
Data Analysis with Neuro-Fuzzy Methods

Habilitationsschrift

zur Erlangung des akademischen Grades

doctor rerum naturalium habilitatus

(Dr.rer.nat.habil.)

der Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg,

vorgelegt von Dr. rer. nat. Detlef D. NAUCK

Magdeburg, 25. Februar 2000

Data Analysis with Neuro-Fuzzy Methods

Habilitationsschrift

zur Erlangung des akademischen Grades

doctor rerum naturalium habilitatus

(Dr.rer.nat.habil.),

genehmigt
durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von Dr. rer. nat. Detlef D. NAUCK

geb. am 20. März 1964
in Braunschweig

Gutachter:
Prof. Dr. Rudolf Kruse
Prof. Dr. Adolf Grauel
Prof. Dr. Raul Rojas

Magdeburg, 8. März 2000

Contents

1 Introduction 1

2 Intelligent Data Analysis 7

2.1 What is Intelligent Data Analysis? 8

2.2 Knowledge Discovery in Databases and Data Mining 11

3 Neuro-Fuzzy Systems 15

3.1 Fuzzy Systems . 15

3.2 Neural Networks . 20

3.3 Neuro-Fuzzy Systems . 29

3.4 Interpretable Fuzzy Systems for Data Analysis 36

4 Learning Fuzzy Rules from Data 41

4.1 Structure Learning . 43

4.2 Learning Mamdani-type Fuzzy Rules 50

4.3 Handling Symbolic Data . 59

4.4 Treatment of Missing Values . 67

4.5 Analysis of the Learning Algorithms 71

5 Optimization of Fuzzy Rule Bases 77

5.1 Adaptive Rule Weights . 78

5.2 Training Membership Functions . 94

5.3 Mamdani-type Fuzzy Systems . 98

5.4 Fuzzy Classifiers . 110

5.5 Pruning Fuzzy Rule Bases . 115

i

ii CONTENTS

5.6 Analysis of the Learning Algorithms 117

6 Data Analysis with NEFCLASS 121

6.1 Network Representation of NEFCLASS 122

6.2 Implementational Aspects . 124

6.3 Effects of Rule Weights . 127

6.4 Creating Small Classifiers . 130

6.5 Using Symbolic Variables . 132

6.6 Classification as Preprocessing . 135

7 Conclusions 139

Bibliography 143

Index 155

List of Symbols 157

iii

Abstract

In this thesis neuro-fuzzy methods for data analysis are discussed. We consider
data analysis as a process that is exploratory to some extent. If a fuzzy model is
to be created in a data analysis process it is important to have learning algorithms
available that support this exploratory nature. This thesis systematically presents
such learning algorithms, which can be used to create fuzzy systems from data. The
algorithms are especially designed for their capability to produce interpretable fuzzy
systems. It is important that during learning the main advantages of a fuzzy system
– its simplicity and interpretability – do not get lost. The algorithms are presented
in such a way that they can readily be used for implementations. As an example
for neuro-fuzzy data analysis the classification system NEFCLASS is discussed.

Kurzfassung

In dieser Arbeit werden Neuro-Fuzzy-Methoden zur Datenanalyse untersucht. Wir
betrachten Datenanalyse als einen im gewissen Umfang explorativen Prozeß. Wenn
ein Fuzzy-Modell im Rahmen eines solchen Prozesses erzeugt werden soll, sind
Lernverfahren von hoher Bedeutung, die diesen explorativen Ansatz unterstützen
können. Die Arbeit erarbeitet systematisch eine Reihe von Lernverfahren, die in
der Lage sind, Fuzzy-Systeme aus Daten zu erzeugen. Diese Algorithmen wer-
den insbesondere so konstruiert, daß sie interpretierbare Fuzzy-Systeme generieren
können. Es ist wichtig, daß die Hauptvorteile eines Fuzzy-Systems – seine Einfach-
heit und Interpretierbarkeit – im Laufe eines Trainingsvorgangs nicht verloren gehen.
Die Algorithmen werden in einer Form angegeben, die eine direkte Anwendbarkeit
in Implementierungen ermöglicht. Als ein Beispiel für Neuro-Fuzzy-Datenanalyse
diskutieren wir das Klassifikationssystem NEFCLASS.

Chapter 1

Introduction

One of the most challenging tasks in computer science is to build machines or com-
puter programs that are capable of learning. We expect a learning machine or
program to improve automatically with experience gathered during its life cycle.
One of the first learning machines that was ever built is the perceptron by Frank
Rosenblatt. The perceptron was built to imitate some functions of an eye. It had
an artificial retina that could detect light. From a pattern of bright and dark points
it decided which class the presented pattern belongs to. The exciting feature of the
perceptron was that it was able to learn to classify patterns correctly after it had
“seen” a few examples.

The perceptron was an implementation of an early artifical neural network model
[Rosenblatt, 1958, Rosenblatt, 1962]. Artifical neural networks – or neural
networks, for short – were created to simulate some aspects of the learning capabil-
ities of human brains. A neural network consists of a number of simple processing
elements called units or artificial neurons. Artifical neurons were introduced by Mc-
Culloch and Pitts in 1943 and are used to simulate the behaviour of nerve cells. A
nerve cell collects input signals and integrates them over time. If a certain threshold
is reached the cell becomes active and emits a signal with high frequency. Artificial
neurons do not usually simulate the temporal aspects and just sum up incoming
signals and denote their activity by some output value if the input is larger than
some threshold [McCulloch and Pitts, 1943].

Artifical neurons exchange signals along weighted connections (network structure)
that are used to simulate synapses. The signals are changed when they travel along
the connections: They are combined – usually by multiplication – with the connec-
tion weights. A neuron gathers the input from all incoming connections to compute
its activation value. In 1949 Hebb hypothesized about learning in networks of ar-
tifical neurons. The Hebb rule encodes the correlations of activations of connected
units in the weights. A weight is increased, if the two neurons that are connected
by it are active at the same time. The weight is decreased, if only one of the two

1

2 CHAPTER 1. INTRODUCTION

connected neurons is active [Hebb, 1949]. The perceptron used a variation of this
rule.

The units of most types of neural networks are organized in layers which are called
input layer, hidden layer(s) or output layer, depending on their functionality. A
neural network with n units in its input layer and m units in its output layer,
implements a mapping f : Xn −→ Y m. The sets Xn ⊆ IRn and Y m ⊆ IRm are
the input and output domains. Hidden layers add to the complexity of a neural
network, and are important, if arbitrary mappings have to be represented.

Soon after the presentation of the perceptron the importance of hidden layers became
apparent. Minsky &Papert showed that a perceptron – which only has an input and
an output layer – is not able to solve linearly non-separable tasks [Minsky and
Papert, 1969]. It was known that this drawback could be resolved by introducing
a hidden layer, but a learning algorithm was not available before Rumelhart, Hinton
& Williams, in 1986, rediscovered a learning rule that was first published by Werbos
in 1974 and which became known as backpropagation [Rumelhart et al., 1986a,
Werbos, 1974]. Since then neural networks have become very popular and their
learning capabilities make them very interesting not only for research but also for
industrial applications.

Nowadays neural networks are important tools used for classification, process au-
tomation, time series prediction, data mining, etc. We know that certain types of
neural networks are universal approximators [Hornik et al., 1989, Poggio and
Girosi, 1989]. A comprehensive introduction to neural networks can be found, for
example, in [Haykin, 1994, Rojas, 1996, Zurada, 1992]. Neural networks are
a part of machine learning, an area of practical computer science where phenomena
of learning are studied [Mitchell, 1997]. Machine learning is an interdisciplinary
field with connections to artifical intelligence, information theory, statistics, cogni-
tive science but also fields like neurophysiology, psychology and biology.

Machine learning does not only consider algorithms that enable machines or pro-
grams to learn, but also the way the knowledge obtained in this process is repre-
sented. Ideally a learning system is able to tell its user what it has learned. Thus a
user not only learns about the problem of interest, he or she can also check whether
the knowledge represented within the learning system is correct or at least plausible.

A good example are decision trees that recursively partition a hypothesis space and
represent the result in the form of a tree. The decision tree cannot only be used
for prediction, but also reveals how the system learns to partition the hypothesis
space and how a prediction is computed. The tree can also be transformed into a
set of rules. The induction algorithm that creates the decision tree has a preference
for shorter trees. Thus the system is not only transparent but also compact and so
easier to comprehend.

The most often used approach to learning systems is induction. This means a

3

learning algorithm processes examples that provide the correct answer or output for
a given input. When the examples for a learning algorithm consist of real world
data then they are usually tainted with noise, ambiguity, uncertainty, imprecision,
vagueness or incompleteness. Classical models try to avoid such phenomena because
they are considered to have a negative influence on learning or inference processes.
But it is possible to deliberately make use of this kind of information.

In 1965 Zadeh suggested fuzzy sets, generalizations of regular crisp sets [Zadeh,
1965]. A fuzzy set can contain elements with different degrees of membership be-
tween 0 and 1. Fuzzy sets can be conveniently used to represent linguistic expressions
like “the temperature is low”, “this person is tall”, etc. Expressions like this are
common in our everyday life and we can easily handle them and use them to draw
conclusions. If-then rules that use linguistic expressions (e.g. “if x is small then y
is approximately zero”) are called linguistic rules or fuzzy rules. Systems based on
fuzzy rules are called fuzzy systems.

Fuzzy systems became popular in the area of control engineering in the form of
fuzzy controllers. For this and other kinds of applications of fuzzy systems the term
“fuzzy logic” is widely used. However, most applications of fuzzy systems do not
use generalized logical rules. Fuzzy systems as they are considered in this thesis use
fuzzy sets to represent gradual qualities. A fuzzy rule is then a vague description
of a sample of some partially known function. Such fuzzy systems belong to “fuzzy
logic in the broad sense”. In contrast “Fuzzy logic in the narrow sense” refers to
systems that use logical calculi and deduction mechanisms to extend classical two-
valued logic to the unit interval as the set of truth values. In this thesis only “fuzzy
logic in the broad sense” is considered.

By partitioning variables with overlapping fuzzy sets instead of crisp sets, fuzzy
systems can model smooth transitions between states and thus avoid counterintuitive
results that can occur when boundaries of crisp states are crossed. Fuzzy sets let us
observe a space of hypothesis under a certain granularity such that we do not need to
distinguish between very similar values. This results in an information compression
and helps in building simple inexpensive solutions that can be intuitively understood.

Zadeh coined the term soft computing to denote approaches to human reasoning that
deliberately make use for human tolerance of uncertainty and vagueness to obtain
inexpensive solutions that are easy to handle [Zadeh, 1994a]. In addition to fuzzy
systems, neural networks, evolutionary computation and probabilistic reasoning and
their combinations are considered as soft computing. Because these areas are all
based on numeric methods they are also subsumed under the notion computational
intelligence – a term suggested by Bezdek to characterize numeric approaches to
modelling intelligent behaviour in contrast to artificial intelligence, where mostly
methods based on symbol manipulation are considered [Bezdek, 1994].

Nowadays fuzzy systems are – in addition to control application – applied in data
analysis problems like classification, function approximation or time series predic-

4 CHAPTER 1. INTRODUCTION

tion. Their advantage is that they can provide simple intuitive models for inter-
pretation and prediction. Prior knowledge in the form of fuzzy rules can be easily
integrated. In order to use fuzzy systems in data analysis it must be possible to
learn them from examples. Learning in fuzzy systems was first used for fine-tuning
fuzzy controllers, where reinforcement learning strategies were applied [Berenji,
1990, Nauck, 1994b, Shao, 1988]. These approaches are not considered in this
thesis, because they are not applicable to data analysis, where supervised learning
methods are needed, i.e. example-based (inductive) learning.

The applicaton of fuzzy systems to data analysis is also known as “fuzzy data anal-
ysis”. This term refers to the analysis of crisp data with fuzzy methods. There are
also approaches that consider the analysis of fuzzy data with generalized statistics
[Kruse and Meyer, 1987]. Such approaches are not considered in this thesis.

Learning in fuzzy systems is most often implemented by learning techniques derived
from neural networks. The term neuro-fuzzy system (also neuro-fuzzy methods or
models) refers to combinations of neural networks and fuzzy systems. This combi-
nation does not usually mean that a neural network and a fuzzy system are used
together in some way. A neuro-fuzzy method is rather a way to create a fuzzy system
from data by some kind of (heuristic) learning method that is motivated by learning
procedures used in neural networks.

Equivalent terms for neuro-fuzzy that can be found in the literature are neural
fuzzy or sometimes fuzzy networks. We distinguish these terms from fuzzy neu-
ral networks or fuzzy-neuro approaches which denote fuzzified neural networks, i.e.
neural networks that use fuzzy sets instead of real numbers as weights, activations,
inputs and outputs [Buckley and Eslami, 1996, Feuring and Lippe, 1996].
Fuzzy neural networks are black box function approximators that map fuzzy inputs
to fuzzy outputs. They are obtained by applying Zadeh’s extension principle to a
normal neural network architecture. We do not discuss these approaches further.

Learning in fuzzy systems must consider structure learning, i.e. creation of a rule
base, and parameter learning, i.e. optimization of fuzzy sets. Parameter learning is
often done by algorithms that were inspired by neural network learning. Structure
learning on the other hand is usually not taken from neural networks. In neural
networks only few approaches exist to automatically determine the number of hidden
nodes. Cascade correlation is such an approach [Fahlman and Lebiere, 1990],
but it is not appropriate for learning fuzzy rule bases. Usually the structure of a
neural network is given and only the parameters (connection weights) are trained.
The term “neuro-fuzzy”, however, is nowadays applied to almost all approaches to
learning in fuzzy systems such that the learning of fuzzy rules is also subsumed
under this notion [Jang et al., 1997, Nauck et al., 1997].

Distinctions are only made, for example, when fuzzy rules are created by fuzzy
decision tree learning [Janikow, 1998] or by genetic algorithms [Hopf and Kla-
wonn, 1994, Kinzel et al., 1994, Lee and Takagi, 1993, Takagi and

5

Lee, 1993]. There are also approaches that try out combinations of variables, if
the dimensionality of the considered problem is low [Krone and Kiendl, 1996].

In this thesis neuro-fuzzy methods for data analysis are discussed. We consider
data analysis as a process that is exploratory to some extent, as in intelligent data
analysis [Berthold and Hand, 1999] or data mining [Fayyad et al., 1996].
If a fuzzy model is to be created in such a scenario it is important to have learning
algorithms available that support the exploratory nature of the data analysis process.
This thesis systematically presents such learning algorithms, which can be used to
create fuzzy systems from data. The algorithms are especially examined for their
capabilities to produce interpretable fuzzy systems. It is important that during
learning the main advantages of a fuzzy system – its simplicity and interpretability
– do not get lost. The algorithms are presented in a way that they can readily be used
for implementations. As an example for neuro-fuzzy data analysis a classification
system (NEFCLASS) is discussed.

The following chapter introduces intelligent data analysis and knowledge discovery
in databases as areas where neuro-fuzzy systems can be applied with great benefits.
We characterize data analysis as an approach with an exploratory nature and that
learning algorithms used to create neuro-fuzzy models must support this process.

In Chapter 3 foundations of fuzzy systems, neural networks and neuro-fuzzy systems
are reviewed to introduce the necessary notations used throughout the following
chapters. One section of the chapter is devoted to the discussion of the characteristics
of interpretable fuzzy systems.

Chapters 4 and 5 are the main parts of the thesis. Here algorithms for learning
fuzzy rules and for optimizing membership functions are presented. For fuzzy rule
learning methods from cluster analysis, fuzzy decision tree learning and approaches
specially developed for neuro-fuzzy systems are discussed. For optimizing fuzzy sets,
methods based on gradient descent and special heuristics for neuro-fuzzy systems
are analysed. We also discuss problems caused by learning techniques based on
rule weights, which are often used, because they are so easy to implement. In
addition methods for handling data analysis problems where the data has symbolic
and numeric values are presented and ways for learning fuzzy rules under missing
values are shown.

We refrain from discussing several neuro-fuzzy approaches that usually only differ in
the way they represent fuzzy systems. Instead we follow a more general approach and
organize the chapters according to the kind of learning algorithms and the kind of
fuzzy systems that can be created by them. We do not consider learning algorithms
that are not applicable in data analysis like, for example, reinforcement learning.
Different kinds of neuro-fuzzy approaches can be simply obtained by suitably com-
bining the learning algorithms presented. For an overview on different neuro-fuzzy
approaches see, for example, [Jang et al., 1997, Nauck et al., 1997].

6 CHAPTER 1. INTRODUCTION

Chapter 6 presents the NEFCLASS system as an example for constructing a neuro-
fuzzy system for data analysis in the context of classification. We provide some
guidelines for implementation and discuss some applications of NEFCLASS. The
thesis is concluded in Chapter 7.

Chapter 2

Intelligent Data Analysis

Data analysis can be described as the process of computing summaries and derived
values from data, or – more general – as the process of converting data into in-
formation. In this thesis data is understood as a collection of values or recordings
– numeric or otherwise – that describe the attributes of objects under study. In-
formation or knowledge that is generated from data is used here in a very general
meaning. It may be, for example, a set of induced rules used to draw inferences, a
linguistic description to summarize or simplify the nature of a data set, or a more
or less complex model to accurately describe the processes that underlie observed
data. We consider information as a necessary prerequisite for decision making. We
assume that data is on a much lower level than information such that it cannot be
readily put to use. Data sets may be, for example, very large, high-dimensional,
ridden with noise, conflicting, incomplete, vague or uncertain. Thus without proper
processing and analysis, raw data itself is usually quite useless for decision making.

Our modern world is data-driven. Many decisions are made based on the analy-
sis of data. Examples of typical application areas are the weather forecast, stock
prediction, the identification of prospective customers, object recognition in images,
etc. The remarkable progress in computer technology not only allows us to gather
and store more data than we can possibly analyse, it also enables us to do analyses
one could not think of 30 years ago. Thus not only the need for data analysis has
increased, but also the number of feasible data analysis methods [Berthold and
Hand, 1999].

This chapter discusses modern approaches to data analysis like intelligent data anal-
ysis and knowledge discovery in databases (KDD) and data mining to set the stage
for neuro-fuzzy methods in data analysis which are discussed in this thesis. Sec-
tion 2.1 considers the term “intelligent data analysis” and Section 2.2 focuses on
KDD and data mining.

7

8 CHAPTER 2. INTELLIGENT DATA ANALYSIS

2.1 What is Intelligent Data Analysis?

The notion of “intelligent data analysis” is used to describe a certain approach to
data analysis. Like many notions that feature the term “intelligent” intelligent data
analysis also has no exact definition. The discussion in this section follows the line
of argumentation by Hand found in [Hand, 1998] and in Chapter 1 of [Berthold
and Hand, 1999].

Data analysis always has some objective, i.e. by analysing data we hope to answer
questions. We can distinguish between

• exploratory data analysis, and

• confirmatory data analysis.

The exploratory approach seeks to answer questions like: Are there relevant struc-
tures in the data? Are there anomalous records? How can the data conveniently be
summarized? The confirmatory approach is interested in questions like: Are these
two groups different? Can the value of this attribute be predicted from measured
values?

We can also distinguish between

• descriptive data analysis, and

• inferential data analysis.

In descriptive analysis we are interested in statements about the considered data
set, for example, proportions of certain values or characteristic values, like: How
many children were born in Germany in 1998? Inferential analysis is often based on
samples from some population and aims at drawing conclusions, e.g. what can we
say about the number of births in Germany in the following year?

Hand points out that data analysis must be understood as a process [Berthold
and Hand, 1999]. It is not a case of simply selecting and applying a data analysis
method or tool to a particular problem to obtain the desired answer (cookbook fal-
lacy). Data analysis is not a collection of independent tools. The available methods
have rather complex interrelationships and there is no perfect tool for a problem of
interest. Several methods are usually applicable, each with subtle differences, pre-
conditions or assumptions. Furthermore, research questions to be answered by data
analysis are usually not formulated precisely enough to justify the application of one
method alone. Very often the analysis reveals new questions that must be answered
by applying further methods, or the initial question changes during analysis and
this process can be iterated several times.

2.1. WHAT IS INTELLIGENT DATA ANALYSIS? 9

One aspect of intelligent data analysis is therefore the repeated application of meth-
ods and the ongoing refinement of the questions to be answered by the analysis in
a carefully planned and considered manner.

The two most important areas that contribute to intelligent data analysis are statis-
tics and machine learning. Statistics has its roots in mathematics and is driven by
the notion of a model – a postulated structure, or an approximation to a structure,
which could have led to the data [Berthold and Hand, 1999]. Machine learning
is an area of practical computer science. In [Mitchell, 1997] we read: “machine
learning involves searching a very large space of possible hypotheses to determine
one that best fits the observed data and any prior knowledge of the learner”. So
both areas are concerned with quite similar questions, where statistics used to focus
on mathematical rigour and machine learning is driven by the goal of building learn-
ing systems with the help of the computer. There is a great potential for synergy
between both fields as, for example, artifical neural network technology shows.

Certainly further areas that also contribute to intelligent data analysis can be iden-
tified. For example, soft computing techniques [Zadeh, 1994a] like fuzzy systems,
neural networks and probabilistic reasoning – areas that deliberately exploit the
tolerance for uncertainty and vagueness in the area of cognitive reasoning. This can
lead to considerable reduction in complexity when real-world problems have to be
solved and can lead to solutions that are easy to handle, robust, and low-priced.
Other areas that can be mentioned are KDD, evolutionary computation, artificial
intelligence or approximation theory and also database theory that provides means
to handle large amounts of data.

The term “model” is widely used in data analysis, but with different interpretations
[Berthold and Hand, 1999]. It is possible to distinguish between empirical
and mechanistic models. Empirical models describe relationships without basing
them on an underlying theory, while mechanistic models describe an underlying
reality that is responsible for the observed relationships. We can also distinguish
between models for prediction and models for understanding. In addition there is
the distinction between model and pattern. Here “pattern” is not used in the sense
of a point, a case, or a vector as it is used in pattern recognition but in the sense
of a local structure. Data mining is often concerned with the detection of patterns
in data (Section 2.2). A model on the contrary is a global structure summarizing
relationships over many cases. However, in data analysis the emphasis is not on
modelling but on answering questions. “It is these questions, not the model per se,
which must be paramount” [Hand, 1998].

The advances in computer technology allow us to quickly fit a large number of models
to large data sets – an approach that was not possible 30 years ago. Data analysts
are nowadays not forced to do long theoretical studies in order to hopefully select an
appropriate method that is well suited to their data and then to use up all available
computer time in one attempt to estimate the parameters of the selected model and

10 CHAPTER 2. INTELLIGENT DATA ANALYSIS

to live with the consequences. The possibility of trying out several methods may
sometimes lead to less formal and less mathematically justified approaches in data
analysis, but it has also made data analysis available for a wide range of applications.

We cannot expect that an analyst is an expert in the analysis methods he applies for
a problem from his domain. In the same way we do not expect a driver to be capable
of repairing his car or a computer user to understand the function of an arithmetic
and logic unit. Geologists or physicians are not interested in the mathematical
foundations of the analysis methods they apply to their data but in the answers
to questions like where to drill for oil, or which treatment is best for a certain
disease. Of course, some foundational understanding about the characteristics and
prerequisites of the applied methods must be available, otherwise one cannot expect
to obtain useful results and the danger of misuse is great. But the point is that data
analysis is a practical area and data analysis methods nowadays – with the help of
the computer – are used as tools.

From a practical point of view certain restrictions have to be imposed on models
obtained in a data analysis process. Again thanks to the computer it is possible
to create almost arbitrarily sophisticated models that fit every subtle aspect of a
data set or an underlying process. Not only are such subtleties usually irrelevant in
practical applications, complex models also tend to overfit the data, i.e. they fit the
noise and uncertainties contained in the data. From the viewpoint of a user a model
must also be comprehensible, interpretable and inexpensive. In several application
areas, e.g. medicine or financial services, reasons of security demand that models
can only be trusted, if they can be understood by the user. For example an artificial
neural network that was created from medical data will probably not be simply
accepted as a decision authority, if it recommends an amputation based on the
data of a patient. Models obtained from data analysis that are applied in practice
usually require transparency and interpretability in terms of the attributes they
process. This also requires small models because models with many parameters are
not comprehensible to a user.

Therefore another aspect of intelligent data analysis is to select an appropriate model
with the application in mind. It may be necessary to sacrifice precision for inter-
pretability, i.e. a suitable balance between model complexity and comprehensibility,
between precision and simplicity must be found.

