphisms in \mathcal{HLE} are weakly exact,
- \odot there is a set $\mathcal L$ of institutions in $\mathcal H \mathcal L \mathcal E$ that come with complete entailment systems,
- all institutions in L are quasi-semi-exact,
- from each institution in \mathcal{HLE} , there is some model-expansive comorphism in \mathcal{HLE} going into some institution in \mathcal{L} ,

the proof calculus for entailments between heterogeneous specifications and sentences is complete over $\mathcal{I}^{\mathcal{HLE}}/\equiv$. If, moreover,

Tool support

Tool support: Heterogeneous Tool Set (Hets)

- available at http://hets.eu
- speaks DOL, HetCASL, CoCASL, CspCASL, MOF, QVT, OWL, Common Logic, and other languages
- analysis
- computation of colimits
- management of proof obligations
- interfaces to theorem provers, model checkers, model finders

Tool support: Ontohub web portal and repository

Ontohub is a web-based repository engine for distributed heterogeneous (multi-language) OMS

- prototype available at ontohub.org
- speaks DOL, OWL, Common Logic, and other languages
- mid-term goal: follow the Open Ontology Repository Initiative (OOR) architecture and API
- API is discussed at https://github.com/ontohub/00R_Ontohub_API
- annual Ontology summit as a venue for review, and discussion

Conclusion

Conclusion

- DOL is a meta language for (formal) ontologies, specifications and models (OMS)
- DOL covers many aspects of modularity of and relations among OMS ("OMS-in-the large")
- DOL will be submitted to the OMG as an answer to the OntolOp RFP
- you can help with joining the OntolOp discussion
 - see ontoiop.org

Challenges

- What is a suitable abstract meta framework for non-monotonic logics and rule languages like RIF and RuleML? Are institutions suitable here? different from those for OWL?
- What is a useful abstract notion of query (language) and answer substitution?
- How to integrate TBox-like and ABox-like OMS?
- Can the notions of class hierarchy and of satisfiability of a class be generalised from OWL to other languages?
- How to interpret alignment correspondences with confidence other that 1 in a combination?
- Can logical frameworks be used for the specification of OMS languages and translations?
- Proof support for whole of DOL

Related work

- Structured specifications and their semantics (Clear, ASL, CASL, ...)
- Heterogeneous specification (HetCASL)
- modular ontologies (WoMo workshop series)