A third aspect of intelligent data analysis requires the selection of appropriate algo-
rithms for the process of creating a model. There can be several algorithms available
for creating the same kind of model and they may not only differ in computational
complexity, speed of convergence, ease of parameterization, but also in the way they
ensure certain features in the model they create from data. For example, there are
many approaches to learning fuzzy systems from data. In Chapters 4 and 5 we will
especially focus on simple algorithms that allow us to control the interpretability of
the created fuzzy model.

2.2. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 11

Finally we can say that the process of data selection is important for intelligent data
analysis. This requires that data be collected and structured with the analysis in
mind. Unfortunately, this is very often not the case, for example, in industry. Here
data is often collected randomly before the need for an analysis arises. Therefore
data preprocessing, for example, the detection of outliers and anomalies, the analysis
of the pattern of missing values, etc. is an important task.

To summarize, we can say that intelligent data analysis is a process of critical assess-
ment, exploration, testing and evaluation. It requires the application of knowledge
and expertise about the data and it is fundamentally interdisciplinary [Berthold
and Hand, 1999].

In this thesis neuro-fuzzy methods for data analysis are discussed. They are re-
garded as a valuable method for intelligent data analysis as they are especially
useful, if simple and interpretable models are required. There exist algorithms that
can quickly create models and thus support the exploratory approach of intelligent
data analysis. Neuro-fuzzy approaches can be seen as a technique to create models
that act as a bridge between models for understanding and models for prediction.
Neuro-fuzzy methods, as will be described in Section 3.3, create fuzzy models from
data that can on the one hand be used for prediction, but on the other hand are
also interpretable in an intuitive linguistic way and are therefore useful to describe
the underlying data. These aspects are also discussed in Section 3.4.

2.2 Knowledge Discovery in Databases

and Data Mining

As already described in the last section the advances in computer technology enable
us to store vast amounts of data. For example a modern supermarket stores each
transaction of every customer. For large chains such data can quickly amount to
gigabytes of data each day. The analysis of such large databases requires special
data analysis methods. Not only the amount of data poses a problem, but also the
goal of the analysis. Very often it is not clear what kind of information or knowledge
can be obtained by data analysis. Note that we use the terms “information” and
“knowledge” interchangeably in the sense described in Section 2.1.

Knowledge discovery in databases (KDD) is a research area that considers the anal-
ysis of large data bases in order to identify valid, useful, meaningful, unknown, and
unexpected relationships [Fayyad et al., 1996]. This definition of KDD shows
that it is an exploratory process. In the beginning we might not know what kind
of knowledge or information we are looking for. Techniques for detecting patterns,
i.e. local structures, anomalies or dependencies are required. Like intelligent data
analysis (Section 2.1), KDD does not place an emphasis on modelling, but on an-
swering questions. However, one could say that KDD goes one step further, because

12 CHAPTER 2. INTELLIGENT DATA ANALYSIS

it “tries to answer question we did not ask” in the beginning of the KDD process,
that means KDD tries to discover unknown and unexpected relationships.

Like intelligent data analysis, KDD is a highly interdisciplinary area and interacts
with statistics, machine learning, soft computing, artificial intelligence and data base
theory.

One of the techniques applied in KDD is called data mining. The term “data mining”
is meant to illustrate the exploratory nature of the analysis process and it is used
to describe the application of different machine learning methods and data analysis
techniques in order to search for knowledge in data. This means, data mining can be
seen as a tool in a KDD process to automatically obtain prognostic or explanatory
information from large data collections.

Data mining cannot be understood as a single method. There are many different
techniques that are used in data mining, for example, statistics, machine learning,
probabilistic networks, neural networks, fuzzy systems and combinations of these,
like neuro-fuzzy systems.

� � � � � � � � � 	
 � � � � � � � � � � �

� �

� � � � � � � � � 	
 � � � � � � � � � � 	 � � � � � �

� � � � � � � � � � � � � � � � � �

� � � � 	 � � � � 	 �

� � � � � � � � � 	 � � 	
 � � � � � � � � � � �

� 	 � � � � � � � � � � �

� � � � 	 � � � � � � � � � � � � � � � �

� � � � � � � � � � �

� � � � � � � � � � 	 � � � � � � �

 ! " # $ % " # � 	
 � �

 	 � � &
' � � � � � � � � � � � 	 � � � � �

� � � � � � � � 	 �

� � � � 	 � � � � � � � � � �

� 	 � � � � � � � � � 	 �

� � � � � � � � � � �

	 � �

Figure 2.1: A process model for KDD

2.2. KNOWLEDGE DISCOVERY IN DATABASES AND DATA MINING 13

Figure 2.1 shows a process model of KDD that combines the process models used in
[Fayyad et al., 1996, Nakhaeizadeh, 1998] and the European research project
CRISP-DM (CRoss Industry Standard Process for Data Mining, see
http://www.ncr.dk/crisp). The two points, exploration and application of learn-
ing, modelling and discovery techniques are together called data mining. KDD and
data mining are usually very application-oriented. This is obviously due to the fact
that most data is gathered in industry. Of course, KDD is also relevant in scien-
tific areas, for example, detecting patterns in data from weather satellites to predict
hurricanes, analysis of genetic data etc.

Data preprocessing is usually the most expensive part of KDD. This is due to the fact
that real world data is often faulty. Many cases and attributes may have missing
values. These cases cannot be simply left out from analysis, but the pattern of
missing values must be analysed, especially if their percentage is high. Questions
like “what kind of values are missing and why” must be answered. Real world data
is also very often high-dimensional and there are a large number of cases (“large”
means at least a few ten thousands of cases). It is often not possible to analyse such
data sets completely, so that subsets of useful attributes and cases must be selected.

Data warehousing [Inmon, 1996] is an area of data base theory that aims at pro-
viding data relevant for decision making. A data warehouse is a data base that is
selected from one or several operative data bases. It contains all data that is rel-
evant for the business processes of a company and processes and aggregates these
data appropriately. Thus in a KDD process a data warehouse provides the necessary
data access facilities and part of the preprocessing in order to execute data mining
applications.

The goal of data mining is to answer questions. The following areas are especially
important in data mining [Fayyad et al., 1996, Nakhaeizadeh, 1998]:

• segmentation (e.g. what kind of customers does a company have?)
• classification (e.g. is this person a prospective customer?)
• concept description (e.g. what attributes describe a prospective customer?)
• prediction (e.g. what value will the stock index have tomorrow?)
• deviation analysis (e.g. why has the behaviour of customers changed?)
• dependency analysis (e.g. how does marketing influence customer behaviour?)

Data mining is comparable to intelligent data analysis with especially strong empha-
sis on the exploratory nature of the analysis process. The questions to be answered
often arise only after the data mining process begins. For instance, exploration
strategies like graphical visualization are important tools in data mining, in order
to gain some insight into the data and to guide further analysis.

14 CHAPTER 2. INTELLIGENT DATA ANALYSIS

As in intelligent data analysis the focus in data mining is on interpretable (meaning-
ful) and applicable (useful) models. In business problems, very often, several of the
questions from the list above must be answered, requiring several different analysis
approaches. Therefore we can characterize data mining as a repetitive process of
intelligent data analysis.

Neuro-fuzzy methods as they are described in this thesis can be applied in data
mining mainly in the areas of classification and prediction. If the underlying re-
lationships are simple enough, neuro-fuzzy methods can also be useful for concept
description and in rare cases also for a simple form of dependency analysis, where
influential variables must be selected from several independent variables. However,
usually in both areas, more complex relationships must be described and graphi-
cal models like Bayesian networks [Pearl, 1988] or possibilistic networks [Dubois
and Prade, 1988, Gebhardt and Kruse, 1994a, Gebhardt and Kruse,

1994b] are much more useful.

Chapter 3

Neuro-Fuzzy Systems

In this chapter we discuss the notion of a neuro-fuzzy system and provide a defini-
tion that will be used throughout the thesis. A neuro-fuzzy system is essentially a
fuzzy system that uses learning techniques known from artifical neural networks to
modifiy its own parameters. Therefore we present some foundations of fuzzy systems
(Section 3.1) and neural networks (Section 3.2) before we discuss some fundamental
issues in neuro-fuzzy systems in Section 3.3. Section 3.4 discusses the interpretability
in fuzzy systems, which are a key factor in the application of neuro-fuzzy methods
in data analysis.

3.1 Fuzzy Systems

In this section some foundational issues of fuzzy systems are discussed. For a com-
plete introduction refer, for example, to [Kruse et al., 1994a, Zimmermann,
1996].

A fuzzy set [Zadeh, 1965] is usually identified by its characteristic funtion or
membership funtion.

Definition 3.1 A fuzzy set µ of X is a mapping from the set X to the unit interval

µ : X → [0, 1].

µ(x) is called a degree of membership. F(X) denotes the set of all fuzzy sets of X.
We also use the following terms to describe a fuzzy set:

• [µ]α = {x|x ∈ X ∧ µ(x) ≥ α} is called the α-cut of µ,

• support(µ) = [µ]0 is called the support of µ,

• core(µ) = [µ]1 is called the core of µ.

15

16 CHAPTER 3. NEURO-FUZZY SYSTEMS

Fuzzy sets can be conveniently used to represent linguistic expressions like approxi-
mately zero, small, large, etc. Fuzzy sets are therefore usually labelled. Most appli-
cations that are based on fuzzy sets use simple parameterized membership functions
like triangular, trapezoidal or bell-shaped functions. Usually for each considered
variable a set of fuzzy sets is specified. We use the term fuzzy partition to denote
such a set of fuzzy sets. Fuzzy partitions are often specified such that they cover the
whole domain of the corresponding variable and that for each value of the domain
the degrees of membership to fuzzy sets add up to 1. A typical fuzzy partition of
triangular and trapezoidal fuzzy sets is shown in Figure 3.1.

() "

") "
�

� �

") *

Figure 3.1: A typical fuzzy partition

If fuzzy sets are used to describe relations between variables we obtain linguistic
rules or fuzzy rules. A system of several fuzzy rules is called a fuzzy system. A
fuzzy rule has the form

Rr: if x1 is µ(1)
r and . . . and xn is µ(n)

r then y is νr.

Usually the fuzzy sets are replaced by their labels, which results in more readable
rules like, for instance,

Rr: if x1 is small and . . . and xn is large then y is approximately zero.

A fuzzy rule can also have more than one variable in its consequent.

For the fuzzy systems considered in this thesis, a fuzzy rule must not be interpreted
in the sense of an implication, but as a part of the definition of a function known only
at some points. The antecedent describes a vague environment and the consequent
provides a vague description of the value that is assumed by the output variable y,
if the input vector (x1, . . . , xn) lies within the vague environment described by the
antecedent.

3.1. FUZZY SYSTEMS 17

A fuzzy system uses a set of such fuzzy rules and provides a computational scheme
describing how the rules must be evaluated and combined to compute a crisp output
value (vector) for any crisp input vector. One can therefore think of a fuzzy system
simply as a parameterized function that maps real vectors to real vectors.

Definition 3.2 A fuzzy system FR is a mapping

FR : X → Y,

where X = X1 × . . . × Xn ⊆ IRn is called a domain or input space,
Y = Y1 × . . . × Ym ⊆ IRm is called a co-domain or output space and
x = (x1, . . . , xn) ∈ X and y = (y1, . . . , ym) ∈ Y denote an input vector and an
output vector, respectively. R is a fuzzy rule base that determines the structure of
the fuzzy system:

R = {R1, . . . , Rr}.
Each rule Rk ∈ R is a tuple of fuzzy sets

Rk = (µ
(1)
k , . . . , µ

(n)
k , ν

(1)
k , . . . , ν

(m)
k),

where µ
(i)
k is a fuzzy set over the domain of input variable xi and ν

(j)
k is a fuzzy set

over the domain of output variable yj. We define

FR(x) = y = (y1, . . . , ym),

where

yj = defuzz

 ⊥
Rk∈R

{
ν̂

(j)
k

} , with

ν̂
(j)
k : Yj → [0, 1], yj �→ �2

{
τk, ν

(j)
k

}
, with

τk = �1

{
µ

(1)
k (x1), . . . , µ

(n)
k (xn)

}
where �1 and �2 are t-norms, ⊥ is a t-conorm, τk is the degree fulfilment of fuzzy
rule Rk and defuzz is a so-called defuzzification method

defuzz : F → IR

that is used to convert an output fuzzy set ν̂
(j)
k into a crisp output value.

The t-norm �1 is used to implement the and-operation that conjunctively combines
the degrees of membership of the input values to the degree of fulfilment τk. For this
t-norm, usually the min-operation is used. The t-norm �2 implements the inference-
operation to compute the conclusion of the rule. The two most often used variants
of fuzzy systems are the Mamdani-type fuzzy system [Mamdani and Assilian,
1975] and the Sugeno-type fuzzy system [Sugeno, 1985, Takagi and Sugeno,
1985].

18 CHAPTER 3. NEURO-FUZZY SYSTEMS

Definition 3.3 A Mamdani-type fuzzy system MFR is a fuzzy system with

(i) �1{a, b} = min{a, b}
(ii) �2{a, b} = min{a, b}
(iii) ⊥{a, b} = max{a, b}

A suitable defuzzification method in Mamdani-type fuzzy systems is, for example,
the center-of-gravity method or the mean-of-maximum method [Kruse et al.,
1994a]. The evaluation procedure of a Mamdani-type fuzzy system is also known
as max-min-inference. Sometimes the product is used for the t-norm �1. In this
case the evaluation procedure is known as max-dot-inference.

Definition 3.4 A Sugeno-type fuzzy system SFR is a fuzzy system that uses special
kinds of fuzzy rules. Each rule Rk of the rule base R is a tuple

Rk = (µ
(1)
k , . . . , µ

(n)
k , f

(1)
k , . . . , f

(m)
k),

where µ
(i)
k is a fuzzy set over the domain of input variable xi and f

(j)
k : X → Yj is a

function over the input variables to determine the value of output variable yj. With
x ∈ X, SFR(x) is given as follows

SFR(x) = y = (y1, . . . , ym),

with

yj =

∑
r∈R

n∏
i=1

µ(i)
r (xi) · f (j)

r (x)

∑
r∈R

n∏
i=1

µ(i)
r (xi)

.

The functions f (j)
r used in the consequents of the rules of a Sugeno-type fuzzy system

are local models. f (j)
r (x) defines the contribution of r to the overall output value

of SFR(x) if x is from the vague environment described by the antecedent of r.
Usually linear local models are used:

f (j)
r (x) =

(
a

(j,r)
0 +

n∑
i=1

a
(j,r)
i xi

)
.

Fuzzy systems as they are introduced by the previous three definitions are linguis-
tic representations of piecewise defined functions. The evaluation of the rule base
provides an interpolation strategy in a vague environment. The inputs and outputs
are crisp values. Only the internal computation is fuzzy.

3.1. FUZZY SYSTEMS 19

Fuzzy systems can also be used for classification problems which can be interpreted
as a special case of function approximation. In a crisp classification problem an input
vector (pattern) must be assigned to one of several classes. A class is a subset of the
pattern space. A fuzzy classification problem accepts that a pattern is assigned to
several classes with different degrees of membership. In this case a class is a fuzzy
set of the pattern space. A classification problem can be easily be transformed into
a function approximation problem by specifiying a set L̃ with patterns (x, c), where
c ∈ [0, 1]m and ci denotes the degree of membership of x in class Ci. If a crisp
classification problem is represented this way, then in each c there is exactly one
component set to 1 and all other components are set to 0. A fuzzy system used for
classification is called a fuzzy classifier.

Definition 3.5 A fuzzy classifier is a fuzzy system

FR : X → Y,

with Y = [0, 1]m. Its rule base R consists of special kinds of fuzzy rules of the form

Rk = (µ
(1)
k , . . . , µ

(n)
k , cjk

),

where cjk
∈ C = {c1, . . . , cm} is a class label. We define

FR(x) = y = (y1, . . . , ym),

with
yj = ⊥

Rk∈R
con(Rk)=cj

{τk}

where ⊥ is a t-conorm and con(Rk) is the consequent of rule Rk.

The output of a fuzzy classifier is a vector whose components denote the degree of
membership of a processed pattern to the available classes. In many applications
a pattern must be assigned to a single class only. In this case the output vector
of a fuzzy classifier must be interpreted (or defuzzified). Usually a “winner takes
all” interpretation is used, i.e. the class with the largest degree of membership is
selected.

We interpret fuzzy systems as convenient models to linguistically represent (non-
linear) mappings [Zadeh, 1996]. The designer of a fuzzy system specifies charac-
terisitc points of an assumed underlying function. This function is unknown except
for those characteristic points. The fuzzy sets that are used to linguistically describe
those points express the degree of indistinguishability of points that are close to each
other. Fuzzy systems can be interpreted on the basis of equality relations [Kruse
et al., 1994a, Klawonn et al., 1995a]. This interpretation also provides a
formal justification of Mamdani’s approach.

20 CHAPTER 3. NEURO-FUZZY SYSTEMS

The advantages of applying a fuzzy system are the simplicity and the linguistic
interpretation of the approach. This allows for the inexpensive and fast development
and maintenance of solutions and thus enables us to solve problems in application
areas where rigorous formal analysis would be too expensive and time-consuming.

Fuzzy systems also have information compression capabilities. The fuzzy partitions
of the variables of a considered problem specify a certain granularity under which
data is processed [Zadeh, 1994a, Zadeh, 1994b]. The user can decide which
areas of the domain are less important for solving the problem under consideration
and can be treated with a coarse granularity. Important areas are processed with
finer granularity. The local approach of fuzzy systems also allows us to ignore areas
of the domain completely where no data is located that is relevant to the problem.

The design process of a fuzzy system is based on knowledge acquisition. It requires
an expert to specify fuzzy sets to partition all variables and a sufficient number of
fuzzy rules to describe the input/output relation of the problem of interest. Fuzzy
sets can be created by providing characteristic values for all variables and equality
relations that determine the degree of indistinguishability. The indistinguishability
is, on the one hand, required due to insufficient precision of measured input values
and it is, on the other hand, desired by the expert because there is no need to
distinguish values with small differences. The specified equality relations induce
fuzzy sets (fuzzy singletons) at the provided characteristic values and each tupel of
characteristic values constitutes a rule. For a complete description on how to design
fuzzy systems on the basis of equality relations see [Kruse et al., 1994a].

A fuzzy system that is constructed by knowledge acquisition alone, will usually not
perform as required when it is applied. A manual tuning process must usually be
appended to the design stage. This is because the expert can be wrong about the
location of the specified characteristic points, the number of rules, or the degree of
indistinguishability in certain areas of the data space. The tuning process results in
modifying the membership functions and/or the rule base of the fuzzy system.

This tuning process can be very time-consuming and error-prone. It is therefore use-
ful to support the design process of fuzzy systems by automatic learning approaches
that can make use of available data samples. One possible way to estimate the
parameters of a fuzzy system based on training data is to use learning methods that
are derived from artifical neural networks. Before we consider how to apply such
learning techniques we provide some fundamental notations on neural networks

3.2 Neural Networks

An (artificial) neural network implements a mapping from real vectors to real vectors
[Haykin, 1994, Rojas, 1996, Zell, 1994, Zurada, 1992]. For this purpose
they use a network of simple interconnected processing units (formal neurons) that

3.2. NEURAL NETWORKS 21

obtain weighted inputs and compute a single output value via a so-called activation
function. The connection weights are estimated by learning algorihtms, for example
by backpropagation [Werbos, 1974, Rumelhart et al., 1986a, Rumelhart
et al., 1986b] or its variants like quickpropagation or resilient propagation [Zell,
1994].

Learning algorithms of neural networks use a learning problem described by a set
of training data and iteratively update the parameters of a network such that some
error measure is decreased or some performance measure is increased. The training
data can consist of input and output data (supervised learning), of input data and
success or failure signals (reinforcement learning), or of input data alone (unsuper-
vised learning). If the training data also contains output data, we speak of a fixed
learning problem, otherwise we use the term free learning problem.

Definition 3.6 A fixed learning problem is given by a set

L̃ = {(x1,y1), . . . , (xs,ys)},
with an input pattern (vector) xi = (xi,1, . . . , xi,n) ∈ X = Xi× . . .×Xn and a target
output pattern (vector) yi = (yi,1, . . . , yi,m) ∈ Y = Y1 × . . . × Ym A pair (x,y) is
called training pattern. The set X is called domain or input set and the set Y is
called co-domain or output set. X×Y is called universe of discourse. A free learning
problem consists only of input patterns and is given by a set

L = {x1, . . . ,xs}.

Remark 3.7 The nature of the input set and the output set of a learning problem
depends on the kind of model that is created by learning. For the rest of this section
we assume that for neural networks X ⊆ IRn and Y ⊆ IRm holds.

A neural network can be generally seen as a formal structure that can be described
by a set and a few mappings. The following definition provides a generic model that
covers most neural network architectures [Nauck et al., 1997].

Definition 3.8 A neural network is a tuple (U,W,A,O,NET, ex), where

(i) U is a finite set of processing units (neurons),

(ii) W , the network structure, is a mapping from the Cartesian product
U × U to IR,

(iii) A is a mapping that assigns an activation function Au : IR
3 → IR to each

u ∈ U ,

(iv) O is a mapping that assigns an output function Ou : IR→ IR to each u ∈ U ,

22 CHAPTER 3. NEURO-FUZZY SYSTEMS

(v) NET is a mapping that assigns a network input function
NETu : (IR× IR)U → IR to each u ∈ U , and

(vi) ex is an external input function ex : U → IR, that assigns to each u ∈ U an
external input in the form of a real value exu = ex(u) ∈ IR.

To approximate a given function a neural network must have a suitable network
structure and the units must use suitable activation and output functions. The net-
work structure is often given in the form of a matrix (connection matrix, weight ma-
trix) where each entry specfies the connection strength (weight or synaptic weight)
between two units. If for any two units u, v we have W (u, v) = 0, we say that those
units are not connected. By setting certain weights to zero neural networks can as-
sume arbitrary structures. Usually layered structures are used, where there are one
input and one output layer and several hidden (inner) layers. Connections within
layers or between non-consecutive layers are not commonly used. Such networks
are also called feed-forward networks or perceptrons. In the case of layered network
architectures the network structure is usually given by several connection matrices,
one for each two interconnected layers.

Based on this generic model we can describe the two most common neural network
architectures used in applications – multilayer perceptrons (MLP) and radial basis
function networks (RBFN).

Definition 3.9 A multilayer perceptron is a neural network
MLP = (U,W,A,O,NET, ex) that has the following properties:

(i) U = U1∪. . .∪Un is a set of processing units (neurons) where n ≥ 3 is assumed.
Furthermore, Ui �= ∅ for all i ∈ {1, . . . , n} and Ui ∩ Uj = ∅ for i �= j. U1 is
called the input layer and Un the output layer. The Ui with 1 < i < n are
called hidden layers.

(ii) The network structure is given by the function W : U × U → IR. There exist
only connections between consecutive layers.
Thus, (u ∈ Ui ∧ W (u, v) �= 0) =⇒ v ∈ Ui+1 for all i ∈ {1, . . . , n− 1}.

(iii) A assigns an activation function Au : IR→ IR to each unit u ∈ U to calculate
the activation au with

au = Au(ex(u)) = ex(u)

for all u ∈ U1, and

au = Au(netu) = f(netu)

for all u ∈ Ui (i ∈ {2, . . . , n}), where all units use the same non-linear function
f : IR→ [0, 1].

3.2. NEURAL NETWORKS 23

(iv) O assigns an output function Ou : IR→ IR to each unit u ∈ U to calculate the
output ou, with ou = Ou(au) = au for all u ∈ U .

(v) NET assigns a network input (propagation) function
NETv : (IR × IR)U(i−1) → IR to each unit v ∈ Ui (2 ≤ i ≤ n) to compute the
network input netv, with

netv =
∑

u∈Ui−1

W (u, v) · ou + θv.

θv ∈ IR is the bias of unit v.

(vi) ex : U1 → IR assigns an external input exu = ex(u) to each input unit u ∈ U1.

The hidden units must use a non-linear activation function f . Multilayer systems
that consist only of linear units can always be represented by a network without
hidden layers. The output vector of a multilayer neural network is obtained by
several consecutive vector–matrix multiplications, each followed by an application
of the activation function. If the hidden units used a linear activation function,
all connection matrices could be multiplied into a single matrix, thus obtaining a
single-layer network.

The activation of the neurons is usually from the set [0, 1] or [−1, 1]. However, any
other real interval is also possible. Neurons with activations from, for example, {0, 1}
can be used for the model as well. If we restrict ourselves to a multilayer perceptron
with such binary units the function f can be chosen as a linear threshold function
as with the simple perceptron. In general, however, real-valued units as described in
the definition are used and, therefore, a continuous activation function is necessary.
The learning algorithm for multilayer perceptrons requires a differentiable activation
function.

The following sigmoid (S-shaped) functions are most frequently used as activation
functions (with α, β > 0):

• f(x) = α
1 + e−βx (logistic function, asymptotically approaches 0 and α)

• f(x) = α · tanh(βx) = α · eβx − e−βx

eβx + e−βx (asymptotically approaches −α and α),

• f(x) = α
π
(π

2
+ arctan(βx)) (asymptotically approaches 0 and α).

In all cases the steepness is determined by the parameter β.

It was shown that an MLP is a universal function approximator [Funahashi, 1989,
Hecht-Nielsen, 1989, Hecht-Nielsen, 1990, Hornik et al., 1989, Hornik

et al., 1990, White, 1990], i.e. an MLP with a potentially infinite number

24 CHAPTER 3. NEURO-FUZZY SYSTEMS

of hidden units that are organized within one hidden layer can approximate any
bounded continous function to any given degree of accuracy. In designing an MLP for
a given problem a suitable number of hidden units must be specified. If this number
is too small the MLP might not be able to solve the problem. If the number of hidden
units is too large, the MLP does not generalize well and tends to “memorize” the
training patterns instead. This means, the performance of the MLP on the training
set is very good, whereas the performance on previously unseen data is poor.

Each hidden unit of an MLP divides its input space by a hyperplane. The output
that is generated for an input vector depends on its relative position (and distance)
to all hyperplanes created by the network. This kind of procedure corresponds to a
global view – all points on the same side of a hyperplane belong to the same class
with regard to this special hyperplane.

An RBFN treats the input patterns locally. Each hidden unit uses a radial basis
function to compute its activation, and thus encompasses a subset of the input
space. An RBFN is based on the interpolation or approximation of a funciton by
the superposition of radial basis functions [Poggio and Girosi, 1989].

To interpolate an arbitrary continuous function f : IRn → IR samples xi ∈ IRn are
needed such that f(xi) = di is known. If s samples are given, an interpolation with
s basis functions is done as follows:

f(x) =
s∑

i = 1

wi · hxi
(x),

with s arbitrary basis functions hxi
: IRn → IR, i = 1, . . . , s. The centers of the basis

functions are the samples xi. Often a radial-symmetric function like

hxi
(x) = exp

(
− 1

2σ2 ||x− xi||2
)

is used, where || · || is an arbitrary vector norm, e.g. the Euclidean norm

||x|| =
√√√√ n∑

j=1

x2
j , with x = (x1, . . . , xn).

The solution of an interpolation problem like this is to specify a function f that
assumes the given values di at the s samples xi. For this s basis functions are
chosen, whose centers are given by the samples. The still undetermined factors wi

are found by solving a system of linear equations:

H ·w = d⇐⇒

h11 . . . h1s
...

...
...

hs1 . . . hss

 ·

w1
...

ws

 =

d1
...
ds

 ,

3.2. NEURAL NETWORKS 25

with hij = hxi
(xj). If all s supporting points are different from each other, the

matrix H is positive definite, and the system of equations has the unique solution
w = H−1 · d.
If not all samples are used as centers of basis functions but only a subset, we obtain
a function approximation problem, where we do not require that the function f
should assume the given values di at the samples xi. In this case, the matrix H is
no longer quadratic and thus the resulting system of equations is over-determined.
In this case the factors wi are determined by an approximate solution with the help
of the pseudo-inverse H+ of H:

w = H+ · d = (HT ·H)−1 ·HT · d.

An RBFN encodes such an intperpolation/approximation strategy in a three-layer
feed-forward neural network architecture.

Definition 3.10 A radial basis function network (RBFN) is a neural network
(U,W,A,O,NET, ex) with the network topology of an MLP and the following speci-
fications:

(i) U = UI ∪ UH ∪ UO, with input layer UI = {u1, . . . , un}, hidden layer
UH = {v1, . . . , vr} and output layer UO = {z1, . . . , zm}. The number r of
hidden units is not larger than the number s of training patterns of a fixed
learning problem L̃ which is given for the RBFN.

(ii) The weights W (u, v), with u ∈ UI and v ∈ UH , are given by r ≤ s arbitrary
but different input patterns of the learning problem L̃: W (uk, vi) = xji,k, with
k ∈ {1, . . . , n}, i ∈ {1, . . . , r}, ji ∈ {1, . . . , s}.

(iii) A assigns an activation function to each unit u ∈ U . For all input units u ∈ UI

the activation function Au is used to calculate the activation au:

au = Au(exu) = exu.

For all hidden units v ∈ UH the activation function Av to calculate the activa-
tion av is

av = Av(netv) = h(netv),

where h is a radial basis function in IR1 with 0 as its center.
For all output units w ∈ UO a linear activation function Aw is employed to
determine the activation

aw = Aw(netw) = netw.

26 CHAPTER 3. NEURO-FUZZY SYSTEMS

(iv) O assigns an output function Ou to each unit u ∈ U to calculate the output
ou, with ou = Ou(au) = au.

(v) NET assigns to each unit v ∈ UH and each unit w ∈ UO a network input
function (propagation function) NETv and NETw, respectively, to calculate
the network input netv and netw. For hidden units v ∈ UH the network input
is

netv = ||o−wv||
where o = (ou1 , . . . , oun) is the output vector of the input layer and
wv = (W (u1, v), . . . ,W (un, v)) is the weight vector of the hidden unit v. For
all output units w ∈ UO the network input is

netw =
∑

v∈UH

ov ·W (v, w) + θw,

where θw ∈ IR is the bias of unit w.

(vi) ex : UI → [0, 1] assigns to each input unit u ∈ UI its external input
exu = ex(u).

Remark 3.11 To obtain the structure of a neural network that complies with Def-
inition 3.8, Definition 3.10 splits up the multidimensional radial basis functions into
the computation of a vector norm and the computation of the distance from the
center point. The vector norm is calculated by the propagation function, and the
distance is determined by the activation function of a hidden neuron. The center of
the multidimensional RBF is encoded as the weight vector of a hidden unit.

However, from a more pragmatic point of view we can say that each hidden unit
represents a multidimensional RBF, without always explicitly considering that it is
actually represented in a distributed way.

If r = s holds for an RBFN, we speak of a simple RBFN. A simple RBFN creates
for each sample (training pattern) a hidden neuron (a basis function). In this case,
a system of linear equations can be solved for each output neuron and the solutions
determine the weights to the output layer. If with s training patterns s hidden units
are used, the result is an interpolation function that matches the given support
points. Obviously, this procedure is not appropriate for larger learning problems,
since the solution of the system of equations requires, for s training patterns, the
inversion of an s× s matrix. This incurs polynomial computation costs in the order
of O(s3).

Besides this, training data is usually noisy. Therefore one is less interested in an
interpolation function but more interested in a sufficient generalization of the train-
ing data and a suitable approximation function. For this reason, an RBFN usually
uses r � s hidden neurons and instead of interpolating the desired function it is

3.2. NEURAL NETWORKS 27

restricted to approximating it. In this case the weight vector can be determined by
an approximate solution with the help of the pseudo-inverse.

For an RBFN it is necessary to select the centers of the basis functions. Defini-
tion 3.10 demands that r arbitrary but different training patterns are chosen. This
is similar to the design problem of an MLP, where a suitable number of hidden units
must be determined. In the case of an RBFN not only the specification of r but
also the initialisation of the centers is difficult. A learning algorithm can update
the centers and weights of an RBFN during a training stage. However, unsuitable
centers can delay or even prevent the training success. Therefore the centers are
often selected by applying a cluster analysis to the training data first. The cluster
centers are used as centers for the radial basis functions.

For both MLP and RBFN, backpropagation is the most important learning method
to determine the parameters of a neural network. In an MLP the weights are
updated and in an RBFN the centers of the radial basis functions and the weights
to the output units are trained. We interpret backpropagation as an “idea of a
learning algorithm” and not as a specific implementation. Backpropagation is not
only restricted to neural networks but can also be applied to any parameterized
input/ouput system that computes outputs in a distributed way.

Backpropagation is a method to construct a learning algorithm to iteratively update
the parameters of an input/output system. An input/output system computes an
output and provides it at its output interface. The computation takes place by pro-
cessing some input provided at the input interface of the system. Backpropagation
(BP) contains the following steps:

(i) Determine the current output by propagating the current input (forward)
through the system from the input interface to the output interface (forward
path).

(ii) Determine an error or performance signal given the current output of a system.

(iii) Propagate the error/performance signal backwards through the system by dis-
tributing it via every path from the output interface to the input interface
(backward path).

(iv) For each parameter of the system that is reached during the backpropation of
the error/performance signal, locally compute

(a) a modification of this parameter and

(b) a modified error/performance signal that is backpropagated further.

(v) Repeat steps (i)–(iv) until the error/performance signal assumes a suitable
value.

28 CHAPTER 3. NEURO-FUZZY SYSTEMS

These steps can be summarized as follows: BP is a method to iteratively and locally
compute modifications for the parameters of a system based on an error signal
depending on the current output of the system.

The main feature of the idea of BP is that an error signal is distributed backwards
through the system architecture using the same information pathways that are used
to compute the output, only in the opposite direction. It is also important that the
modifications of the parameters are computed locally. This means that updating
one parameter does not depend on updating another paramter and in general allows
us to implement BP in a parallel fashion. Of course, implementational constraints
and the architecture of the specific system trained by BP will usually result in some
sequence in which parameters are updated. It is neither prescribed how to compute
the error or performance signal and its modification during backpropagation nor
how to determine the modifications of the parameters.

For neural networks like MLP and RBFN BP is usally implemented by a simple
gradient descent procedure or some variation of it. The error signal on the output
side is given by the difference (t(p)u −o(p)

u), where t(p)u is a target value for output unit
u given by the pth training pattern and o(p)

u is the actual output value of output
unit u caused by the progatation of the pth input pattern. The error of the whole
network over all training patterns is given by the sum of squared errors (SSE)

SSE =
1

2

∑
p∈L̃

E(p) =
1

2

∑
p∈L̃

∑
u∈UO

(t(p)u − o(p)
u)

2. (3.1)

For an MLP the weight updates ∆pW (u, v) are computed according to

∆pW (u, v) = η
∂E(p)

∂W (u, v)
,

where η ∈ IR+ is called step size or learning rate. In the literature the term “back-
propagation” is usually identified with the implemention of BP in the form of a
gradient descent procedure. To distinguish our notion of backpropagation from its
actual implementation we refer to the implementation given in the following defini-
tion as plain backpropagation (plain BP).

For an MLP with n ≥ 2 layers U = U1∪ . . .∪Un plain BP is implemented as follows.
After the pth input pattern was propagated we compute

∆pW (u, v) = η δ(p)
v a(p)

u

with u ∈ Ui−1, v ∈ Ui, 2 ≤ i ≤ n, η > 0 and

δ(p)
v =

f ′(net(p)v) (t

(p)
v − a(p)

v) if v ∈ Un

f ′(net(p)v)
∑

ṽ∈Uj+1

δ
(p)
ṽ W (v, ṽ) if v ∈ Uj, 2 ≤ j ≤ n− 1,

3.3. NEURO-FUZZY SYSTEMS 29

where f is a sigmoid activation function, a(p)
u is the activation of unit u after prop-

agation of the pth input pattern and t(p)v is the target output (activation) of output
unit v ∈ Un given by the pth target output pattern.

Instead of plain BP often backpropagation with momentum (BP with momentum)
is applied, where the modificaton of a weight is computed by

∆pW (u, v) = η δ(p)
v a(p)

u + β∆lastW (u, v)

where ∆lastW (u, v) is the most recent modification of W (u, v) and β ∈ IR+ is called
momentum.

Plain BP is also known as generalized delta rule and BP with momentum is also
known as conjugate gradient descent. For an implementation of BP for RBFN see,
for example, [Haykin, 1994, Nauck et al., 1997].

Plain BP and BP with momentum are usually slow learning algorithms and prone
to get stuck in local minima or to oscillate. Implementations like quickpropagation,
which assume a quadratic shape of the error surface and use second order derivatives
or implementations which use individual adaptive learning rates for each weight like
resilient propagation are usually much faster [Zell, 1994]. For the rest of the
thesis the exact implementations of BP in neural network models is not important,
as neuro-fuzzy methods discussed in the following need special learning algorithms
that only make use of the general idea of BP, as discussed above. For a discussion of
modern approaches in training neural networks see [Neuneier and Zimmermann,
1998].

3.3 Neuro-Fuzzy Systems

The idea of a neuro-fuzzy system is to find the parameters of a fuzzy system by
means of learning methods obtained from neural networks. In this chapter the basic
properties of neuro-fuzzy systems are discussed. The learning techniques that can
be used to create fuzzy systems for data are described in Chapters 4 and 5.

A common way to apply a learning algorithm to a fuzzy system is to represent it
in a special neural-network-like architecture. Then a learning algorithm – such as
backpropagation – is used to train the system. There are some problems, however.
Neural network learning algorithms are usually based on gradient descent methods.
They cannot be applied directly to a fuzzy system, because the functions used in
the inference process are usually not differentiable. There are two solutions to this
problem:

(a) replace the functions used in the fuzzy system (like min and max) by differen-
tiable functions, or

30 CHAPTER 3. NEURO-FUZZY SYSTEMS

(b) do not use a gradient-based neural learning algorithm but a better-suited pro-
cedure.

Modern neuro-fuzzy systems are often represented as multilayer feedforward neu-
ral networks. For an overview see, for example, [Buckley and Hayashi, 1994,
Buckley and Hayashi, 1995, Jang et al., 1997, Lin and Lee, 1996, Nauck

et al., 1997]. Jang’s ANFIS model [Jang, 1993], for example, implements a
Sugeno-like fuzzy system in a network structure, and applies a mixture of plain
backpropagation and least mean squares procedure to train the system. A Sugeno-
like fuzzy system uses only differentiable functions, i.e. for ANFIS solution (a) is
selected. The GARIC model [Berenji and Khedkar, 1992] also chooses solu-
tion (a) by using a special “soft minimum” function which is differentiable. The
problem with solution (a) is that the models are sometimes not as easy to inter-
pret as for example Mamdani-type fuzzy systems. Other models like NEFCON
[Nauck, 1994b, Nürnberger et al., 1999], NEFCLASS [Nauck and Kruse,
1997b] and NEFPROX [Nauck and Kruse, 1999a] use solution (b) – they are
Mamdani-type fuzzy systems and use special learning algorithms.

In addition to multilayer feedforward networks there are also combinations of fuzzy
techniques with other neural network architectures, for example self-organizing fea-
ture maps [Bezdek et al., 1992, Vuorimaa, 1994], or fuzzy associative mem-
ories [Kosko, 1992]. Some approaches refrain from representing a fuzzy system in
a network architecture. They just apply a learning procedure to the parameters of
the fuzzy system, or explicitly use a neural network to determine them.

There are several different approaches which have much in common, but differ in
implementational aspects. To stress the common features of all these approaches,
and to give the term neuro-fuzzy system a suitable meaning, we only apply it to
systems which possess the following properties:

(i) A neuro-fuzzy system is a fuzzy system that is trained by a learning algorithm
(usually) derived from neural network theory. The (heuristic) learning proce-
dure operates on local information, and causes only local modifications in the
underlying fuzzy system. The learning process is not knowledge-based, but
data-driven.

(ii) A neuro-fuzzy system can always (i.e. before, during and after learning) be
interpreted as a system of fuzzy rules. It is possible both to create the system
out of training data from scratch, and to initialize it from prior knowledge in
the form of fuzzy rules.

(iii) The learning procedure of a neuro-fuzzy system takes the semantical properties
of the underlying fuzzy system into account. This results in constraints on the
possible modifications of the system’s parameters.

3.3. NEURO-FUZZY SYSTEMS 31

(iv) A neuro-fuzzy system approximates an n-dimensional (unknown) function that
is partially given by the training data. The fuzzy rules encoded within the
system represent vague samples, and represent vague prototypes of the training
data. A neuro-fuzzy system should not be seen as a kind of (fuzzy) expert
system, and it has nothing to do with fuzzy logic in the narrow sense [Kruse
et al., 1994a].

(v) A neuro-fuzzy system can be represented by a special three-layer feedforward
neural network (see Definition 3.12). This view of a fuzzy system illustrates
the data flow within the system and its parallel nature. However, this neural
network view is not a prerequisite for applying a learning procedure, it is
merely a convenience.

The neuro-fuzzy technique, then, is used to derive a fuzzy system from data, or
to enhance it by learning from examples. The exact implementation of the neuro-
fuzzy model does not matter. It is possible to use a neural network to learn certain
parameters of a fuzzy system, like using a self-organizing feature map to find fuzzy
rules [Pedrycz and Card, 1992], or to view a fuzzy system as a special neural
network and to apply a learning algorithm directly [Nauck and Kruse, 1996].

A lot of neuro-fuzzy approaches use a neural network-like graph to illustrate the
data flow and the computations that are carried out in a fuzzy system. This neural
network representation is then used to formalize the application of a learning al-
gorithm. Many neuro-fuzzy approaches use a 5-layer feedforward or node-oriented
architecture as it is shown in Figure 3.2(a).

We call this representation node-oriented, because in this kind of representation all
membership function parameters of the fuzzy system reside inside the nodes of the
network and the connections are not needed to carry any parameters. This means,
from a neural network point of view, this architecture is not adaptive as long as there
are no weights attached to the connections. Such a node-oriented representation of
a fuzzy system is therefore often used for defining a neural network-like learning
algorithm based on adaptive weights that are attached to some of the connections.
This issue is discussed in detail in Section 5.1.

The layers of the network are not fully connected, but the connections are selected
such that they represent the rule base of the fuzzy system. The network in Fig-
ure 3.2(a) represents a fuzzy system with the following two fuzzy rules:

R1: if x1 is small and x2 is small then y is small
R2: if x1 is large and x2 is large then y is large

The meaning of the layers of the network representation in Figure 3.2(a) is as follows:

• input layer: input variables,

32 CHAPTER 3. NEURO-FUZZY SYSTEMS

� � � � � � � � � �

� � � � �

� � � � �

� � � � �

� � � �

� � � � �

� 	 � � � � � � � �

� � � � �

	 � � � � �

� � � � �

� (� +

�

� (� +

� � � �

� �

� � � � � � � � � � �

� � � � � � � � � �

� 	 � � � � � � � �

, � � � � � �

� � � � � � � � � �

, � � � � � �

� (� +

�

� +� (

�

��

�

� �

	 � � � � � � � � � � �

 � & &

Figure 3.2: Two fuzzy systems represented as a 5-layer feedforward network (a) and
as a 3-layer feedforward network with shared weights (b)

• antecedent layer: fuzzy sets used in linguistic terms of antecedents,
• rule layer: fuzzy rules,
• consequent layer: fuzzy sets used in linguistic terms of consequents,
• output layer: ouput variables.

If a learning algorithm is applied to modify parameters of the fuzzy system, this
would mean that parameters inside the nodes of the second and fourth layer are
modified. By storing the membership functions inside these layers, we ensure that
all fuzzy rules that are represented by the nodes of the third layer use the same set
of membership functions to represent linguistic terms.

Instead of the 5-layer network representation of a fuzzy system shown in Fig-
ure 3.2(a), we prefer a 3-layer or connection-oriented representation as it is shown
in Figure 3.2(b), where the connections carry fuzzy sets as weights. This repre-
sentation better corresponds with a neural network view where all parameters that
can be changed by a learning algorithm are located at the connections. In order to
ensure that each linguistic term is only represented by one fuzzy set, we use shared
weights (coupled connections).

3.3. NEURO-FUZZY SYSTEMS 33

The fuzzy system in Figure 3.2(b) consists of the two rules

if x1 is large and x2 is small then y is large
if x1 is small and x2 is large then y is large

In this example, the connections from the rule layer to the output layer share the
same (fuzzy) weight – large – which is represented as a fuzzy set over the domain of
the output variable y. A learning algorithm will recognise that the connections are
coupled and make sure that the weight is always identical for both connections.

The meaning of the layers of the network representation in Figure 3.2(b) is equivalent
to the layers in Figure 3.2(a) with the same names. In the 3-layer representation
the connections also encode parameters of a fuzzy system:

• the weights on the antecedent connections represent fuzzy sets used in linguis-
tic terms of antecedents,

• the weights on the consequent connections represent fuzzy sets used in linguis-
tic terms of consequents.

The networks in Figure 3.2 represent Mamdani-type fuzzy systems. This kind of net-
work representation can also be used to represent a simplified form of Sugeno-type
fuzzy systems, where the consequents consist of singletons instead of linear combi-
nations of the input variables. In this case the consequent weights in connection-
oriented network representation become singletons. The node-oriented network rep-
resentation could be used by storing the singletons in the nodes of the consequent
layer. However, this is usually not done, but the consequent layer is deleted such
that a 4-layer representation is created and the singletons are represented as weights
between rule layer and output layer. Such a 4-layer node-oriented representation is
used in [Siekmann et al., 1999] to predict the German stock index DAX by
implementing it in a neural network development software.

To represent a Sugeno-type fuzzy system that uses linear models in the consequents
of its rules, a network representation would require direct connections from the input
nodes to the output nodes.

If a fuzzy classifier must be represented in feedforward network, then the network
types shown in Figure 3.3 can be used. Because fuzzy classifiers do not use fuzzy
sets in the consequents of their rules, the rule nodes can be directly connected
via unweighted connections (or via connections with the constant weight 1) to the
output nodes which represent class labels. As each rule uses only one class label in
its consequent there is exactly one connection protruding from each rule node to the
output layer.

The node-oriented network representation in Figure 3.3(a) encodes a fuzzy classifier
with the two rules

34 CHAPTER 3. NEURO-FUZZY SYSTEMS

� � � � � � � � � �

� � � � �

� � � � �

� � � � �

� � � �

� � � � �

	 � � � � �

� � � � �

� (� +

� (� +

� � � �

� (� +

� � � � � � � � � � �

� � � � � � � � � �

� 	 � � � � � �

, � � � � � �

� � � � � � � � � �

, � � � � � �

� (� +

� +� (

�

��

�

	 � � � � � � � � � � �� +� (

((

 � & &

Figure 3.3: Different network representations of two fuzzy classifiers with two rules
and two classes

R1: if x1 is small and x2 is small then class c1

R2: if x1 is large and x2 is large then class c2

and the connection-oriented network representation in Figure 3.3(b) consists of the
two rules

R1: if x1 is small and x2 is small then class c1

R2: if x1 is small and x2 is large then class c2

Note that the connections x1 → R1 and x1 → R2 share the fuzzy set small as a
common weight.

A definition for a 3-layer fuzzy perceptron is given below. It provides a way to
represent a fuzzy system as a connection-oriented network. The name refers to
the structure of the model that is similar to an MLP. The term fuzzy (multilayer)
perceptron has also been used by other authors for their approaches [Keller and
Tahani, 1992, Mitra and Kuncheva, 1995, Pal and Mitra, 1992]. Here
this notion is used to describe the topology.

From a neural network point of view a fuzzy perceptron has the architecture of a
common multilayer perceptron, but the weights are modeled as fuzzy sets and the
activation, output, and propagation functions are changed accordingly, to implement
a common fuzzy inference path.

3.3. NEURO-FUZZY SYSTEMS 35

Definition 3.12 Let FR be a fuzzy system. A 3–layer fuzzy perceptron is a
(connection-oriented) network representation of a fuzzy system FR in the form of a
neural network (U,W,A,O,NET, ex) where

(i) U = U1 ∪ U2 ∪ U3 with
U1 = {x1, . . . , xn}, U2 = {R1, . . . , Rr}, U3 = {y1, . . . , ym}.

(ii) W , the network structure, is a partial mapping from U × U → F(IR) and is
given by

W (u, v) =

µ

(i)
j if u = xi, v = Rj

ν
(k)
j if u = Rj, v = yk

undefined otherwise

where 1 ≤ i ≤ n, 1 ≤ j ≤ r and 1 ≤ k ≤ m. In addition every two
connections with weights W (u, v) and W (u′, v′) become coupled connections,
if W (u, v) = W (u′, v′) and (u = u′, u, u′ ∈ U1 ∧ v �= v′, v, v′ ∈ U2) or
(u �= u′, u, u′ ∈ U2 ∧ v = v′, v, v′ ∈ U3) holds.

If W (u, v) and W (u′, v′) are coupled, then if W (u, v) is modified by a learning
algorithm, W (u′, v′) is modified in the same way and vice versa.

(iii) A is a mapping that assigns an activation function Au to each u ∈ U , with

Au : IR→ IR, au = Au(netu) = netu for u ∈ U1 ∪ U2 and

Au : F(IR)→ F(IR), au = Au(netu) = netu for u ∈ U3.

(iv) O is a mapping that assigns an output function Ou to each u ∈ U , with

Ou : IR→ IR, ou = Ou(au) = au for u ∈ U1 ∪ U2 and

Ou : F(IR)→ IR, ou = Ou(au) = defuzz(au) for u ∈ U3.

(v) NET is a mapping that assigns a network input function NETu to each u ∈ U ,
with

NETu : IR→ IR, netu = NETu(exu) = exu for u ∈ U1,

NETu : (IR×F(IR))U1 → [0, 1],

netu = �1
u′∈U1

{W (u′, u)(ou′)} for u ∈ U2 and

NETu : ([0, 1]×F(IR))U2 → F(IR),

netu : IR→ [0, 1],

netu(y) = ⊥
u′∈U2

{�2{ou′ ,W (u′, u)(y)}} for u ∈ U3.

36 CHAPTER 3. NEURO-FUZZY SYSTEMS

(vi) ex : U1 → IR, defines for each input unit u ∈ U1 its external input ex(u) = exu.
For all other units ex is not defined.

In [Nauck, 1994b, Nauck et al., 1997] we find a definition for a generic fuzzy
perceptron that is more general than the fuzzy perceptron of Definition 3.12, as it
does not enforce coupled connections. A generic fuzzy perceptron can be used to
derive neuro-fuzzy models for special domains, and can serve as a common founda-
tion to evaluate different neuro-fuzzy approaches by means of the same underlying
model.

In this thesis we are interested in creating an interpretable fuzzy system for data
analysis. One important feature of interpretable fuzzy systems is that no linguis-
tic expression is represented by more than one fuzzy set (Section 3.4). Therefore
we must take care that a connection-oriented network representation uses coupled
connections (shared weights), as required in Definition 3.12.

3.4 Interpretable Fuzzy Systems

for Data Analysis

This thesis is about neuro-fuzzy systems in data analysis. As we have seen in the
previous chapter, neuro-fuzzy systems are essentially fuzzy systems endowed with
learning capabilities inspired by neural networks. We must therefore consider what
advantages there are in using fuzzy systems for data analysis?

Fuzzy systems conveniently allow us to model a partially known dependency between
independent and dependent variables by using linguistic rules. By using linguistic
terms represented by fuzzy sets to describe values, we can select a certain granularity
under which the data is observed. We can use a fuzzy system both for predicting
values for the dependent variables and for knowledge representation.

Thus a fuzzy system can be regarded as a model that links models for prediction and
models for understanding. Usually models for prediction are either not interpretable
– they are black boxes like, e.g. neural networks – or they are only interpretable by
experts – regression models, for example, offer some interpretation of an underlying
process. Models for prediction usually do not need to bother with understandability.
Their objective is to create accurate predictions.

Models for understanding are usually represented in some kind of rule base, for
example, symbolic rules based on predicate calculus. Such rule bases can help to
understand an underlying process but building them is often only feasible for finite
categorical domains or if numeric domains are partitioned into crisp sets. Such rule
bases are less suitable for prediction because counterintuitive results can occur at
the boundaries of sets or domains. This is one of the problems of symbolic expert
systems [Dreyfus, 1979].

3.4. INTERPRETABLE FUZZY SYSTEMS FOR DATA ANALYSIS 37

Fuzzy systems have numeric interpolation capabilities and are therefore well-suited
for function approximation and prediction. On the other hand they partition vari-
ables by fuzzy sets that can be labeled with linguistic terms. Thus they also have
a symbolic nature and can be intuitively interpreted. However, there is a trade-off
between readability and precision. We can force fuzzy systems to arbitrary preci-
sion, but we then we lose interpretability. To be very precise, a fuzzy system needs
a fine granularity and many fuzzy rules. It is obvious that the larger the rule base
of a fuzzy system becomes the less interpretable it gets.

If we are interested in a very precise prediction, then we are usually not so much
interested in the interpretability of the solution. In this case we want to use another
feature of fuzzy systems: the convenient combination of local models to an overall
solution. For this, Sugeno-type models are more suited than Mamdani-type models
because they offer more flexibility in the consequents of the rules [Grauel and
Mackenberg, 1997]. However, if we need a precise model for prediction we should
consider whether a fuzzy system is the most suitable approach. Very similar to
Sugeno-type fuzzy systems are radial basis function networks, kernel regression or
B-spline networks [Bersini and Bontempi, 1997a, Brown and Harris, 1994].

If we are more interested in an interpretable solution, then a Mamdani-type fuzzy
system should be preferred, because the rule consequents consist of interpretable
fuzzy sets. If the fuzzy system is generated in a data analysis process by a neuro-
fuzzy learning procedure, then we must take into account that we will probably not
obtain a very precise solution. We cannot allow a learning algorithm to apply all
the possible modifications to the parameters of a fuzzy systems. For the sake of
interpretability we must constrain the learning procedure (see also Section 5.3).

In the area of data analysis the interpretability and simplicity of fuzzy systems are
the key advantage. Fuzzy systems are not better function approximators or classifiers
than other approaches. If we want to keep the model simple, the prediction is usually
less acurate. This means fuzzy systems should be used for data analysis, if an
interpretable model is needed that can also be used to some extent for prediction.
The interpretability of fuzzy systems is discussed, for example, in [Bersini and
Bontempi, 1997b, Bersini et al., 1998, Nauck and Kruse, 1997d, Nauck

and Kruse, 1998c, Nauck and Kruse, 1999b].

Interpretability of a model is especially important in areas

• where humans usually make decisions, but where machines can now support
the decision making process or even take full responsibility for it,

• where prior knowledge is to be used in the data analysis process and the
modification of this knowledge by a learning process must be checked,

• where solutions must be explained or justified to non-experts.

38 CHAPTER 3. NEURO-FUZZY SYSTEMS

Interpretability of a fuzzy model should not mean that there is an exact match
between the linguistic description of the model and the model parameters. This is
not possible anyway, due to the subjective nature of fuzzy sets and linguistic terms.
Usually it is not important that, for example, the term approximately zero be rep-
resented by a symmetrical triangular fuzzy set with support [−1, 1]. Interpretability
means that the users of the model can accept the representation of the linguistic
terms, more or less. The representation must roughly correspond to their intuitive
understanding of the linguistic terms. It is more important that the rule base is
small and thus comprehensible. It is also useful to note that interpretability itself
is a fuzzy and subjective concept.

Furthermore, interpretability should not mean that anybody can understand a fuzzy
system. It means that users who are at least to some degree experts in the domain
where the data analysis takes place can understand the model. Obviously we can-
not expect a lay person to understand a fuzzy system in a medical domain. It is
important that the medical expert who uses the model should understand it.

It can also be useful to distinguish between local interpretability and global inter-
pretability (Table 3.1). Usually we are interested in globally interpretable models,
i.e. models that can be understood as a whole and that provide an overview. But
sometimes, especially in technical processes, local interpretability may be sufficient.
In these cases there is knowledge about the local behaviour of the underlying process
and it is more important to accurately represent these local aspects. An overview
about the complete model is missing in these cases. Fuzzy controllers, for example,
are often locally interpretable [Babuska, 1998].

Table 3.1: Global and local interpretability

Global Interpretability Local Interpretability

the model can be understood as a
whole

only local aspects of the model
can be understood, the overview
is missing

coarse model fine model

few parameters many parameters

low precision, i.e. many errors =
high costs in application

high precision, i.e. few errors =
low cost in application

low costs in model creation high costs in model creation

From the viewpoint of a user we can formulate the following intuitive criterion for
the interpretability of a fuzzy system. We assume that the linguistic interpretability
of a fuzzy system is adequate if

3.4. INTERPRETABLE FUZZY SYSTEMS FOR DATA ANALYSIS 39

• it provides a rough idea about the underlying process or the relations within
the data,

• it sufficiently justifies the majority of observed output values,

• it is usable for explanations,

• it covers all important observed input/output situations (rare cases or excep-
tions might be ignored).

A neuro-fuzzy learning procedure for creating interpretable fuzzy systems in data
analysis must be simple and fast to allow a user to understand what it does and
to experiment with it. We prefer a tool-oriented, exploratory view on neuro-fuzzy
systems. We consider a neuro–fuzzy method to be a tool for creating fuzzy sys-
tems from data. The learning algorithm should take the semantics of the desired
fuzzy system into account, and adhere to certain constraints. The learning result
should also be interpreted, and the insights gained by this should be used to restart
the learning procedure to obtain better results if necessary. A neuro-fuzzy system
supports the user in finding a desired fuzzy system based on training data, but it
cannot do all the work. This view matches the exploratory nature of intelligent data
analysis (Section 2.1).

Semantical problems will occur if neuro-fuzzy systems do not have mechanisms to
make sure that all changes caused by the learning procedure are interpretable in
terms of a fuzzy system. The learning algorithms should be constrained such that
adjacent membership functions do not exchange positions, do not move from positive
to negative parts of the domains or vice versa, have a certain degree of overlapping,
etc. An interpretation in terms of a Mamdani-type fuzzy system may not be possible
if the evaluation of antecedents is not done by t-norms, but by certain special func-
tions. Sometimes this is done to allow the application of gradient descent learning.

The following points influence the interpretability of a fuzzy system:

• The number of fuzzy rules: a fuzzy system with a large rule base is less inter-
pretable than a fuzzy system that needs only few rules.

• The number of variables: high dimensional models are incomprehensible. Each
rule should use as few variables as possible.

• The number of fuzzy sets per variable: only a few meaningful fuzzy sets should
be used to partition a variable. A fine granularity not only increases the
number of linguistic terms for a variable, but also the number of possible
fuzzy rules increases exponentially with the number of variables and fuzzy
sets. A coarse granularity increases the readability of the fuzzy model.

40 CHAPTER 3. NEURO-FUZZY SYSTEMS

• Unambiguous representation of linguistic terms: each linguistic term must be
represented by only one fuzzy set. Different rules using the same linguistic
expression (e.g. x is small) may not represent the corresponding linguistic
term (e.g. small) by different fuzzy sets.

• No conflicts: there must be no rules in the rule base that have identical an-
tecedents but different consequents (complete contradiction). Only partial
contradiction is acceptable.

• No redundancy: no rule may appear more than once in the rule base. There
must also be no rule whose antecedent is a subset of the antecedent of another
rule.

• Characteristics of fuzzy sets: fuzzy sets should be “meaningful” to the user of
the fuzzy system. After training, the fuzzy partition of a variable should still be
reasonably similar to the partition provided by the user. At least the relative
position of the fuzzy sets must be maintained. Usually, a minimum/maximum
degree of overlapping must be enforced. Fuzzy sets should be normal and
convex and be interpretable as fuzzy numbers or fuzzy intervals (for numeric
variables, symbolic variables are discussed in Section 4.3).

The points given above must be observed by neuro-fuzzy learning techniques. In
Chapters 4 and 5 we will discuss these points together with the learning algorithms
presented there. The characteristics of the fuzzy sets are enforced by constraints
(Section 5.3). The number of parameters (rules, variables) can be decreased after
learning by pruning methods (Section 5.5). Fuzzy decision tree learning methods
try to use as few variables as possible from the beginning. The granularity of the
fuzzy system can only be determined by learning, if methods from cluster analysis
are used (Section 4.1). However, these methods have other problems connected with
interpretability as we shall see. Conflicts, redundany and ambiguity can be avoided
by proper implementation of the fuzzy system and the learning algorithm.

Chapter 4

Learning Fuzzy Rules from Data

The structure of a fuzzy system is given by its rules and by the granularity of the data
space, i.e. the number of fuzzy sets used to partition each variable. The parameters
of a fuzzy system are the shapes and locations of the membership functions.

Assume we want to determine whether there is a fuzzy system that yields an error
value below a given threshold ε for a particular learning problem. To do this we
can enumerate rule bases until we find such a fuzzy system or until all possible rule
bases are checked.

In order to restrict the number of possible rule bases, we examine a simplified sce-
nario where we consider Mamdani-type fuzzy systems that use q triangular fuzzy
sets for each variable. We assume that for each variable x ∈ [l, u] ⊂ IR, l < u, holds.
A membership function µa,b,c is given by three parameters a < b < c. Instead of
selecting parameters a, b, c ∈ IR, which would result in an infinte number of possible
membership functions, we sample the variables such that there are m + 2 samples
l = x0 < x1 < . . . < xm < xm+1 = u for each variable x. We assume m ≥ q.
The jth fuzzy set (j ∈ {1, . . . , q}) of x is given by µxkj−1

,xkj
,xkj+1

, kj ∈ {1, . . . ,m},
kj−1 < kj < kj+1. We define k0 = 0 and kq+1 = m + 1. Thus we obtain for each
variable x a fuzzy partition, where the degrees of membership add up to one for
each value of x. There are

(
m
q

)
possible fuzzy partitions for each variable.

A fuzzy set configuration is given by the fuzzy partitions for all variables. If there

are n variables, then we can choose between
(
m
q

)n
fuzzy set configurations. For each

configuration there are (q + 1)n possible rules, because a rule can either include a
variable by selecting one of its q fuzzy sets or the variable is not used by the rule.

A rule base can be any subset of all possible rules, i.e. there are 2((q+1)n) possible
fuzzy rule bases for each fuzzy set configuration. Altogether, there are

(
m

q

)n

2((q+1)n)

41

42 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

possible fuzzy rule bases.

These considerations show that finding an appropriate fuzzy system by simply enu-
merating fuzzy rule bases becomes intractable even for moderate values of n, q and
m. Thus there is a need for data driven heuristics to create fuzzy systems. In this
and in the following chapter we discuss such methods.

Both structure and parameters can be derived from training data. Before the pa-
rameters of a fuzzy system can be optimized in a training process the structure –
the rule base – must be determined. One benefit of fuzzy systems is that the rule
base can be created from expert knowledge. However, in many applications expert
knowledge is only partially available or not at all. In these cases it must be possible
to create a rule base from scratch relying only on the training data.

If the granularity and the rules are to be determined at the same time, then unsuper-
vised learning like cluster analysis can be used, as described in Section 4.1. These
approaches have drawbacks when the resulting rule base must be interpretable.
Readability of the solution can be guaranteed more easily, if the granularity of the
data space is defined in advance and the data space is structured by pre-defined fuzzy
partitions for all variables. Section 4.2 describes supervised rule learning algorithms
that are based on a structured data space.

Reinforcement learning [Kaelbling et al., 1996] is a special form of supervised
learning that can be used for rule learning in fuzzy control applications. Such
algorithms are not considered, because problems where reinforcement signals are
used instead of unknown output values are not relevant for data analysis problems.
For an overview on reinforcement learning in fuzzy systems see [Nauck, 1994b,
Nauck et al., 1997]. Recent advances can be found in [Nürnberger et al.,
1999].

When real world data sets must be analysed we often have to deal with different types
of variables on different scales, i.e. nominal scales (categorical or symbolic data),
ordinal scales, or interval and ratio scales (both metric). Data analysis approaches
often have problems handling symbolic and numeric data at the same time. The
most common approach is to either represent symbols numerically or to use intervals
for numeric data.

For example, neural networks, many statistical procedures like regression and cluster
analysis or pattern analysis methods rely on metric data. To process nominal scaled
data these approaches usually represent them on artificial metric scales. This can
lead to undesired results, because the approaches interpret distances and ratios
between values, which are actually meaningless for numerically represented symbols.

Approaches like decision trees [Quinlan, 1993], Bayesian networks [Kruse et al.,
1991, Pearl, 1988] or logic-based approaches work best with symbolic data, or
at least discrete finite domains. To deal with continuous variables, they must use
intervals. This approach can become computationally expensive, if many intervals

4.1. STRUCTURE LEARNING 43

must be used, or counterintuitive results can be produced due to improperly selected
interval boundaries.

Fuzzy systems are not dependent on the scales of the data they process. One of
their biggest benefits for data analysis is that they can provide solutions that are
interpretable in terms of the involved variables. It would therefore be useful to
be able to create fuzzy rules from data that contain symbolic variables without
representing them numerically. In Section 4.3 a rule learning algorithm for such a
scenario is described.

In processing real world data we often must deal with missing values. Many neuro-
fuzzy learning algorithms cannot cope with this problem and simply delete incom-
plete patterns from the learning problem. This, however, can lead to a substantial
or even inacceptable loss of training data. An approach to learning fuzzy rules if
the data contain missing values is described in Section 4.4. The last section of this
chapter anlyzes the complexity of the discussed learning algorithms.

4.1 Structure Learning

Before a fuzzy system can be optimized in a training process, its structure must be
defined, i.e. a fuzzy rule base must be created. In this Section we discuss three gen-
eral approaches: cluster-oriented, hyperbox-oriented and structure-oriented fuzzy
rule learning. The first two approaches create fuzzy rules and fuzzy sets at the same
time. The third approach needs initial fuzzy partitions for all variables to create a
rule base.

Cluster-oriented and Hyperbox-oriented
Fuzzy Rule Learning

Cluster-oriented methods try to group the training data into clusters and use them
to create rules. Fuzzy cluster analysis [Bezdek, 1981, Bezdek et al., 1998]
can be used for this task by searching for spherical or hyperellipsoidal clusters. The
clusters are multidimensional (discrete) fuzzy sets which overlap. An overview on
several fuzzy clustering algorithms can be found, for example, in [Höppner et al.,
1999].

Each fuzzy cluster can be transformed into a fuzzy rule, by projecting the degrees of
membership of the training data to the single dimensions. Thus for each cluster and
each variable a histogram is obtained that must be approximated either by connect-
ing the degrees of membership by a line, by a convex fuzzy set, or – more preferably
– by a parameterized membership function that should be both normal and convex
and fits the projected degrees of memberships as well as possible [Klawonn and

44 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Kruse, 1995, Sugeno and Yasukawa, 1993]. This approach can result in forms
of membership functions which are difficult to interpret (see Figure 4.1)

(

� � &

�

� � � � 	 � � � � � � 	 � � � � �

� � � � � � � � � � �
 � - - � � � � �

� � � � 	 � � � � � � 	 � � � � �

� 	 � � � � �
 � - - � � � � �

. 	 � � � � � � 	 � � 	
 � � � � � � � � � � � � �

� � � � � � � � 	
 � � � � � � � � � �

Figure 4.1: Creation of a fuzzy set from projected degrees of membership

�

�

�

�

�

Figure 4.2: If clusters in the form of hyperellipsoids are projected to obtain fuzzy
rules, a loss of information occurs and unusual fuzzy partitions can be
obtained

This procedure also causes a loss of information because the Cartesian product of
the induced membership functions does not reproduce a fuzzy cluster exactly (see
Figure 4.2). This loss of information is strongest in the case of arbitrarily oriented
hyperellipsoids. To make this problem easier to handle, it is possible to search for
axes–parallel hyperellipsoids only [Klawonn and Kruse, 1997].

The fuzzy rule base obtained by projecting the clusters is usually not easy to inter-
pret, because the fuzzy sets are induced individually for each rule (Figure 4.2). For

4.1. STRUCTURE LEARNING 45

each feature there will be as many different fuzzy sets as there are clusters. Some
of these fuzzy sets may be similar, yet they are usually not identical. For a good
interpretation it is necessary to have a fuzzy partition of few fuzzy sets where each
clearly represents a linguistic concept (see discussion in Section 3.4).

The loss of information that occurs in projecting fuzzy clusters can be avoided, if the
clusters are hyperboxes and parameterized multidimensional membership functions
are used to represent a cluster. As in fuzzy cluster analysis the clusters (hyperboxes)
are multidimensional overlapping fuzzy sets. The degree of membership is usually
computed in such a way that the projections of the hyperboxes on the individual
variables are triangular or trapezoidal membership functions (Figure 4.3)

�

�

�

�

� �

����������� ��������������������������� �

Figure 4.3: Hyperboxes as multidimensional fuzzy sets

Hyperbox-oriented fuzzy rule learning is usually supervised. For each pattern of the
training set that is not covered by a hyperbox, a new hyperbox is created and the
output of the training pattern (class information or output value) is attached to
this new hyperbox. If a pattern is incorrectly covered by a hyperbox with different
output, this hyperbox is shrunk. If a pattern is correctly covered by a hyperbox
it is enlarged to increase the degree of membership for the pattern. Figure 4.4
demonstrates this approach for the XOR problem.

�

�

�

�

�

�

�

�

Figure 4.4: The XOR problem solved by creating four hyperboxes

Like in fuzzy cluster analysis fuzzy rules can be created by projecting the hyperboxes
(see Figure 4.5). Thus the learning algorithm creates a rule base and membership

46 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

�

�

Figure 4.5: Searching for hyperboxes to create fuzzy rules and fuzzy sets

functions at the same time. However, each fuzzy rule creates its own fuzzy sets for
each variable and this usually results in rule bases that cannot be interpreted very
well.

Hyperbox-oriented fuzzy rule learning is computationally less demanding than fuzzy
cluster analysis and can create solutions for benchmark problems in pattern recog-
nition or function approximation very fast [Berthold and Huber, 1999, Tschi-
chold Gürman, 1996]. If there are no contradictions in the training patterns and
if there is only one output variable, then hyperbox-oriented learning algorithms can
create solutions with no errors on the training data. In the worst case this leads to
a situation, where each training pattern is covered by its indvidual hyperbox.

Grid clustering [Klawonn and Keller, 1997, Keller and Klawonn, 1998] is
a method that can be viewed as a combination of several fuzzy rule learning methods.
Each domain is partitioned by fuzzy sets. Then an unsupervised learning algorithm
modifies the fuzzy sets to improve the partitioning of the data space. It is required
that for each pattern the degrees of membership add up to 1. This approach can be
viewed as a cluster anlysis, where the clusters are hyperboxes which are aligned on
a grid. It can therefore also be interpreted as hyperbox-oriented. Because the data
space is structured by predefined fuzzy sets it can also be viewed as a structure-
oriented learning method as discussed in Section 4.2. The clusters are given by
membership functions and not vice versa. Therefore the rule base obtained by grid

4.1. STRUCTURE LEARNING 47

clustering can be well interpreted, because the fuzzy rules do not use individual
fuzzy sets.

It is also possible to use neural networks to create fuzzy rule bases. RBF networks
(Definition 3.10) can be used to obtain a (Sugeno-type) fuzzy rule base. An RBF
network uses multi-dimensional radial basis functions in the nodes of its hidden
layer. Each of these functions can be interpreted as a fuzzy cluster. If the RBF
network is trained by a gradient descent procedure it adjusts the location of the
radial basis functions and – depending on the type of network – also their size and
orientation. A fuzzy rule base is determined after training by projecting the radial
basis functions.

Pedrycz and Card suggested a way to linguistically interpret Kohonen’s self-organiz-
ing feature maps (SOM) [Kohonen, 1984] in order to create a fuzzy rule base
[Pedrycz and Card, 1992]. A feature map is used to perform a cluster analysis
on the training data and thus to reduce the data set to a set of prototypes represented
by neurons. The prototypes are then used to create a fuzzy rule base by a structure-
oriented approach as they are discussed in Section 4.2.

Kosko suggested a cluster-oriented approach to fuzzy rule learning that is based on
his FAM model (Fuzzy Associative Memory) [Kosko, 1992]. Kosko uses a form
of adaptive vector quantization that is not topology preserving as in the case of
a SOM. In addition, Kosko’s procedure determines weights for the resulting fuzzy
rules. The problems of using weighted rules is discussed in Section 5.1

All the approaches that are discussed above have drawbacks when interpretable fuzzy
systems for data analysis must be created. Cluster-oriented and hyperbox-oriented
approaches to fuzzy rule learning both have the following problems:

• each fuzzy rule uses individual fuzzy sets,
• fuzzy sets obtained by projection are hard to interpret linguistically,
• they can only be used for metric data, and
• they cannot cope with missing values.

Cluster-oriented approaches also have the following restrictions:

• they are unsupervised and do not optimize an output error or performance
measure,

• a suitable number of clusters must be determined by repeating the cluster
analysis with an increasing number of clusters until some validity measure
assumes a local optimum,

• the algorithms can become computationally very expensive, especially if clus-
ters are arbitrarily rotated hyperellipsoids and

48 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

• a loss of information occurs, if fuzzy rules are created by projection.

Grid clustering does not have most of the drawbacks of fuzzy cluster analysis, and
it creates interpretable fuzzy rule bases. However, it is an unsupervised method and
therefore its application is restricted.

Fuzzy cluster analysis is very well suited in segmentation tasks [Grauel et al.,
1997, Höppner et al., 1999] – especially in areas where linguistic interpretation
plays a minor role. In data analysis fuzzy cluster analysis can be helpful during
preprocessing. The cluster analysis can reveal how many rules are needed to suitably
partition the data space and can give some insights into the data. It is possible to
map the fuzzy sets obtained by clustering to previously defined fuzzy sets [Klawonn
et al., 1995b, Nauck and Klawonn, 1996] and thus obtain an initial rule base
that can be tuned further by training the membership functions (see Chapter 5).

Because the main objective of the data analysis approaches discussed in this thesis
is to create interpretable fuzzy rule bases, cluster-oriented and hyperbox-oriented
approaches to fuzzy rule learning are considered to be less useful in this context.

Structure-oriented Fuzzy Rule Learning

Structure-oriented approaches can be seen as special cases of hyperbox approaches
that do not search for clusters in the data space, but select hyperboxes from a
grid structure. By providing (initial) fuzzy sets for each variable the data space is
structured by overlapping hyperboxes (compare Figure 4.6). This way of learning
fuzzy rules was suggested by Wang and Mendel [Wang and Mendel, 1991, Wang
and Mendel, 1992].

To apply the Wang&Mendel algorithm all variables are partitioned by fuzzy sets. For
this purpose equidistant overlapping triangular or trapezoidal membership functions
are usually used. By this means the feature space is partitioned by overlapping
multidimensional fuzzy sets whose support is a hyperbox. Rules are created by
selecting those hyperboxes that contain data. Wang and Mendel designed their
algorithm to create fuzzy systems for function approximation. In order to mediate
between different output values for the same combination of input values, they used
weighted rules. In [Wang and Mendel, 1992] a proof can be found that this
algorithm can create fuzzy rule bases that can approximate any real continuous
function over a compact set to an arbitrary accuracy.

In [Higgins and Goodman, 1993] a variation of the Wang&Mendel algorithm
was suggested: this creates fuzzy partitions during rule creation by refining the
existing partitions. The algorithm begins with only one membership function for
each variable, such that the whole feature space is covered by one large hyperbox.
Subsequently, new membership functions are inserted at points of maximum error
by refining the fuzzy partitions of all variables. Then the old rules are discarded and

4.1. STRUCTURE LEARNING 49

a new set of rules is generated based on the new fuzzy partitions. This procedure is
iterated until a maximum number of fuzzy sets is created or the error decreases below
some threshold. This algorithm was created in order to compensate for a drawback
of the Wang&Mendel algorithm, which has problems modeling extreme values of
the function to be approximated. However, the Higgins&Goodman algorithm tends
to fit outliers because it concentrates on areas with large error.

Fuzzy decision trees are another approach to structure-oriented fuzzy rule learning.
Induction of decision trees [Quinlan, 1986, Quinlan, 1993] is a very popular
approach in data analysis to generate classification or regression models. Decision
trees are based on discriminative learning algorithms working by means of recursive
partitioning. The data space is partitioned in a data-driven manner and the partition
is represented as a tree. A decision tree can be transformed into a rule base, by
following each path from the root node to a leaf node. Well-known algorithms
are, for example, ID3 [Quinlan, 1986] for symbolic domains and C4.5 [Quinlan,
1993] that can also incorporate numeric variables. Both approaches are applied to
classification problems. CART [Breiman et al., 1984] is an approach that can
create decision trees for classification and regression.

Algorithms for building decision trees at the same time try to optimize the perfor-
mance of the tree and to create a tree as small as possible. This is done by selecting
attributes to be included into the tree according to some information theoretical
measure like, for example, information gain [Quinlan, 1993]. A comparative study
on different selection measures can be found in [Borgelt and Kruse, 1998].

Fuzzy decision trees [Boyen and Wehenkel, 1999, Ichihashi et al., 1996,
Janikow, 1996, Janikow, 1998, Yuan and Shaw, 1995] extend the idea of
decision tree learning to the domain of fuzzy systems. Instead of propagating a
pattern through the tree based on crisp tests on attribute values, fuzzy tests are
used. Each variable of the considered problem must be previously partitioned by
fuzzy sets. A test of an attribute in a fuzzy decision tree means determining the
degree of membership of the attribute value to a fuzzy set.

Fuzzy decision trees can be viewed as a structure-oriented rule learning procedure
with concurrent structure optimization. By selecting attributes with high informa-
tion content first, it may turn out that not all variables are needed to solve the
learning problem. However, this approach is heuristic and there is no guarantee
that the induced tree is optimal in some sense – either in structure (size) or in
performance.

The advantage of fuzzy decision tree learning is that not all variables must be in-
cluded in the rule base at once, as is the case for other structure-oriented or cluster-
oriented rule learning approaches which becomes difficult for high-dimensional learn-
ing problems. By restricting the height of the tree small rule bases can be enforced
even for high-dimensional problems, if a possible loss of performance can be toler-
ated.

50 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Because the induction of a decision tree is based on heuristics, it can happen that rule
learning procedures that include all variables at once produce better results with the
drawback of a large rule base. But if a pruning algorithm is applied to such a large
rule base it is often possible to reduce the rule base and to retain the performance. In
the following we will therefore concentrate on structure-oriented learning algorithms
that use all variables in the beginning. After training, the created fuzzy systems are
optimized by pruning methods as discussed in Section 5.5).

Compared to fuzzy clustering or hyperbox-oriented approaches, structure-oriented
approaches to fuzzy rule generation have the following advantages:

• they can create rule bases that can easily be interpreted linguistically
• they are very fast and computationally inexpensive,
• they are very easy to implement,
• they can be used if the data contains numeric and non-numeric attributes,
• they can be used if the data contains missing values.

Structure-oriented approaches to fuzzy rule learning are therefore more suitable in
data analysis. In the following section we present algorithms to create Mamdani-
type fuzzy rule bases for function approximation and classification. Afterwards we
show how these algorithms can be extended to handle non-numeric attributes and
missing values.

4.2 Learning Mamdani-type Fuzzy Rules

The algorithms presented in this section are extensions to the approach by Wang &
Mendel [Wang and Mendel, 1992] and are used by the neuro-fuzzy approaches
NEFCLASS [Nauck and Kruse, 1995, Nauck and Kruse, 1997b, Nauck
and Kruse, 1998b] and NEFPROX [Nauck and Kruse, 1997a, Nauck and
Kruse, 1998c, Nauck and Kruse, 1999a]. NEFCLASS is used for classification
problems and NEFPROX for function approximation. The rule learning algorithms
for both approaches refrain from using rule weights and determine the best conse-
quent for a rule by a performance measure or by using an average value. In addition
the algorithm tries to reduce the size of the rule base by selecting only a number of
rules depending on their performance or on the coverage of the training data. This
algorithm is now described in detail.

All variables of the considered problem must be partitioned by fuzzy sets before
rule learning can take place. If a domain expert or a user provides these fuzzy sets
and labels them appropriately, then these labels can be taken as the “vocabulary”

4.2. LEARNING MAMDANI-TYPE FUZZY RULES 51

used to describe the problem solution represented by the rule base to be learned.
If the fuzzy sets are selected such that they are meaningful to the user, then the
interpretability of the rule base depends only on the number of rules and variables
(compare Section 3.4). The fuzzy sets can be selected individually for each variable in
order to model individual granularities under which the variables are to be observed.
Thus a user can hide unwanted information or focus on important areas of the
domains of the variables.

Even if a user does not want to individually specify fuzzy sets and prefers to simply
use fuzzy partitions of equidistant overlapping membership functions like triangular,
trapezoidal or bell-shaped functions, the interpretability of the created rule base will
be high. Such fuzzy sets can be conveniently interpreted as fuzzy numbers or fuzzy
intervals. Besides, there will be no individual fuzzy sets for each rule as in cluster-
oriented or hyperbox-oriented rule learning methods. All created rules share the
same fuzzy sets. Thus it is not possible that a linguistic value is represented by
different fuzzy sets in a rule base.

The number of membership functions also defines the granularity of the data space.
If there are n (input + output) variables, then each hyperbox is a Cartesian product
of n fuzzy sets, one from each variable. The number of hyperboxes is equal to the
number of all possible fuzzy rules that can be created using the given fuzzy sets.

� � � � � � 	
 � � � � � � 	

�

�

��
�
��

�
	

��
�

��
�
	

Figure 4.6: Structure-oriented approaches use initially defined fuzzy sets to
structure the data space by overlapping hyperboxes, which rep-
resent fuzzy rules

From an implementation point of view there is no definite requirement to actually
create all these hyperboxes (fuzzy rules) and store them in the memory of a learning
algorithm. The rules are created on the fly by processing the training data set twice.
In the beginning, the rule base is either empty, or contains some rules provided as
prior knowledge. In the first cycle all the required antecedents are created. For each

52 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

point of the data set that is used for rule creation a combination of fuzzy sets is
selected. This is done by finding, for each variable, the membership function that
yields the highest degree of membership for the current input value. If an antecedent
combined from those fuzzy sets does not yet exist in the list of antecedents, it is
simply added to it. In the second cycle the best consequent for each antecedent is
determined and the rules are completed. The maximum number of rules is bound
from above by

min

{
s,

n∏
i

qi

}

where s is the cardinality of the training data set and qi is the number of fuzzy
sets provided for variable xi. If the training data has a clustered structure and
concentrates only in some areas of the data space, then the number of rules will be
much smaller then the theoretically possible number of rules. The actual number
of rules will normally be bound by criteria defined by the user like “create no more
than k rules” or “create so many rules that at least p% of all training data are
covered”.

The suitability of the rule base depends on the initial fuzzy partitions. If there
are too few fuzzy sets, groups of data that should be represented by different rules
might be covered by a single rule only. If there are more fuzzy sets than necessary
to distinguish different groups of data, too many rules will be created and the in-
terpretability of the rule base decreases. The example in Figure 4.6 shows three
clusters of data that are represented by the following three rules:

if x is small then y is large
if x is medium then y is small
if x is large then y is medium

In Algorithms 4.1 – 4.4 we present procedures for structure-oriented fuzzy rule learn-
ing in classification or function approximation problems. The algorithms are imple-
mented in the neuro-fuzzy approaches NEFCLASS and NEFPROX. Depending on
the problem the consequent of a rule is either a a class label or a fuzzy set. Here we
consider Mamdani-type algorithms only. However, the algorithms can be extended
easily to Sugeno-type fuzzy rules by providing suitable initial linear models as con-
sequents for the rules. The coefficients of the linear models can be determined, for
example, by the ANFIS algorithm afterwards (see Section 5.2).

We begin with the NEFCLASS rule learning algorithm (Algorithms 4.1 – 4.3) which
uses the following notations:

• L̃: a set of training data (fixed learning problem) with
∣∣∣L̃∣∣∣ = s, which repre-

sents a classification problem where patterns p ∈ IRn are to be assigned to m
classes C1, . . . , Cm, with Ci ⊆ IRn.

4.2. LEARNING MAMDANI-TYPE FUZZY RULES 53

• (p, t) ∈ L̃: a training pattern consists of an input vector p ∈ IRn and a target
vector t ∈ [0, 1]m. The target vector represents a possibly vague classification
of the input pattern p. The class index of p is given by the index of the largest
component of t: class(p) = argmaxj{tj}.
• R = (A,C): a fuzzy classification rule with antecedent ant(R) = A and con-

sequent con(R) = C, where A = (µ
(1)
j1 , . . . , µ

(n)
jn
) and C is a class. We use both

R(p) and A(p) to denote the degree of fulfilment of rule R (with antecedent

A) for pattern p, i.e. R(p) = A(p) = min{µ(1)
j1 (p1), . . . , µ

(n)
jn
(pn)}.

• µ
(i)
j : jth fuzzy set of the fuzzy partition of input variable xi. There are qi

fuzzy sets for variable xi.

• cA: a vector with m entries to represent the accumulated degrees of member-
ship to each class for all patterns with A(p) > 0; cA[j] is the jth entry of
cA.

• PR ∈ [−1, 1]: a value representing the performance of rule R:

PR =
1

s

∑
(p,t)∈L̃

(−1)cR(p), with c =

{
0 if class(p) = con(R),
1 otherwise.

(4.1)

At first, the rule learning algorithm detects all rule antecedents that cover some
training data and creates a list of antecedents. In the beginning this list is either
empty, or it contains antecedents from rules given as prior knowledge. Each time
an input training pattern is not already covered by an antecedent from the list, a
new antecedent is created and stored (Algorithm 4.1). Next, the algorithm selects
an appropriate consequent for each antecedent A and creates a list of rule base
candidates. For each antecedent, that specific class is selected that accumulated the
largest value in the antecedent’s vector cA. A performance measure P ∈ [−1, 1] is
computed for each rule indicating its unambiguity. For P = 1 a rule is general and
classifies all training patterns correctly. For P = −1 a rule classifies all training
patterns incorrectly. For P = 0 either misclassifications and correct classifications
of a rule are more or less equal, or the rule covers no patterns at all. Only rules
with P > 0 are considered to be useful.

The last part of the learning procedure is given by Algorithms 4.2 and 4.3. They
select the final rule base from the list of rule base candidates computed by Algo-
rithm 4.1. The number of rules is determined by one of the following two criteria:

(i) The size of the rule base is bound by kmax, a value that is specified by the
user.

(ii) The size of the rule base is chosen such that each training pattern is covered
by at least one rule.

54 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Algorithm 4.1: The NEFCLASS rule learning algorithm

1: for all patterns (p, t) ∈ L̃ do (* there are s training patterns *)
2: for all input features xi do
3: µ

(i)
ji
= argmax

µ
(i)
j ,j∈{1,...,qi}

{µ(i)
j (pi)};

4: end for
5: Create antecedent A = (µ

(1)
j1 , . . . , µ

(n)
jn
);

6: if (A �∈ list of antecedents) then
7: add antecedent A to list of antecedents;
8: end if
9: end for

10: for all patterns (p, t) ∈ L̃ do (* sum up degrees of fulfilments *)
11: for all A ∈ list of antecedents do (* of antecedents for each class *)
12: cA[class(p)] = cA[class(p)] + A(p);
13: end for
14: end for
15: for all A in list of antecedents do
16: j = argmax

i∈{1,...,m}
{cA[i]};

17: create rule R with antecedent A and consequent Cj;
18: add R to list of rule base candidates;

19: PR =
1

s
(cA[j]−

∑
i∈{1,...,m}, i�=j

cA[i]); (* performance of rule R *)

20: end for
21:
22: if (select best rules) then
23: SelectBestRules; (* see Algorithm 4.2 *)
24: else if (select best rules per class) then
25: SelectBestRulesPerClass; (* see Algorithm 4.3 *)
26: end if

4.2. LEARNING MAMDANI-TYPE FUZZY RULES 55

The learning procedure provides two evaluation procedures:

(i) “Best rules”: the best rules are selected based on the performance measure
such that the criterion for the rule base size is fulfilled (Algorithm 4.2). In this
case it may happen, that some classes are not represented in the rule base, if
the rules for these classes have low performance values.

(ii) “Best rules per class”: for each of the m classes the next best rule is selected
alternately until the criterion for the rule base size is fulfilled (Algorithm 4.3).
This usually results in the same number of rules for each class. However, this
may not be the case, if there are only few rules for some of the classes, or if
many rules of some of the classes are needed to fulfil the second rule base size
criterion (cover all patterns).

If the rule learning procedure presented in Algorithm 4.1 is to be used to create
fuzzy rules for function approximation purposes, the selection of consequents must
be adapted. We consider now a training set that contains patterns (p, t) with
p ∈ IRn and t ∈ IR, i.e. we want to approximate an unknown function f : IRn → IR,
f(x1, . . . , xn) = y based on the training data. We have n input variables xi ∈ Xi ⊆ IR
and one output variable y ∈ [ymin, ymax] ⊂ IR with the range yr = ymax − ymin. We
consider one output dimension only for the sake of simplicity. The algorithm can be
easily extended to create fuzzy rules with multiple output values.

In the following we present the NEFPROX learning procedure (Algorithm 4.4)
[Nauck and Kruse, 1998c]. To determine consequent fuzzy sets, it computes
a weighted average t̄ (see Eq. 4.2) of the target output values for all patterns that
have non-zero membership with an antecedent A discovered in the data. The con-
sequent fuzzy set C that completes a rule R = (A,C) is either picked from exisiting
fuzzy sets for the output variable y, or it is generated such that C(t̄) = 1. The kind
of membership function (e.g. triangular, trapezoidal, bell-shaped) that is generated
depends on the preference of the user. A new output fuzzy set will be generated,
if there is no available output fuzzy set ν with ν(t̄) > θ, where θ is a user-defined
threshold value. Usually θ = 0.5 is selected and all newly generated fuzzy sets are
of the same kind and have a fixed width for their supports. Thus a fuzzy partition
of equidistant fuzzy sets with ∀y : ∑ν ν(y) = 1 is created automatically. It is also
possible that the fuzzy partition of the output variables is given in advance, as it is
for the input variables.

In order to be able to select a subset of the created rules for the final rule base, we
need a performance measure for the rules. We consider a rule to be useful, if the
patterns it covers all have very similar output values, and if the rule covers many
patterns. We use a weighted average and variance to determine the performance of

56 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Algorithm 4.2: Select the best rules for the rule base

SelectBestRules

(* The algorithm determines a rule base by selecting the best rules from *)
(* the list of rule candidates created by Algorithms 4.1 or 4.4. *)

1: k = 0; stop = false;
2: repeat
3: R′ = argmax

R
{PR};

4: if fixed rule base size then
5: if (k < kmax) then
6: add R′ to rule base;
7: delete R′ from list of rule candidates;
8: k = k + 1;
9: else

10: stop = true;
11: end if
12: else if (all patterns must be covered) then
13: if (R′ covers some still uncovered patterns) then
14: add R′ to rule base;
15: delete R′ from list of rule candidates;
16: if (all patterns are now covered) then
17: stop = true;
18: end if
19: end if
20: end if
21: until stop

4.2. LEARNING MAMDANI-TYPE FUZZY RULES 57

Algorithm 4.3: Select the best rules per class for the rule base

SelectBestRulesPerClass

(* The algorithm determines a rule base by selecting the best rules for each *)
(* class from the list of rule base candidates created by Algorithm 4.1. *)

1: k = 0; stop = false;
2: repeat
3: for all classes C do
4: if (∃R : con(R) = C) then
5: R′ = argmax

R: con(R)=C
{PR};

6: if (fixed rule base size) then
7: if (k < kmax) then
8: add R′ to rule base;
9: delete R′ from list of rule candidates;

10: k = k + 1;
11: else
12: stop = true;
13: end if
14: else if (all patterns must be covered) then
15: if (R′ covers some still uncovered patterns) then
16: add R′ to rule base;
17: delete R′ from list of rule candidates;
18: end if
19: if (all patterns are now covered) then
20: stop = true;
21: end if
22: end if
23: end if
24: end for
25: until stop

58 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

a rule. Note that for the following computations we assume
∑

(p,t)∈L̃
R(p) > 0.

t̄ =

∑
(p,t)∈L̃

R(p) · t
∑

(p,t)∈L̃
R(p)

, (4.2)

var(R) =

∑
(p,t)∈L̃

R(p) · (t− t̄)2

∑
(p,t)∈L̃

R(p)
(4.3)

=
1∑

(p,t)∈L̃
R(p)

 ∑
(p,t)∈L̃

R(p) · t2 − 1∑
(p,t)∈L̃

R(p)
·
 ∑

(p,t)∈L̃
R(p) · t

2
 ,

PR =

yr ·
∑

(p,t)∈L̃
R(p)

∣∣∣L̃∣∣∣ · (2√var(R) + yr

) , with PR ∈ [0, 1]. (4.4)

The performance value PR for some rule R approaches 0, if
∑

(p,t)∈L̃
R(p) approaches 0.

For
∑

(p,t)∈L̃
R(p) = s (the rule R is completely valid for all patterns), the performance

measure becomes 1, if var(R) = 0.

The NEFPROX rule learning algorithm uses the following notations:

• L̃: a set of training data (fixed learning problem) with
∣∣∣L̃∣∣∣ = s, which rep-

resents a function approximation problem, where patterns p ∈ IRn must be
mapped to target values t ∈ IR.

• R = (A,C): a fuzzy rule with antecedent ant(R) = A and consequent

con(R) = C, where A = (µ
(1)
j1 , . . . , µ

(n)
jn
) and C : Y → [0, 1] is a fuzzy set.

We use both R(p) and A(p) to denote the degree of fulfilment of rule R (with

antecedent A) for pattern p, i.e. R(p) = A(p) = min{µ(1)
j1 (p1), . . . , µ

(n)
jn
(pn)}.

• µ
(i)
j : jth fuzzy set of the fuzzy partition of input variable xi. There are qi

fuzzy sets for variable xi.

• wA: variable to compute
∑

(p,t)∈L̃
R(p) for rule R with antecedent A.

4.3. HANDLING SYMBOLIC DATA 59

• mA: variable to compute the weighted average t̄ (4.2) for rule R with an-
tecedent A.

• vA: variable to compute var(R) (4.3) for rule R with antecedent A.

• PR: the performance (4.4) of rule R.

The NEFPROX learning algorithm can be easily extended to fuzzy rules with mul-
tiple output variables. In this case the performance measure (including mean and
variance) must be computed for each output variable individually. The performance
of a rule is than determined by the mean of the performance values over all output
variables.

The structure-oriented fuzzy rule learning algorithms presented in this section are
very fast, because they only need to processes the training data twice to determine
all candidates for a rule base. The selection of the rules to be included into the rule
base is guided by a performance measure. The number of rules can be determined
automatically such that for each training pattern there is a least one rule with non-
zero degree of fulfilment or the number of rules is restricted by some value given by
the user. The latter method does not need to process the training data again. Only
if the the rule base size is determined automatically, must the training patterns be
processed again until so many rules have been selected that all patterns are covered
by rules.

If the number of rules is restricted the rule learning algorithm is not very much
influenced by outliers. Rules that are only created to cover outliers have a low
performance value and will not be selected for the rule base.

The performance of the selected rule base depends on the fuzzy partitions that are
provided for the input (and output) variables. To increase the performance the fuzzy
sets should be tuned by one of the algorithms discussed in Sections 5.3 and 5.4.

4.3 Handling Symbolic Data

In this section we consider data analysis problems where the data contains both
numeric and symbolic information. Instead of representing symbols numerically we
want to use symbolic information directly. Fuzzy systems can easily do that, because
internally they only process degrees of membership.

We call fuzzy rules that contain symbolic and numeric variables mixed fuzzy rules,
in order to distinguish them from fuzzy rules that use only numeric variables as is
usually the case in the application of fuzzy systems. We discuss an algorithm that
can create a rule base of mixed fuzzy rules. The algorithm is an extension to the
procedure presented in Section 4.2.

60 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Algorithm 4.4: The NEFPROX rule learning algorithm

1: for all patterns (p, t) ∈ L̃ do (* there are s training patterns *)
2: for all input features xi do
3: µ

(i)
ji
= argmax

µ
(i)
j ,j∈{1,...,qi}

{µ(i)
j (pi)};

4: end for
5: Create antecedent A = (µ

(1)
j1 , . . . , µ

(n)
jn
);

6: if (A �∈ list of antecedents) then
7: add antecedent A to list of antecedents;
8: mA = 0; vA = 0; wA = 0;
9: end if

10: end for
11: for all patterns (p, t) of L̃ do (* compute weighted means and variances *)
12: for all A ∈ list of antecedents do (* for all antecedents *)
13:
14: if (A(p) > 0) then
15: wA = wA + A(p);
16: mA = mA + A(p) · t;
17: vA = vA + A(p) · t2;
18: end if
19: end for
20: end for
21: for all A ∈ list of antecedents do (* select consequents for all antecedents *)

22: vA =
1

wA
· (vA − m2

A

wA
); mA =

mA

wA
; (* complete computation of statistics *)

23:
24: if (∃ν : ν(mA) > θ) then
25: C = argmax

ν
{ν(mA)};

26: else
27: generate new output fuzzy set C with C(mA) = 1;
28: end if
29: create rule R with antecedent A and consequent C;
30: add R to list of rule base candidates;
31: PR =

wA · yr

s · (2√vA + yr)
; (* performance of rule R *)

32: end for
33: SelectBestRules; (* see Algorithm 4.2 *)

4.3. HANDLING SYMBOLIC DATA 61

Mixed fuzzy rules demand the use of fuzzy sets for symbolic variables that cannot
be represented by the usual parameterized membership functions like triangles or
trapezoids.

We consider two attributes x and y, where x ∈ X ⊆ IR is numeric and y ∈ Y =
{A,B,C} is symbolic. In a fuzzy rule we describe values of x by linguistic terms.
We use lvalue to denote any such linguistic term (lvalue may be a term like small,
approximately zero, large, etc.). In a mixed fuzzy rule using two variables we can
find, for example, the following situations:

(i) fuzzy-exact: if x is lvalue and y = A then . . .

(ii) fuzzy-imprecise: if x is lvalue and y ∈ {B,C} then . . .

(iii) fuzzy-fuzzy: if x is lvalue and y is {(A, µ(A)), (B, µ(B)), (C, µ(C))} then . . .

In the first two cases the symbolic variable y has a “switching function” for a rule.
If y does not assume one of the values noted in the respective y-term of the an-
tecedent, the rule is not applicable at all. But if y does assume any of these values,
the applicability of the rule is not restricted by this argument, and the degree of
fulfilment only depends on the value for x.

In the third situation, we use a fuzzy set to describe the value that y may assume,
by simply attaching a degree of membership to each element of Y using some mem-
bership function µ : Y → [0, 1]. By giving some value to y we can now restrict the
applicability of the rule to any degree between 0 and 1.

Obviously case (i) and (ii) are just special cases of case (iii), because we can replace
y = A by y is {(A, 1), (B, 0), (C, 0)} and y ∈ {A,B} by y is {(A, 1), (B, 1), (C, 0)}.
Because the elements of Y are not ordered, we cannot easily use a linguistic term
to label fuzzy sets like {(A, µ(A)), (B, µ(B)), (C, µ(C))}. This means the inter-
pretability in terms of the variables is restricted compared to fuzzy rules that just
use variables on metric scales. We will discuss this issue at the end of this section.

For cases (i) and (ii) we can remove the symbolic variable from the fuzzy rules,
and create different rule bases, one for each combination of values of y (see Fig-
ure 4.7). Depending on the value of y we simply select the applicable rule base.
Such a situation may be, for example, useful in a medical setting, where we want to
classify diseases of patients according to certain symptoms. If we assume that the
classification depends on whether the patient is female or male, we can simply build
two different rule bases – one to classify female patients, and one to classify male
patients.

For case (iii) the following example describes the idea of the learning algorithm.

62 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

�

� / � � � 0

� � � � � � � � - - �

1 � � � � � � � � � (

� � � � � � � � - - �

1 � � � � � � � � � +

Figure 4.7: Switching between fuzzy rule bases depending on a symbolic variable

Example 4.1 We consider an artifical data set given in Figure 4.8. We partition x
by three fuzzy sets labelled small, medium and large. The fuzzy sets are represented
by triangular membership functions.

The degrees of membership for any value adds up to 1.0, i.e. the membership func-
tions overlap at degree 0.5. The vertical lines in Figure 4.8 visualize these points.
The values of y are represented on the vertical scale, but note that the scale is
nominal, i.e. the ordering of elements has no meaning.

We assume that the data can be classified into a positive class and a negative class,
as denoted by the + and − signs in the data space. As can be seen in Figure
4.8 there is some degree of overlapping between both classes, especially in the area
where x is small.

To create a rule base from this data we first consider the situation, where x is small
and the class is positive. There are 3 cases where y = A, 2 cases where y = B
and 5 cases where y = C. By normalizing these values, we obtain the fuzzy set
{(A, 0.6), (B, 0.4), (C, 1.0)}. If we consider the negative class and x is small, we
obtain the fuzzy set {(A, 0.33), (B, 1.0), (C, 0.33)} in the same manner.
This means, we can add the following two rules R1 and R2 to the rule base:

R1 : if x is small and y is ν1 = {(A, 0.6), (B, 0.4), (C, 1.0)},
then the class is positive

R2 : if x is small and y is ν2 = {(A, 0.33), (B, 1.0), (C, 0.33)},
then the class is negative

✸

To study the application of the two rules created in Example 4.1, we consider three
patterns where x = x0 in each case with µsmall(x0) = 1.0 and y having a different
value in each case (let µsmall : IR → [0, 1] be the membership function to represent
small). Table 4.1 gives the degrees of fulfilment for both rules and the classification
for all three cases.

4.3. HANDLING SYMBOLIC DATA 63

�

�

�

� � � � � � 	
 � � � � � � 	

� �� � � � � � �� � � � ���

� � � ���

� �� � �

�

�

�

�
	
�
��
��
��
��
��

� � � � � � � � � � � �

Figure 4.8: An artificial data set with a numeric and a symbolic attribute

Table 4.1: Classification of three sample cases using rules R1 and R2

x µsmall(x) y ν1(y) ν2(y) R1 R2 class
x0 1.0 A 0.6 0.33 0.6 0.33 pos.
x0 1.0 B 0.4 1.00 0.4 1.00 neg.
x0 1.0 C 1.0 0.33 1.0 0.33 pos.

The rules are, like rules that use only metric variables, representations of typical
representatives for the classes. If we consider the positive class, a typical case would,
for example, have a small value for x and either C,A or B for y, where we would
consider C more typical than A and A more typical than B. For the negative class
we would consider B more typical than A or C.

R1 and R2 are partially contradictory, as they overlap in all variables. If we use

θ(µ1, µ2) = sup
x

min{µ1(x), µ2(x)} (4.5)

to denote the degree of similarity or overlapping of two fuzzy sets µ1 and µ2, then we
obtain θ = 0.4 for the antecedents of rules R1 and R2. Rules with θ = 0 are mutually
exclusive, and for θ = 1 the rules are either identical or one rule is a generalization of

64 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

the other (if the consequents are identical), or they are completely contradictory (if
the consequents are different). Partial contradiction is, however, common for fuzzy
rule bases, as overlapping of rules is a desired feature.

Example 4.1 (contd.) If we use the rule generation technique further, we now
obtain the following two rules:

R3 : if x is medium and y is ν3 = {(A, 0.25), (B, 0.0), (C, 1.0)},
then the class is negative,

R4 : if x is medium and y is ν4 = {(A, 0.0), (B, 1.0), (C, 0.0)},
then the class is positive.

For R3 and R4 we obtain θ = 0, i.e. they are mutually exclusive. In this case it would
be possible to use crisp sets to describe the values for y (y ∈ {A,C} for R3 and y = B
for R4). However, we would lose the information that the combination x is medium
and y = C is much more typical for the negative class than the combination x is
medium and y = A. It is therefore useful to keep the fuzzy set representation.

For the last box in Figure 4.8 that contains data, we obtain two contradictory rules
(θ = 1):

R5 : if x is large and y is ν5 = {(A, 0.0), (B, 0.0), (C, 1.0)},
then the class is positive,

R6 : if x is large and y is ν6 = {(A, 0.0), (B, 0.0), (C, 1.0)},
then the class is negative.

We cannot include both rules in the rule base, as we can only tolerate partial con-
tradiction. Therefore we keep the rule with better performance, i.e. we delete the
rule that would cause more misclassifications. In this case we delete rule R6 and
keep rule R5. The final rule base consists therefore of rules R1, . . . , R5. ✸

The rule learning procedure is given in Algorithm 4.5. It computes a fuzzy rule base
from a set of training data containing symbolic and numeric data.

Algorithm 4.5 uses the following notations:

• L̃: a set of training data (fixed learning problem) with
∣∣∣L̃∣∣∣ = s, which repre-

sents a classification problem where patterns p are to be assigned to m classes
C1, . . . , Cm.

• (p, t) ∈ L̃: a training pattern consists of an input vector p ∈ X1 × . . . × Xn

and a target vector t ∈ [0, 1]m. p consists of u numeric and v symbolic features
(u + v = n), i.e. Xi is either a subset of IR or a (finite) set of symbols. The
target vector represents a possibly vague classification of the input pattern
p. The class index of p is given by the index of the largest component of t:
class(p) = argmaxj{tj}.

4.3. HANDLING SYMBOLIC DATA 65

• R = ((A,M), C): a fuzzy classification rule with antecedent ant(R) = (A,M)

and consequent con(R) = C, which denotes a class. A = (µ
(1)
j1 , . . . , µ

(u)
ju
) is cre-

ated by fuzzy sets for numeric variables and is the first part of the antecedent.
M = (m

(1)
j1 , . . . ,m

(v)
jv
) is the second part of the antecedent and is created by

the fuzzy sets for the symbolic variables.

• µ
(i)
j : jth fuzzy set of the fuzzy partition of input variable xi. There are qi

fuzzy sets for variable xi.

• m
(k)
j : jth fuzzy set of the kth symbolic variable xk. There are m fuzzy sets

for each symbolic variable, i.e. one fuzzy set per class. A fuzzy set m
(k)
j is rep-

resented by a vector that contains the degrees of membership for all elements
of Xk. At the time of initialization (Algorithm 4.5, line 12) all entries of m

(k)
j

are set to zero. We use m
(k)
j [x] to denote that the degree of membership for x

is accessed for manipulation (Algorithm 4.5, line 22)

The algorithm starts by creating initial antecedents that contain only numeric at-
tributes using the procedure described in Section 4.2 (Algorithm 4.1). After the
training data is processed once, all k antecedents that are supported by the data
have been found. In the next step, from each antecedent m rules are created, one for
each class, and the initial antecedents are completed by constructing fuzzy sets for
the symbolic attributes as shown in Example 4.1. This means there is now an initial
rule base that contains a set of m ·k rules. This rule set can be inconsistent, because
it can contain contradictory rules. After resolving inconsistencies, by selecting the
rule with a better performance from multiple rules with identical antecedents but
different consequents, a final list of rule base candidates is created. Then one of the
rule evaluation algorithms given in Section 4.2 is applied to select a final rule base
[Nauck et al., 1999].

After rule creation the fuzzy sets of both numeric and symbolic variables can be
trained to improve the performance of the classifier by using the algorithms given
in Section 5.4.

The mixed fuzzy rules created by Algorithm 4.5 cannot be as easily interpreted as
fuzzy rules that use only numeric variables and continuous membership functions,
which can be labelled with terms like small or large.

Fuzzy sets that are denoted as an ordered list of pairs are hard to be labelled linguis-
tically. In some cases linguistic labels can be found by inspection. For example, if we
have a symbolic variable describing the job of a person the fuzzy set {(accountant,
0), (consultant, 0.3), (engineer, 0.7), (lecturer,1), (professor, 1)} may be labelled by
academic job.

If fuzzy rules are created by learning, then it is useful to also create linguistic labels
automatically. To quickly generate a rough linguistic term for a fuzzy set given by an
ordered list of pairs we could use “y isA or C orB” for y is {(A, 1.0), (B, 0.4), (C, 0.7)}.

66 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Algorithm 4.5: Learning mixed fuzzy rules from numeric and symbolic data

1: for all (p, t) ∈ L̃ do (* find all hyperboxes that contain data *)
2: for all metric input features xi do
3: µ

(i)
ji
= argmax

µ
(i)
j ,j∈{1,...,qi}

{µ(i)
j (pi)};

4: end for
5: Create A = (µ

(1)
j1 , . . . , µ

(n)
jn
); (* First part of the antecedent *)

6:
7: if (A �∈ list of antecedents) then
8: add A to list of antecedents;
9: end if

10: end for

11: for all A ∈ list of antecedents do (* create rule base candidates *)
12: initialize M ;
13: create complete antecedent (A,M);
14: for all classes C do
15: create rule R = ((A,M), C) and add it to list of rule base candidates;
16: end for
17: end for

18: for all (p, t) ∈ L̃ do (* compute frequencies of symbolic variables *)
19: for all R ∈ list of rule base candidates do
20: if (class(p) = con(R)) then
21: for all symbolic features xk do
22: with R do: m(k)[pk] =m(k)[pk] + 1;
23: end for
24: end if
25: end for
26: end for

27: for all R ∈ list of rule base candidates do
28: with R do: normalize all m(i); (* transform the m(i) into fuzzy sets *)
29: compute the performance PR of R; (* see Eq. 4.1 and Algorithm 4.1 *)
30: end for

31: Find all contradicting rules and resolve conflicts;
32: if (select best rules) then
33: SelectBestRules; (* see Algorithm 4.2 *)
34: else if (select best rules per class) then
35: SelectBestRulesPerClass; (* see Algorithm 4.3 *)
36: end if

4.4. TREATMENT OF MISSING VALUES 67

The order in which the feature values with non-zero membership are listed, expresses
the preferences represented in the degrees of membership. In this case we learn from
the label, that A is more typical than C and C is more typical than B. If we need
to know the exact degrees of membership, we can look at the fuzzy set.

This interpretation is similar to common linguistic labels like approximately zero
for a numeric variable. In this case we also know, that 0 is the most typical value
for the variable and larger or smaller values are less typical. If we are interested in
the exact degrees, we also have to look at the membership function.

4.4 Treatment of Missing Values

Missing values are common in many practical settings. It is not always possible to
observe all features of a pattern. This can be due to high costs, faulty sensors, errors
in recording, etc. If a feature is sometimes measured and sometimes not, we can use
the cases for which it has been measured to learn to predict its values when it is not.
In decision tree learning, for example, the probability distribution of the feature is
used when a value is missing [Quinlan, 1993]. Another approach to learning in the
presence of unobserved variables is the EM algorithm (estimation and maximization)
[Dempster et al., 1977, Mitchell, 1997]. The EM algorithm searches for a
maximum likelihood hypothesis by repeatedly re-estimating the expected values
of the unobserved variables given the current hypothesis, then recalculating the
maximum likelihood hypothesis using these expected values [Mitchell, 1997].

Other approaches to deal with missing data [Hair et al., 1998] are

(i) to use only cases with complete data

(ii) to delete cases and/or variables with missing data with excessive levels

(iii) to use imputation methods that replace missing values with a constant, the
mean, a value computed by regression, etc.

The first option is usually not feasible, as it may turn out that too many cases cannot
be used for training and the training set becomes too small. In real world data it is
easily possible that each case and each variable displays at least one missing value.

The second option can be used to clean up the training data, i.e. to remove case
and/or variables, if they have a certain percentage of missing values that makes them
unusable for further analysis. However, this does not solve the problem completely
as there are cases left that still have (some) missing values.

Imputation methods require a thorough analysis of the data and why missing values
occur. Blind imputation by some constant or a mean value might actually make
the situation worse. For example, it may be possible that a value of some variable

68 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

cannot be measured due to a faulty sensor, if the variable exceeds some threshold.
If in this case simply the mean is used whenever a value is missing, the distribution
of the considered variable becomes biased.

If a large part of the data is missing, then the reason for that should be carefully
analysed during the pre-processing stage of the data analysis process. However,
often the percentage of missing values is low, and expensive missing values analysis
is not possible.

We therefore use the following simple strategy for learning fuzzy rules. If a feature is
missing, we do not make any assumptions about its real value but rather assume that
any value may be possible. Based on this assumption we do not want to restrict the
application of a fuzzy rule to a pattern with missing features. This means a missing
value will not influence the computation of the degree of fulfilment of a rule. This
can be done by assigning 1.0 as the degree of membership to the missing feature
[Berthold and Huber, 1997], i.e. a missing value has a degree of membership
of 1.0 with any fuzzy set. A pattern where all features are missing would then fulfil
any rule of the fuzzy rule base with a degree of 1.0, i.e. any class would be possible
for such a pattern. We denote a pattern with missing values by p = (x, ?). We
compute the degree of fulfilment τr of some rule Rr by

τr(x, ?) = min
xi

{µ(i)
r (xi), 1} = min

xi

{µ(i)
r (xi)}. (4.6)

In learning a fuzzy system from data there are three stages where missing values
must be considered:

(i) learning fuzzy rules,

(ii) training membership functions,

(iii) application of the fuzzy system.

Item (iii) has been considered above. [Berthold and Huber, 1997] suggested
completing an input pattern with missing values by using the fuzzy rule base of the
fuzzy system during training. We will not use this approach here, because it cannot
be used for rule learning and we want to use the same technique in all three stages.
In the following we consider the treatment of missing values in structure-oriented
rule learning. Hyperbox-oriented and cluster-oriented approaches are mentioned at
the end of this section.

Rule learning, as described in Section 4.2, consists of three steps:

(i) determine all possible antecedents,

(ii) create an initial rule base by finding an appropriate consequent for each an-
tecedent,

4.4. TREATMENT OF MISSING VALUES 69

(iii) select a final rule base from the initial rule base by computing the performance
of each rule.

Step (i) is implemented by selecting hyperboxes from a structured data space. If
we encounter a missing value, any fuzzy set can be included in the antecedent for
the corresponding variable. Thus we create all combinations of fuzzy sets that are
possible for the current training pattern.

Example 4.2 Consider the situation in Figure 4.9. We use three fuzzy sets to
partition each variable. If we obtain the input pattern (x0, ?) as shown in Figure
4.9 we can assign the fuzzy set large to the first feature, because it yields the largest
degree of membership for x0. As the value for y is missing, any fuzzy set is possible
for y. Therefore we create the antecedents (x is large and y is small), (x is large and y
is medium), and (x is large and y is large). In step (ii) of the rule learning algorithm
appropriate consequents will be determined for these antecedents, depending on
all training patterns. In step (iii) the rules with the highest performance will be
selected. ✸

Algorithm 4.6 provides a loop to create antecedents, if the training data contains
missing values. This algorithms can be used as a template to modify the loops in
Algorithm 4.1 (lines 1–9) and Algorithm 4.4 (lines 1–10) in order to enable those
algorithms to handle missing values. The notation used in Algorithm 4.6 is the same
as in the other two algorithms (Section 4.2).

After a rule base has been created, the membership functions are trained by one of
the algorithms discussed in Chapter 5. If a missing value is encountered in a variable,
then for the corresponding fuzzy set simply no training signal will be generated by
this pattern.

To enable hyperbox-oriented approaches to handle missing values it must be possible
to create a hyperbox that may have completely undefined parameters for a dimension
where a missing value occured. Undefined parameters will obtain a value when a
pattern with no missing value in the corresponding dimension is encountered. In
addition, the computation of the degree of membership for hyperboxes must be
changed according to (4.6) and a hyperbox is not changed (reduced or enlarged) in
a dimension, if the corresponding value is missing.

When fuzzy cluster analysis is used to create fuzzy rules the treatment of missing
values is more difficult, as the degree of membership for a pattern depends on the
distance to a cluster prototype. Therefore several imputation methods are discussed
for fuzzy clustering [Timm and Klawonn, 1998, Timm and Kruse, 1998].

70 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

� � � � � � 	
 � � � � � � 	

�

�

��
�
��

�
	

��
�

��
�
	

� "

� � � � � � � � � � � � � 2

 � " � � � 3 &

Figure 4.9: Rule learning with missing values: three rules are created by the
pattern (x0, ?), because for y three fuzzy sets are possible

Algorithm 4.6: Creating antecedents when there are missing values

1: for each pattern (p, t) of L̃ do (* there are s training patterns *)
2: create a new empty antecedent A′;
3: for all input features xi whose value is not missing do
4: µ

(i)
ji
= argmax

µ
(i)
j ,j∈{1,...,qi}

{µ(i)
j (pi)};

5: add µ
(i)
ji
to antecedent A′;

6: end for
7: repeat
8: create a new empty antecedent A;
9: A = A′;

10: create a new combination of fuzzy sets from all
missing input features and add them to A;

11: if (A �∈ list of antecedents) then
12: add antecedent A to list of antecedents;
13: end if
14: until all combinations were enumerated
15: end for

4.5. ANALYSIS OF THE LEARNING ALGORITHMS 71

4.5 Analysis of the Learning Algorithms

In this section we analyze the time and memory complexity of the learning algo-
rithms that are discussed in this chapter. We make the following assumptions.

(i) We use a training data set L̃ with n > 1 input variables, m > 1 possible output

values (output fuzzy sets or class labels) and
∣∣∣L̃∣∣∣ = s > 1.

(ii) The final rule base has r ≥ 1 rules.

(iii) We select

q = max{q1, . . . , qn, m} > 1 (4.7)

to represent the number of fuzzy sets for each input variable xi and the number
of output values, respectively. Because we are interested in linguistically in-
terpretable fuzzy systems, we will only expect small values for q, for example,
q ≤ 10.

(iv) For the number of antecedents Q that can be discovered in the data we have

Q = min{
n∏

i=1

qi, s} ≤ min{qn, s},

i.e. Q increases exponentially with the number of variables, but it cannot
exceed the number of patterns. The actual number of antecedents that are
created by the training data is given by k ≤ Q.

When we analyze the runtime behavior of the rule learning algorithms we consider
the following operations:

• computation of degrees of membership,

• computation of degrees of fulfilment,

• comparisions of antecedents or performance values.

We begin our considerations with the rule learning algorithms 4.1 and 4.4, which
need two cycles through the training data. To identfy the antecedent for each pattern
snq computations of a degree of membership are required.

To find out, whether an antecedent is already included in the list of antecedents,
Q(Q − 1)/2 comparisions are required in the worst case, if we assume that each
pattern creates a new antecedent. We can stop the creation of antecedents, if the
list actually contains Q entries. However, in many cases data will have a clustered

72 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Table 4.2: The number of antecedents found in the Iris data (150 patterns, 4 vari-
ables) depending on the number of fuzzy sets per variable

q 2 3 4 5 6 7 8
k 8 20 35 47 61 67 89
q4 16 81 256 625 1296 2401 4096

(q: number of fuzzy sets, k: number of antecedents)

structure and cover only parts of the domain. In these cases the number of an-
tecedents that are found in the data is much less than the theoretically possible
number.

Because each antecedent can be represented by the indices of its fuzzy sets, a hash
table can be conveniently used to store the antecedents. We can assume that for
each pattern one application of the hash function is required in order to determine
if the antecedent that was created by the current pattern is already stored (we
ignore collisions). This means that altogether we need Q calls of the hash function.
Because we are interested in an upper bound of the compuational complexity, we
assume Q = s. This is also reasonable, if we consider high-dimensional real world
data sets where we expect s < qn in most of the cases.

An example for the number of antecedents to be found in a data set depending on
the number of fuzzy sets per variables is given in Table 4.2. We used the Iris data
set [Fisher, 1936], which contains 150 patterns with 4 variables. NEFCLASS-J
(see Chapter 6) was used to create antecedents with triangular fuzzy sets. We can
see that the number of antecedents k is always much smaller than the number of
patterns, even if the number of different antecedents given by q4 becomes very large,
resulting in a fine granularity of the data space.

To determine the best consequent for each antecedent the patterns must be processed
again. We need to compute sk degrees of fulfilment, i.e. skn degrees of membership,
to collect the necessary statistical information. Afterwards we need another kq
iterations to assign a consequent to each antecedent and to compute the performance
measure for each created rule.

Selecting a final rule base from the list of rule base candidates requires rk compari-
sions of performance values, if the number r of rules to be selected is fixed. If enough
rules must be selected so that all patterns are covered, then rk + sn operations are
necessary, because for each selected rule the patterns with a non-zero degree of ful-
filment must be determined. In this case the number of selected rules r depends on
the training data. It is only necessary to compute s degrees of fulfilment, because
patterns that are already covered can be marked and need not be processed again.

4.5. ANALYSIS OF THE LEARNING ALGORITHMS 73

From our considerations above we can see that a rule base is available after
ft(s, n, q, k, r) operations with

ft(s, n, q, k, r) ≤ snq + s+ skn+ kq + rk + sn (4.8)

≤ sn(q + k + 1) + s+ k(q + r).

In this expression k and r are both bounded by s. Because want to have more
training data than free parameters, it is also reasonable to assume s ≥ nq for
classification problems and s ≥ nq + q for function approximation problems. From
these considerations we obtain an upper bound for the number of operations with

ft(s, n, q, k, r) ≤ 3s2 + s(n+ q + 1) = O(s2). (4.9)

To obtain a lower bound for the complexity, we consider a classification problem and
a function approximation problem. Because we now want to obtain a lower bound
for the number of operations, we set

q = min{q1, . . . , qn, m}. (4.10)

For a classifier we need at least r = q rules, because we assume that there are no
empty classes. We assume that also only k = q rules were detected in the training
data. This requires that we use at least s = q training patterns. However, because
the number of free parameters is at least nq we do not accept training data sets with
less then nq patterns, i.e. we assume nq ≤ s. We also do not need to select a final
rule base, because it is already minimal. From these considerations and with (4.8)
we obtain a lower bound for the number of operations such that

ft(s, n, q, k, r) ≥ 2n2q2 + nq + q2 = O(n2q2). (4.11)

For a function approximation problem, it can be possible that only one rule is
detected during learning, i.e. r = k = 1. We again assume nq < s and with (4.8) we
obtain

ft(s, n, q, k, r) ≥ n2q2 + n2q + nq + q = O(n2q2). (4.12)

We conclude that for the time complexity of the structure-oriented rule learning
algorithms 4.1 and 4.4 we have to expect at least O(n2q2) if we only use a minimal
number of training patterns and the solution contains a minimal number of fuzzy
rules. We have to expect a complexity of O(s2) for data-rich applications where
many rules are generated.

If we use a modified version of Algorithm 4.4 to create fuzzy systems for a function
approximation problem with v > 1 output variables, the term kq in (4.8) must be
replaced by vkq. However, we still obtain O(s2) by assuming s ≥ vq, because the
number of free parameters is in this case nq + vq.

74 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

If we use training data with missing values and apply Algorithm 4.6, a pattern with
missing values can create multiple rules at once. However, the number of rules is
still bound by s, i.e. the complexity does not change.

If the training data contains numeric and non-numeric attributes, we apply the
variant of Algorithm 4.1 given by Algorithm 4.5. In this case we have n = n1 + n2

variables, where n1 is the number of numeric attributes and n2 the number of non-
numeric attributes. We again use q as it is given by (4.7), where qi is either a
number of fuzzy sets or a number of symbolic attribute values. The algorithm
needs sn1q + s operations to find k antecedents by using only the metric variables.
Then kq rule base candidates are created in lines 11–17 of Algorithm 4.5. We
interpret the initialization of the fuzzy sets for non-numeric variables, the completion
of the antecedent and the creation of a rule as one operation only. The part of the
algorithm between lines 18 and 26 requires skqn2 operations. This part increases the
complexity, because in this part it is possible that more than s rule base candidates
must be processed.

The normalization of the fuzzy sets of the non-numeric variables requires kqn2q
operations and the computation of the performance values is done in skqn steps.
Conflict resolution (line 31) requires kq(kq+1)/2 comparisions of rules and selection
of a final rule base does not require more than rkq + sn steps. If we again use the
estimations k ≤ s, r ≤ s, nq ≤ s, we obtain

ft(s, n1, n2, q, k, r) ≤ sn1q + s+ kq + skqn2 + kqn2q + skn

+kq(kq + 1)/2 + rkq + sn (4.13)

≤ s2 + s+ sq + s3 + s3 + s2n

+(s2 + s)/2 + s2 + sn

= O(s3).

In the simplest case we have only non-numeric attributes, i.e. n = n2 and n1 = 0.
In this case the algorithm creates only one rule per class, and we can set k = 1 in
(4.13). We also do not need to check for contradictions and do not need to select
a final rule base. If we use the same estimations as for (4.12) and determine q by
(4.10), we obtain

ft(s, n, q, k, r) ≥ q + n2q2 + nq2 + n2q = O(n2q2). (4.14)

We conclude that Algorithm 4.5 is at least as complex as Algorithm 4.1. In the
worst case we obtain a time complexity of O(s3).

The memory requirements of the algorithms are mainly determined by the training
data. The data set consists of s(n + q) values. For each variable we must store q
fuzzy sets. To describe triangular, trapezoidal or bell-shaped membership functions,
4 parameters are sufficient. If there are symbolic attributes, a fuzzy set is given by q
degrees of membership. We assume that q is given by (4.7). Each fuzzy rule requires

4.5. ANALYSIS OF THE LEARNING ALGORITHMS 75

n indices of fuzzy sets and a consequent parameter. The algorithm needs to store
k ≤ s rule base candidates. We again assume s > nq. This means the memory
complexity fm(s, n, q) of the algorithms can be estimated by

fm(s, n, q) ≤ s(n+ q) + nq2 + k(n+ 1)

= s(n+ q) + sq + s(n+ 1) = O(sn+ sq)

76 CHAPTER 4. LEARNING FUZZY RULES FROM DATA

Chapter 5

Optimization of Fuzzy Rule Bases

If we have decided to use a specific fuzzy rule base to model a problem, then we can
regard the rule base as structural knowledge about the specific problem expressed
in a linguistic way. If the performance of the fuzzy model is not adequate, and if
we do not want to change the rule base, then we must modify the fuzzy sets which
represent the linguistic terms used in the rules.

The most simple approach to train a fuzzy system is to use adaptive rule weights.
However, as we will see in Section 5.1, this can prevent a suitable linguistic inter-
pretation of learning outcomes. Fuzzy systems with rule weights have problems to
create understandable models, but they can be useful when accurate prediction is
more important than a comprehensible model. Based on the analysis of adaptive
rule weights we conclude that it is preferable to train the membership functions if a
fuzzy system is going to be used in data analysis.

Section 5.2 contains some general thoughts on training fuzzy sets in different kind of
fuzzy systems. If the fuzzy model uses only differentiable functions, then a standard
backpropagation algorithm using gradient descent can be applied. This only ap-
plies to Sugeno-type fuzzy systems, which are also only partly interpretable and are
therefore less useful in data analysis. Gradient descent techniques can usually not
be used in Mamdani-type fuzzy systems. Therefore heurisitics other than gradient
descent must be developed.

In Sections 5.3 and 5.4 we present neuro-fuzzy learning algorithms for function
approximation and classification problems, which can be used for creating Mamdani-
type fuzzy systems in data analysis. These algorithms also use constraints to ensure
the interpretability of the induced fuzzy model.

Section 5.5 describes methods for optimizing the structure of a fuzzy model by
pruning variables and rules in order to obtain a more compact and more interpretable
model. The chapter is concluded with an analysis of the complexity of the learning
algorithms.

77

78 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

5.1 Adaptive Rule Weights

The most simple way to apply a learning algorithm to a fuzzy system is to use
rule weights. A rule weight is used to modify the output of a fuzzy rule by either
changing the degree of fulfilment or the output fuzzy set. Weighted fuzzy rules
are often used in commercial fuzzy software and also in some neuro-fuzzy models
[Berenji, 1992, Kosko, 1992, Zimmermann et al., 1996].

Rule weights add a new computational aspect to the evaluation procedure of a
fuzzy rule base and this can lead to some confusion regarding the semantics and the
linguistic interpretation of a fuzzy system. This is mainly due to the fact that rule
weights often come with some ad-hoc interpretation that hides the real influence of
rule weights on a fuzzy system.

In this section we show that a weighted fuzzy rule can be replaced by an equivalent
fuzzy rule with modified membership functions. If this is done, the effect of a weight
to the semantics of a fuzzy rule becomes apparent. It turns out that weights can
implicitly cause membership functions to change in such a way that they can hardly
be interpreted linguistically.

Thus, rule weights can completely destroy the interpretability of a fuzzy system.
Interpretable fuzzy systems should use normal and convex membership functions
that adequately cover the domain of a variable. The main point of interpretability
is that a user of a fuzzy system should be able to label each fuzzy set with a suitable
linguistic term. Another important issue is that each linguistic term should be
represented by only one membership function in the fuzzy system. We will show
that if there is an interpretable fuzzy system, then the interpretability is lost once
rule weights are used. Formal aspects of fuzzy partitions that ensure interpretability
are not within the scope of this discussion (compare Section 3.4).

In fuzzy systems for function approximation applying a rule weight to a fuzzy rule
means changing the representation of a multidimensional fuzzy set. The influence
of a rule weight on the interpretation of such a modified rule becomes visible in its
projections which are the one-dimensional membership functions of the individual
variables.

Weighted rules are also considered in probabilistic or possibilistic settings. For
example, certainty factors are an early heuristic approach to use rule weights for
modeling beliefs. However, it turned out that the original certainty factor approach
is inconsistent [Heckerman, 1988, Kruse et al., 1991]. For modeling degrees
of belief or truth in fuzzy knowledge-based systems refer e.g. to [Dubois et al.,
1989, Dubois and Prade, 1988, Kruse et al., 1994a, Kruse et al., 1991].

5.1. ADAPTIVE RULE WEIGHTS 79

Implementation of Rule Weights

A weighted fuzzy rule is often written by appending “with w” to it, where w is a
real value that is usually different for each rule, e.g.:

Ri: if x is A and y is B then z is C with wi,

where A,B and C are fuzzy sets of the real line, x and y are input variables, z is
the output variable and wi is the real-valued rule weight of rule Ri. The meaning
of the “with-operation” that ties a weight to a rule must be defined. A rule weight
could be applied to each intermediate result that is computed during evaluation of
a fuzzy rule.

The following steps are carried out to compute the conclusion of a fuzzy rule:

(a) Determine the values of all input variables.

(b) Determine the degree of membership for each input value and each fuzzy set
of the fuzzy partition of the respective input variable.

(c) Compute the degree of fulfilment of the rule antecedent.

(d) Compute the conclusion. Depending on the type of consequent, the conclusion
can be a fuzzy set or a real value.

A lot of neuro-fuzzy approaches use a neural network-like graph to illustrate the data
flow and the computations that are carried out in a fuzzy system (Section 3.3). This
neural network representation is then used to formalize the application of a learning
algorithm. Many neuro-fuzzy approaches use a 5-layer node-oriented architecture
as shown in Figure 3.2(a) on page 32.

Such a 5-layer representation of a fuzzy system is suitable for defining a neural
network-like learning algorithm based on adaptive weights that are attached to some
of the connections. If learning is to be based on rule weights, then this means that
not all connections can be weighted, because there must be only one weight for each
rule. The values that are propagated on the connections are the intermediate results
presented in the list given above. To study the influence of weights applied to the
5-layer representation of a fuzzy system, we examine the connections between each
two adjacent layers.

(a) Input layer → antecedent layer:
On these connections the input values are propagated. Attaching weights
to the connections would result in an individual scaling of each input value
for each fuzzy rule. This means weights at these connections could not be

80 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

interpreted as rule weights as there would be as many weights per rule as
there are input values instead of just one weight.

In addition weights at these connections are not suitable as they would scale
the domains of the input variables. The fuzzy sets that are stored in the nodes
of the antecedent layer are not changed and this means they no longer fit the
domain of the variables.

(b) Antecedent layer → rule layer:
On these connections the degrees of membership of the input values are prop-
agated. Weights at these connections would individually scale the degrees of
membership before they are combined to the degrees of fulfilment of the rule
in the nodes of the rule layer. Weights at these connections could not be
interpreted as rule weights for the same reason as in case (a).

Scaling of degrees of membership can also cause semantical problems, for ex-
ample, if the weights are negative or larger than 1. This issue is discussed
below.

(c) Rule layer → consequent layer:
On these connections the degrees of fulfilment of the rules are propagated. Here
a rule weight can be attached, as there is exactly one connection per rule. As
in case (b) scaling of degrees of fulfilment can cause semantical problems (see
discussion below).

(d) Consequent layer → output layer:
On these connections the output fuzzy sets (conclusions) of the fuzzy rules
are propagated. Weights at these connections would result in modifying the
support of the output fuzzy sets. This is also a possible place to encode rule
weights because there is exactly one connection per rule.

Modifying the support of output fuzzy sets results in changing their position
in the domain of the output variable. The resulting problems are discussed
below.

In general we can obtain an adaptive system, if we attach weights to all connections
of the network representation of a fuzzy system and define a suitable learning algo-
rithm. However, from the considerations above we see that rule weights can only
be applied to the degree of fulfilment of a rule or to the conclusion of a rule. This
means that rule weights can only be represented by weights between the rule layer
and the consequent layer (c) or the consequent layer and the output layer (d). In
the following we will therefore study only these two cases:

(i) Rule weights are applied to the degree of fulfilment: The antecedent of
a rule is evaluated to determine a degree of fulfilment which is then multiplied

5.1. ADAPTIVE RULE WEIGHTS 81

by a rule weight. For a weighted fuzzy rule Rk from the rule base of a fuzzy
system FR (Definition 3.2) the degree of fulfilment is computed by

τk = wk · �1{µ(1)
k , . . . , µ

(n)
k } (5.1)

where wk ∈ IR is the weight of Rk.

(ii) Rule weights are applied to the conclusion: The degree of fulfilment of
a rule is used to compute the conclusion which is then multiplied by a rule
weight. If the conclusion is a fuzzy set, its support is changed in this way. Let
νk be an output fuzzy set of a weighted fuzzy rule Rk. The weighted output
fuzzy ν ′

k set is computed by

ν ′
k = wk · νk with ν ′

k(y) = sup{νk(t)|y = wk · t} (5.2)

where wk ∈ IR is the weight of Rk.

Interpretation of Weighted Fuzzy Rules

In the following we will discuss the impact of rule weights on a fuzzy system. We are
not interested in how the rule weights are determined, i.e. what the actual learning
algorithm looks like. This is not important for the influences of the rule weights.

A rule weight is sometimes interpreted as a measure of “importance”, “influence”
or “reliability”. All these interpretations are usually of an ad-hoc nature and do not
actually reflect the impact of rule weights.

If a rule weight is supposed to stress that a fuzzy rule is more or less “important”,
this could mean, for example, that the rule is rarely applicable. It could also mean
that it is not harmful if the rule is not applied when it should be, or vice versa.
But “importance” does not mean that the consequent of a rule should be taken into
account only to some extent. This aspect has already been modeled by using fuzzy
sets to describe the antecedent.

The interpretation of a rule weight as “reliability” or “trust” is also questionable. If
we belief that a rule is reliable only to a certain extent, then this means that we can
only trust the final conclusion to a certain extent. However, simply multiplying the
output of a rule or its degree of fulfilment by some weight is not an appropriate way
to model our belief. For this, probabilistic [Kruse et al., 1991] or possibilistic
[Kruse et al., 1994a] methods must be considered.

To view a rule weight as “influence” could mean that a rule with a small weight
should only marginally contribute to the system output. Allowing the weights to be
selected from [0, 1] could be interpreted as a degree of support for a rule. A value
less than 1 would then denote an ill-defined rule that supports its consequent only
to some extent.

82 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Often adaptive rule weights are used to tune a fuzzy system such that it produces
certain exact output values for certain given input values. Therefore a weight can
assume any value in such an approach. In this case it is also possible that negative
rule weights occur. If the rule weights are allowed to assume any value in IR, some
obvious semantical problems occur. It is not clear how rules weighted by values
greater than 1 or by negative values should be interpreted.

If the weights are restricted to the interval [0, 1], they can be chosen to reflect
the influence of a rule in the computation of the overall output value. But the
nature of this influence is obscured. It is preferable to model the influence of a rule
by modifying its antecedent such that the rule only applies to a certain degree in
a certain situation. In addition one should choose an appropriate consequent that
explicitly represents the rule’s contribution to the overall output of the fuzzy system.

In some approaches negative rule weights are used to represent “negative rules”. In
[Halgamuge and Glesner, 1994] it is suggested that we should interpret a rule
with a negative weight by “if not . . . then . . .” and then use the weight without
the negative sign to modify the degree of fulfilment.

However, we have to consider that a fuzzy rule is supposed to represent a vague
sample for approximating an otherwise unknown function. The suggested interpre-
tation of rules with negative weights would not have the character of a local sample.
It would correspond to a global description of the function:

if the input is outside the area specified by the antecedent,
then the function yields the value represented by the conclusion.

By overlapping with other rules, such a “negative rule” would have the effect of an
offset or bias for the approximated function.

According to the interpretation of fuzzy rules as vague samples, a rule with a negative
weight cannot be viewed as a proposition in the above-mentioned sense. It would
only make sense to interpret the rule as a local sample with a function result that is
multiplied by a negative value. This means a negative weight could only be applied
to the conclusion of a rule.

If the rule weight is to be used to modify the degree of fulfilment, we obtain an
invalid negative degree which cannot be properly processed by a fuzzy system. In
the special case of a fuzzy classification system a rule with a negative weight might be
interpreted as a rule with a negative consequent (if . . . then not class c). Required
that the outputs of all rules are combined adequately, a negative weight can have
an inhibiting influence on the selection of a class c mentioned in the consequent of
the rule. However, we again have the problem that negative degrees of membership
may occur, which do not make any sense in a fuzzy system.

From the discussion above we see that the interpretation of rule weights as “impor-
tance” or “reliability” are not useful and that negative weights should be avoided by

5.1. ADAPTIVE RULE WEIGHTS 83

all means. The interpretation as a kind of influence can be used, if the weights are
restricted to [0, 1]. However, the influence represented by a rule weight is obscured,
because it interferes with the influence expressed by the degree of fulfilment or the
consequent.

Depending on whether a rule weight is multiplied to the degree of fulfilment or
to the output of a rule, weighting a fuzzy rule is actually equivalent to changing
its antecedent or consequent, respectively. Therefore rule weights can always be
replaced by changes in the fuzzy sets used in the antecedent and consequent of a
rule. As we will show in the following, the implicit modifications of fuzzy sets caused
by rule weights can lead to non-normal fuzzy sets and to the fact that identical
linguistic values are represented in different ways in different rules.

The Influence of Rule Weights

In the following we study the influence of rule weights on fuzzy systems and con-
centrate on Mamdani-type fuzzy systems [Mamdani and Assilian, 1975]. In
Sugeno-type fuzzy systems [Sugeno, 1985] rule weights have the same impact, if
they are applied to the degree of fulfilment. If they are applied to the conclusion,
then no semantical problems occur, because the consequents of Sugeno-type rules
are functions or constants that are not interpreted linguistically. We briefly discuss
Sugeno-type fuzzy systems after discussing the effect of rule weights in Mamdani-
type fuzzy systems.

For the sake of simplicity we consider the following two Mamdani-type fuzzy rules
to discuss the influence of rule weights:

M1: if x is A and y is B then z is D with w1,
M2: if x is A and y is C then z is D with w2,

where A,B,C and D are fuzzy sets of the real line, x and y are input variables, z
is the output variable and wi is a rule weight. Each fuzzy set is labeled with an
individual linguistic term. Note that both rules use fuzzy sets A and D.

For Sugeno-type fuzzy systems we consider rules of the form

S1: if x is A and y is B then z = f1(x, y) with w1,
S2: if x is A and y is C then z = f2(x, y) with w2,

where fi is a function over the input variables and wi is a rule weight. The overall
output for z is computed by a weighted sum (compare Definition 3.4). Note that
both rules use fuzzy set A.

84 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Rule Weights Applied to a Degree of Fulfilment

If a positive rule weight is used to modify the degree of fulfilment of a rule we can
replace it by changing the membership functions in the antecedents. The following
two theorems consider Mamdani-type and Sugeno-type fuzzy systems. For the sake
of simplicity we consider only fuzzy systems with one output variable. The extension
to multiple output variables is straightforward.

Theorem 5.1 A Mamdani-type fuzzy system MFR : IRn → IR with a rule base R
of r weighted rules R1, . . . , Rr with

Rk : if x1 is µ
(1)
k and . . . and xn is µ

(n)
k then y is νk with wk, (k = 1, . . . , r)

where the weights wk > 0 are applied to the degrees of fulfilment, is equivalent to
a Mamdani-type fuzzy system MFR̂ : IR

n → IR with a rule base R̂ of r unweighted

rules R̂1, . . . , R̂r with

R̂k : if x1 is µ̂
(1)
k and . . . and xn is µ̂

(n)
k then y is νk, (k = 1, . . . , r)

such that µ̂
(i)
k (xi) = wk · µ(i)

k (xi) (i = 1, . . . , n).

Proof. It is sufficient to show that both fuzzy systems compute the same output
fuzzy set. For any t-norm � we obtain

MFR(x) = defuzz(ν∗), with

ν∗(y) = max
Rk∈R

{�{νk(y), τk}}

=
(5.1)

max
Rk∈R

{
�
{
νk(y), wk ·min{µ(1)

k (x1), . . . , µ
(n)
k (xn)}

}}
= max

Rk∈R

{
�
{
νk(y), min{wk · µ(1)

k (x1), . . . , wk · µ(n)
k (xn)}

}}
= max

R̂k∈R̂

{
�
{
νk(y), min{µ̂(1)

k (x1), . . . , µ̂
(n)
k (xn)}

}}
= max

R̂k∈R̂
{�{νk(y), τ̂k}}

= ν̂∗(y), where MFR̂(x) = defuzz(ν̂
∗)

✷

Theorem 5.1 is valid for Mamdani-type fuzzy systems that use any t-norm as the
inference operator (e.g. the minimum operation as usually or the product). This
means that we can replace a positive rule weight by multiplying the individual
membership degrees, i.e. we scale the heights of the fuzzy sets of the antecedent
with the rule weight. Negative rule weights are not considered. To replace them by

5.1. ADAPTIVE RULE WEIGHTS 85

modifying the fuzzy sets, we would also have to replace the mininum operation by
the maximum. This means, rules with negative weights can no longer be interpreted
as fuzzy rules. The following theorem considers Sugeno-type fuzzy systems.

Theorem 5.2 A Sugeno-type fuzzy system SFR : IRn → IR with a rule base R of r
weighted rules R1, . . . , Rr with

Rk : if x1 is µ
(1)
k and . . . and xn is µ

(n)
k then y = fk(x1, . . . , xn) with wk,

(k = 1, . . . , r)

where the weights wk > 0 are applied to the degrees of fulfilment, is equivalent to a
Sugeno-type fuzzy system SFR̂ : IR

n → IR with a rule base R̂ of r unweighted rules

R̂1, . . . , R̂r with

R̂k : if x1 is µ̂
(1)
k and . . . and xn is µ̂

(n)
k then y = fk(x1, . . . , xn), (k = 1, . . . , r)

such that µ̂
(i)
k (xi) = n

√
wk · µ(i)

k (xi) (i = 1, . . . , n).

Proof.

SFR(x) =

∑
Rk∈R

wk · τk · fk(x1, . . . , xn)∑
Rk∈R

wk · τk

=
(5.1)

∑
Rk∈R

wk ·
n∏

i=1

µ
(i)
k (xi) · fk(x1, . . . , xn)

∑
Rk∈R

wk ·
n∏

i=1

µ
(i)
k (xi)

=

∑
Rk∈R

n∏
i=1

(n
√

wk · µ
(i)
k (xi)) · fk(x1, . . . , xn)

∑
Rk∈R

n∏
i=1

(n
√

wk · µ
(i)
k (xi))

=

∑
R̂k∈R̂

n∏
i=1

µ̂
(i)
k (xi) · fk(x1, . . . , xn)

∑
R̂k∈R̂

n∏
i=1

µ̂
(i)
k (xi)

=

∑
R̂k∈R̂

wk · τ̂k · fk(x1, . . . , xn)

∑
R̂k∈R̂

wk · τ̂k

= SFR̂(x)

✷

86 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Theorem 5.2 assumes positive rule weights wr such that that n
√

wr is defined. Obvi-
ously, the theorem considers only one possible replacement of rule weights. Actually,
there are infinite possibilities to distribute a rule weight between the antecedents of
a fuzzy rule, where the degree of fulfilment is computed by the product. If negative
rule weights are permissible, we can, in addition, decide to modify any odd number
of antecedent fuzzy sets by a negative factor leading to a large number of different
interpretations.

In every case, a rule weight leads to a modification of the membership degrees of the
antecedent fuzzy sets. Therefore, we only consider the most common case where the
degree of fulfilment is determined by the minimum. In this case the effect of a rule
weight can be neatly demonstrated. Using our two rules M1 and M2 from above we
obtain the following two modified rules:

M∗
1 : if x is A′ and y is B′ then z is D,

M∗
2 : if x is A′′ and y is C ′′ then z is D.

But now for the fuzzy sets in the antecedents we have:

A′, B′ : IR −→ [0, w1],

A′′, C ′′ : IR −→ [0, w2].

If we assume w1 �= w2 �= 1, we obtain the following problems:

• Instead of using the same fuzzy set A the rules now use two different fuzzy
sets A′ and A′′ in their antecedents. However, both fuzzy sets are labeled with
the same linguistic term, i.e. we now have two different representations for the
same linguistic term within the fuzzy system. This is not acceptable if we
want to interpret the rule base.

• The resulting fuzzy sets are no longer anymore. The application of the rule
weights resulted in rescaling their membership degrees. This also has unde-
sirable effects on the readability of the fuzzy systems. Although the interval
[0, 1] is arbitrarily chosen to represent membership degrees, we have to keep
in mind that rule weights imply a different interval of membership degrees for
each rule.

Interpretation is affected most, if the weights are larger than 1. In this case,
strictly speaking, A′, B′, A′′ and C ′′ are no longer fuzzy sets.

Figure 5.1 illustrates what happens if two weighted fuzzy rules are replaced by two
equivalent unweighted rules with modified antecedent fuzzy sets. In Figure 5.1(a)
the two fuzzy rules

5.1. ADAPTIVE RULE WEIGHTS 87

if x is A then y is D with 0.5,
if x is A then y is E with 2.0

are displayed. The effect of the rule weights is not visible and we have the impression
of two regular, well interpretable fuzzy rules. But if we replace the weighted rules
by equivalent unweighted rules with modified antecedent fuzzy sets, we make the
influence of the rule weights visible and obtain the situation in Figure 5.1(b). We
now see that we really have two fuzzy rules

if x is A′ then y is D,
if x is A′′ then y is E.

A′ → [0, 0.5] is no longer normal and A′′ → [0, 2] is, strictly speaking, no longer a
fuzzy set. However, both A′ and A′′ still carry the same linguistic label. Figure 5.1(b)
illustrates the real impact of rule weights that are applied to the degree of fulfilment
and makes clear that a suitable linguistic interpretation of the fuzzy rules is not
possible anymore.

�

� (� , � � � � ") *

� + � , � � � � +) "

�

�

�

�

(a)

�

� (

� +

�

�

�

� �

� � �

(b)

Figure 5.1: The two weighted fuzzy rules of part (a) are replaced in part (b) by
equivalent unweighted rules with modified antecedent fuzzy sets

After we have examined the influence of rule weights on the interpretability of the
rules we want to discuss their impact on the computation of the output of the rules.
In Mamdani-type fuzzy systems rule weights that are used to change the degree
of fulfilment of the rules have different effects depending on the selected inference
operator.

If we use the minimum to compute the conclusion of a rule, then w > 1 only has
an effect if wτ < 1. If wτ > 1, the conclusion is equal to the consequent. Weights
from [0, 1] result in degrees of fulfilment from [0, 1], and so the computation of the
overall output is done as usual.

For a rule with w < 0 the conclusion becomes a “negative rectangle” of height wτ
over the whole output domain. After maximum combination with the conclusion
fuzzy sets of other possibly active rules, such invalid “negative fuzzy sets” disappear

88 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

from the output. Rules with negative weights never contribute to the overall output
value, if maximum combination is implemented by the book and takes all fuzzy rules
into account – even those with zero degree of fulfilment.

However, we have to be careful, if we use an implementation that skips rules with
zero activation or areas with zero membership from the maximum combination, for
the sake of computation time. In this case, we can obtain a “negative output fuzzy
set”, or output “fuzzy sets” with negative and positive “membership degrees”. The
kind of crisp output computed from this depends on the defuzzification method
used. If we use a fuzzy software system that allows us to use negative weights,
we must have a close look at how max-min-inference and defuzzification are really
implemented.

In general, rules with negative weights only influence the computation of the overall
output value, if maximum combination is implemented incompletely as described
above, or if we use local defuzzification methods, or if we have a fuzzy classifier,
where the (weighted) degree of fulfilments are combined directly to indicate a class
membership, or if we use a Sugeno-type fuzzy system (see below).

In Figure 5.2 the influence of rule weights on the computation of the output in the
case of max-min-inference is shown. Figure 5.2(a) shows rule weights 0 < w1 < 1
and w2 > 1. Weight w1 reduces the degree of fulfilment of the first rule. The prod-
uct τw2 is larger than 1, but due to min-implication the output fuzzy set of the
second rule is simply the consequent fuzzy set. In Figure 5.2(b) we have a nega-
tive weight w2. This results in an invalid output fuzzy set for the second rule, but
the max-combination of the conclusions ignores this result, because the degrees of
membership of the output fuzzy set of the first rule are all larger or equal to zero.

(

� (4 (

(

� + 4 +

(

5

(

� (4 (

(

� + 4 +

(

5

(

5

6 ' 7 8' � � 9 � 7 8 � 9

� �

� �

�
��

	 � � � � � �
 � - - � � � � �

(a)

(

� (4 (

(

� + 4 +

(

5

(

� (4 (

(

� + 4 +

(

5

(

5

6 ' 7 8' � � 9 � 7 8 � 9

� �

� �

�
��

	 � � � � � �
 � - - � � � � �

(b)

Figure 5.2: The influence of rule weights applied to the degree of fulfilment on the
computation of the output in the case of max-min-inference

5.1. ADAPTIVE RULE WEIGHTS 89

If we use max-dot-inference and apply the product to compute the conclusion of a
rule then the output fuzzy sets are rescaled by the weighted degrees of fulfilment
before they are accumulated and defuzzified. Now the case wτ > 1 also influences
the computation of the output value. The larger the value that is used to scale
the output fuzzy set, the larger is its contribution in the computation of the overall
output value if defuzzification procedures like center of gravity are used.

If there are negative rule weights, there are mirrored rescaled “membership func-
tions”, which disappear after maximum combination, i.e. the effect is in this case
as described above for min-implication and depends on the correct implementation
of the max operation. This situation is shown in Figure 5.3, where we have w1 < 0
and w2 > 1.

(

� (4 (

(

� + 4 +

(

5

(

� (4 (

(

� + 4 +

(

5

(

5

6 ' 7 8' � � 9 � 7 8 � 9

� �

� �

�
��

	 � � � � � �
 � - - � � � � �

Figure 5.3: The influence of rule weights applied to the degree of fulfilment on the
computation of the output in the case of max-dot-inference

In Sugeno-type fuzzy systems the degree of fulfilment is used to compute a weighted
sum. Rule weights occur as factors in the sums of the nominator and denominator:

z =

∑
i

τi · wi · fi(x, y)∑
i

τi · wi

.

We obtain a different result from that when we apply weights to the conclusions,
where the weights would only occur in the nominator.

Weighted Sugeno-type rules can be replaced by equivalent unweighted rules, if we
change the antecedent fuzzy sets accordingly. This means rule weights applied to
the degree of fulfilment cause the same semantical problems in Sugeno-type fuzzy
systems as they do in Mamdani-type fuzzy systems.

90 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Rule Weights Applied to Conclusions

If a rule weight is applied to the conclusion of a rule, it modifies the size of a rule’s
output value. If the output is crisp, the weight is simply multiplied with this value.
If an output fuzzy set is multiplied with a weight, its support and shape are modified.

Theorem 5.3 A Mamdani-type fuzzy system MFR : IRn → IR with a rule base R
of r weighted rules R1, . . . , Rr with

Rk : if x1 is µ
(1)
k and . . . and xn is µ

(n)
k then y is νk with wk, (k = 1, . . . , r)

where the weights are applied to the conclusions, is equivalent to a Mamdani-type
fuzzy system MFR̂ : IR

n → IR with a rule base of r unweighted rules R̂1, . . . , R̂r with

R̂k : if x1 is µ
(1)
k and . . . and xn is µ

(n)
k then y is ν̂k, (k = 1, . . . , r)

such that

ν̂k = wk · νk with ν̂k(y) = (wk · νk)(y) = sup{νk(t)|y = wk · t} (k = 1, . . . , r).
Proof. For any t-norm � we obtain

MFR(x) = defuzz(ν∗), with

ν∗(y) = max
Rk∈R

{�{(wk · νk)(y), τk}}

= max
R̂k∈R

{�{ν̂k(y), τk}}

= ν̂∗(y), where MFR̂(x) = defuzz(ν̂
∗)

✷

This means we can replace the weights in our original rules M1 and M2 by changing
the membership functions in the consequents:

M∗
1 : if x is A and y is B then z is D′,

M∗
2 : if x is A and y is C then z is D′′.

Let us assume that the support of the original (convex) output fuzzy set D is [l, u].
Then we obtain for the support of D′ and D′′ [lw1, uw1] and [lw2, uw2], respectively,
or for negative weights [uw1, lw1] and [uw2, lw2], respectively. This results in the
following problems:

• Instead of a single fuzzy set D two different fuzzy sets D′ and D′′ are now used
in our two rules. However, they are labeled with the same linguistic term, i.e.
we obtain two different representations of the same linguistic value in our fuzzy
system.

5.1. ADAPTIVE RULE WEIGHTS 91

• The membership functions of the consequents are shifted away from their
original positions, and their supports are rescaled. On the one hand, this can
result in undesirable small or large supports and, on the other hand, a fuzzy
set can even migrate from a positive part of its domain to a negative part and
vice versa. It is also possible that a fuzzy set completely leaves the domain of
the output variable. If we are interested in interpreting the fuzzy systems we
are forced to relabel the fuzzy sets.

Figure 5.4 illustrates how two fuzzy rules with weights that are applied to the output
fuzzy sets can be replaced by equivalent unweighted rules. In Figure 5.4(a) we can
see the two fuzzy rules

if x is A then y is D with 0.5,
if x is B then y is D with 2.0.

If we replace the weighted rules by equivalent unweighted rules, we obtain the sce-
nario in Figure 5.4(b), where we have the rules

if x is A then y is D′,
if x is B then y is D′′.

We can see that D′ and D′′ are scaled versions of D, but remain normal convex fuzzy
sets. However, both fuzzy sets still carry the same linguistic label and to insure the
interpretability of the fuzzy system, we must relabel them.

�
� "

� (� , � � � � ") * � + � , � � � � +) "

�

� �

�

"

(

+

:

;

(a)

�
� "

� (

� +�

� �

� �

� � �

"

(

+

;

:

*

<

(b)

Figure 5.4: The two weighted fuzzy rules of part (a) are replaced in part (b) by
equivalent unweighted rules with modified consequent fuzzy sets

92 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Replacing the weighted rules by equivalent unweighted rules shows which part of
the data space is really covered by the fuzzy rules. In this sense rule weights that
are applied to conclusions obscure the interpretation of a fuzzy rule base.

In contrast to the application of a rule weight to a degree of fulfilment we do not
encounter problems in computing the overall output value if we apply a weight to
the conclusion, because non-normal or invalid fuzzy sets do not occur. Even negative
weights or weights larger than 1 only result in changing the support of the output
fuzzy sets. So the problems of these kinds of rule weights are multiple representations
of the same linguistic term and the “invisible” effects on the location and form of
the output fuzzy sets.

If a rule weight is used to modify the conclusion of a rule in a Sugeno-type fuzzy sys-
tem, then the weights appear as additional factors in the nominator of the equation
for the overall output value:

SFR(x) =

∑
Rk∈R

τk · wk · fk(x)∑
Rk∈R

τk

.

Applying rule weights to conclusions is equivalent to replacing the function fk, which
computes the output of a rule Rk by f ′

k = wkfk. In this case we do not encounter
semantical problems, because the consequents of Sugeno-type rules are usually not
interpreted linguistically. This means for Sugeno-type fuzzy systems rule weights
that are applied to the conclusions are a simple way to train the system in a linear
fashion. Such an approach was, for example, successfully applied in a neuro-fuzzy
system for stock index prediction [Siekmann et al., 1999].

Avoiding Rule Weights

We have shown how weighted fuzzy rules can be replaced by equivalent unweighted
fuzzy rules. If this is done the effects of rule weights on a fuzzy system become
visible. The following list summarizes these problems:

(i) Multiple representations of the same linguistic term.

(ii) Non-normal or invalid fuzzy sets, if the weight is applied to the degree of
fulfilment.

(iii) Effects on the computation of the output value that are not visible in the
representation of weighted fuzzy rules.

(iv) Difficult or even impossible linguistic interpretation of the rule base.

5.1. ADAPTIVE RULE WEIGHTS 93

Rule weights are a very simple way to obtain adaptability for a fuzzy system. The
performance can be easily tuned by applying a learning algorithm to the rule weights.
Because all other parameters of the fuzzy system remain constant, a linear learning
algorithm like the delta rule [Widrow and Hoff, 1960] or a least mean square
procedure can be applied. This is much simpler to implement than to specify learning
algorithms that modify fuzzy sets directly.

In many cases, rule weights alone are not sufficient to enhance the performance of
a fuzzy system by learning, because rule weights cannot change the positions of the
antecedent fuzzy sets. If this is necessary, then the parameters of the membership
functions must also be adapted by a learning procedure.

Some of the problems of rule weights can be avoided, if negative weights are not
used and the rule weights are normalized. In this case membership degrees that are
not from [0, 1] do not occur. A rule weight from [0, 1] that is applied to the degree
of fulfilment can be viewed as a reduction of influence of a rule. In this case the
rule weight has a similar interpretation as the degree of fulfilment of a rule. The
difference is that the degree of fulfilment reflects the (posterior) influence of the
rule due to the current input data and the weight would reflect the (prior) influence
specified by an expert or obtained during a learning process. Negative rule weights
or weights larger than 1 do not make any sense in this interpretation and must be
avoided.

But even if we choose rule weights from [0, 1] that can be interpreted to some ex-
tent, we must be aware that weighted rules can always be replaced by equivalent
unweighted rules with modified fuzzy sets. Unweighted rules are preferable because
the effects of the weights on a fuzzy system are not visible. Users may tend to forget
these effects – especially the effect of multiple representations of identical linguistic
terms – when they interpret the rule base linguistically.

Rule weights that are applied to the conclusions have no interpretation. They simply
scale the output fuzzy sets and are just a hidden modification of the consequents.
Normalizing such rule weights makes no sense because they are used to change the
conclusions in order to influence the size of the overall output value of the fuzzy
system.

We can view a fuzzy system as a (fuzzy) combination of local models, which are
fuzzy sets for Mamdani-type systems, and (usually) linear models for Sugeno-type
systems. If a rule weight is applied to the degree of fulfilment then the influence of
the local model represented by the consequent is changed for a certain area of the
data space. If a rule weight is applied to the conclusion of a rule, then the represented
local model itself is changed. For the sake of interpretation these changes should not
be done by using rule weights, but instead by changing the respective membership
functions directly.

94 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

If we provide a learning algorithm that modifies the parameters of the membership
functions, it is also easily possible to define restrictions for the learning process.
These restrictions can make sure that certain changes to the fuzzy sets must not be
carried out to ensure, for example, that the fuzzy sets stay within their domains,
keep their relative positions etc. By restricting the learning algorithms we sacrifice
degrees of freedom in exchange for readability. Learning becomes more difficult and
for an increase in readability we pay with a loss of accuracy [Bersini et al., 1998,
Nauck et al., 1997]. In the following sections of this chapter we discuss several
learning algorithms that directly modify parameters of membership functions.

5.2 Training Membership Functions

We have seen in the previous section that adaptive rule weights in fuzzy systems can
prevent a suitable linguistic interpretation. To train a fuzzy system it is preferable
to specify a learning procedure that is able to modify fuzzy sets directly.

Many approaches to training membership functions are based on backpropagation
implemented by gradient descent [Nomura et al., 1992] and are sometimes also
mixed with adaptive rule weights, like, for example, in the ARIC [Berenji, 1992]
or FuNe [Halgamuge and Glesner, 1994, Halgamuge, 1995] models.

In order to use gradient descent techniques, the membership functions and all func-
tions that take part in the evaluation of the fuzzy rule base must be differentiable
[Grauel and Ludwig, 1999]. If we use a regular Mamdani-type fuzzy system
with max-min-inference this is not the case. There are also problems, when non-
continuous membership functions like triangular or trapezoidal functions or non-
differentiable defuzzification functions are used.

In Sugeno-type fuzzy systems gradient descent learning can be more easily applied,
because they use only the product as t-norm and compute the output by a weighted
sum. If bell-shaped (Gaussian) membership functions are used, then a Sugeno-type
fuzzy system is equivalent to a special kind of RBFN (Definition 3.10) [Jang and
Sun, 1993]. In this case the fuzzy system uses only differentiable functions, and
a standard backpropagation algorithm based on gradient descent can be applied to
the parameters of the fuzzy sets.

Nomura et al. describe a learning procedure for simplified Sugeno-type fuzzy systems
that only use constants in the consequents of the rules [Nomura et al., 1992].
The parameter updates of a gradient-descent-based supervised learning procedure
can easily be computed by applying the chain-rule. However, in [Nomura et al.,
1992] the fuzzy sets in the antecedents are represented by triangular membership
functions and the authors ignored the fact that each membership function cannot
be differentiated at three points. A simple heuristic to cope with this problem is
to not update a parameter, if its value occurs in the input [Nauck et al., 1997].

5.2. TRAINING MEMBERSHIP FUNCTIONS 95

Nomura et al. also allowed the fuzzy sets of each rule to be modified independently
from all other rules. This results in multiple fuzzy set representations of the same
linguistic term. If the antecedents are to be interpreted linguistically after learning,
then this approach is not acceptable. Refinements of the learning procedure that
ensure that each linguistic term is represented by just one fuzzy set were suggested
in [Bersini et al., 1993, Nauck, 1994b, Nauck et al., 1997].

The ANFIS model [Jang, 1993] implements a regular Sugeno-type fuzzy system
with continuous bell-shaped membership functions. The consequents consist of lin-
ear combinations of the input variables. In the training procedure of ANFIS each
learning step has two parts. In the first part the parameters of the antecedent fuzzy
sets are assumed to be constant and after the current input has been propagated the
optimal consequent parameters are computed by least squares estimation. In the
second part the newly computed consequent parameters are assumed to be constant
and after the same input has been propagated again the antecedent parameters are
updated once by gradient descent. This procedure is iterated until the overall error
is small enough or does not change anymore. Jang reports that this two-stage ap-
proach performs better than simply using gradient descent to compute all parameter
updates [Jang, 1993]. However, with an increasing number of consequent parame-
ters the ANFIS learning algorithm becomes very expensive. A comparsion between
ANFIS and NEFPROX – which uses fast heuristics instead of gradient descent and
LSE – can be found in [Nauck and Kruse, 1999a].

To be able to apply a gradient-descent-based learning algorithm to a Mamdani-type
fuzzy system some neuro-fuzzy approaches replace the usual max-min inference by
some other evaluation procedure. In the GARIC model [Berenji and Khedkar,
1992, Berenji, 1998], for example, the degree of fulfilment of a fuzzy rule is com-
puted by a so-called soft minimum function m̃in (5.3), which can be differentiated
and converges to the minimum operation if its parameter α goes to infinity.

m̃in(x1, . . . , xn) =

n∑
i=1

xie
−αxi

n∑
i=1

e−αxi

(5.3)

Instead of using max-min inference and defuzzification the GARIC model uses the
degrees of fulfilment to directly obtain a crisp output value for each rule by a (dif-
ferentiable) local defuzzification function. The output values of the rules are then
combined via a weighted sum to the overall output value of the fuzzy system. This
evaluation procedure uses only differentiable functions and therefore a gradient-
descent-based learning procedure can be defined. In GARIC triangular membership
functions are used. The problem of non-differentiable points is solved by using the
mean of the differentiation from the left and from the right at these points [Berenji
and Khedkar, 1992].

96 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

If the evaluation procedure in Mamdani-type fuzzy systems is not to be modified in
order to apply a gradient descent, then other means to adapt the membership func-
tions must be used. Recent approaches choose to implement backpropagation by
simple heuristics instead of gradient descent [Nauck and Kruse, 1994, Nauck
and Kruse, 1995, Nauck and Kruse, 1997c]. The general idea of such heuris-
tics is to determine whether a fuzzy rule should contribute more or less to the overall
output of a fuzzy system. This information can then be used to slightly modify the
membership function in a suitable way after which this process is iterated.

The output error can be, for example, computed by the sum of squared errors SSE
(Eq. 3.1). For the application of fuzzy systems an exact output value is often not
required and approximate solutions are acceptable. In this case other error measures
can be used that tolerate certain deviations from the target values. The neuro-fuzzy
control approach NEFCON [Nauck, 1994a, Nürnberger et al., 1999], for
example, uses a fuzzy error measure that is computed by a fuzzy rule base. In
control applications an error value cannot be computed directly, because the target
values are not known. The training procedure must therefore use reinforcement
learning [Kaelbling et al., 1996] – a special case of supervised learning, where
the error represents a failure or success of the trained system and not the distance
to a target output.

If the target value for a given input pattern is known, a fuzzy error can be defined
by specifying a fuzzy set that represents the linguistic term the output is correct.
This can be done, for example, by

C : IR→ [0, 1], C(d) = e
−
(

a · d
dmax

)2

, (5.4)

with d = t−o, where t is a target value and o is an output value. The parameter dmax

specifies the (absolute) difference from where the degree of membership is smaller
than e−a2

. For a values like 1.7 (e1.7
2 ≈ 0.05) or 2.3 (e2.3

2 ≈ 0.01) are suitable.
Other forms of membership functions are also possible, for example, triangular or
trapezoidal forms.

From the degree to which an output is correct, we can easily derive the error value

FE : IR→ [−1, 1], FE(d) = sgn(d) · (1− C(d)). (5.5)

We call this error measure fuzzy error, because it is based on a fuzzy set that
models the concept correct. For more complex learning situations like in NEFCON
the concept correct is modelled by a fuzzy rule base. The overall performance of the
fuzzy system can be measured by the sum of absolute fuzzy errors

SAFE =
∑
p∈L̃
|FE(p)| =∑

p∈L̃

m∑
j=1

|FE(p)
j | =

∑
p∈L̃

m∑
j=1

(1− C(t
(p)
j − o

(p)
j)) (5.6)

5.2. TRAINING MEMBERSHIP FUNCTIONS 97

that assumes values between 0 (all outputs are correct) and s =
∣∣∣L̃∣∣∣ (all outputs are

not correct).

Like SE the error measure FE tolerates small errors, but there is virtually no dis-
tinction between large and very large errors. Because the error is bounded by −1
and 1, outliers do not have such a strong influence on the training procedure as it is
the case if SE is used, for example, where the error is not bounded and large errors
(t− o 1) tend to be overemphasized.

There is another advantage of FE. If there are several output variables, we can
specify an individual error for each by specifying different values for dmax. Thus it is
not necessary to normalize the training data as is usually done for neural networks
to avoid large differences in the size of error signals for output variables on different
scales.

The error measure is not only used to guide the learning process, but also to evaluate
the performance of the final model. The error on the training set is not useful for
this, because a small error can point to overfitting. To compute the error on a test
set not used for training is also usually not sufficient, because the way the data
was selected may influence the performance. In order to reduce these influences a
resampling technique called cross validation can be used. This is also useful, if only
little training data is available and a large test set cannot be afforded. In n-fold
cross validation the training data is split randomly into n stratified samples. Then
the model is generated n times, each time using n − 1 samples and one sample for
testing such that each sample is used once for testing. The final model is created
by using all n samples, i.e. all available data If n is equal to the number of training
patterns, we speak of 1-leave-out cross validation.

The error estimation (mean error) ē for unseen data is computed from the errors
ei of the classifiers created during validation. In order to evaluate the reliabiliy
of the error value the variance of the error distribution should be considered and
a confidence interval should be computed. The 99% confidence interval for the
estimated error is given by

ē± 2.58 · σ̂ē

where σ̂ē is the standard error of the mean:

σ̂ē =

√√√√√√√
n∑

i=1

(ei − ē)2

n · (n− 1) . (5.7)

98 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

5.3 Mamdani-type Fuzzy Systems

In this section we discuss a learning algorithm applied to Mamdani-type fuzzy sys-
tems for function approximation. The supervised learning algorithm that is pre-
sented below is based on backpropagation. An error is determined at the output
side of the fuzzy system and is propagated backwards through the architecture. The
main information of the error value is whether the contribution of a fuzzy rule to the
overall output value should be increased or decreased. The size of the error value is
used to compute the size of the modification.

The learning algorithm is presented in four parts in Algorithms 5.1 – 5.4. Algo-
rithm 5.1 implements the main loop of the training procedure. In each loop the
algorithm propagates a training pattern, determines the output of the fuzzy sys-
tem and computes the parameter updates of the consequent and of the antecedent
membership functions. Depending on whether online learning or batch learning is
selected, the fuzzy sets are either updated immediately after each pattern, or only
after all training patterns have been presented once, i.e. after a complete epoch.

The algorithms use the following notations:

• L̃: a set of training data (fixed learning problem) with
∣∣∣L̃∣∣∣ = s, which rep-

resents a function approximation problem, where patterns p ∈ IRn must be
mapped to target vectors t ∈ IRm.

• (p, t) ∈ L̃: a training pattern consists of an input vector p ∈ IRn (input
pattern) and a target vector t ∈ IRm.

• Ar = (µ
(1)
r , . . . , µ(n)

r): the antecedent of rule Rr. Ar(p) denotes the degree of
fulfilment of rule Rr (with antecedent Ar) for pattern p, i.e.
Ar(p) = min{µ(1)

r (p1), . . . , µ
(n)
r (pn)}.

• µ(i)
r : a fuzzy set of input variable xi(i ∈ {1, . . . , n}) that appears in the an-
tecedent of fuzzy rule Rr(r ∈ {1, . . . , k}).
• ν(j)

r : a fuzzy set of output variable yj(j ∈ {1, . . . ,m}) that appears in the
consequent of fuzzy rule Rr.

Algorithm 5.1 also uses the following options:

• MINFSONLY: If this option is selected, then in each rule only the antecedent
fuzzy set is modified that yields the smallest degree of membership of all fuzzy
sets in the antecedent of the considered rule. Otherwise, all fuzzy sets in the
antecedent are modified.

• ONLINELEARNING: If this option is selected, then the fuzzy sets are modi-
fied after each propagation of a training pattern.

5.3. MAMDANI-TYPE FUZZY SYSTEMS 99

• BATCHLEARNING: If this option is selected, then the computed updates for
the fuzzy sets are accumulated first. The fuzzy sets are not modified before
all training patterns have been propagated, i.e. after a complete epoch.

The end criterion that terminates Algorithm 5.1 can depend on any combination of
the following conditions:

• the overall output error is small enough,

• the overall output error has reached a local minimum,

• a maximum number of iterations has been exceeded.

It is useful to observe these conditions on a separate validation set and not on the
training set in order to avoid over-generalization.

When the antecedent of a ruleRr is updated, we can choose between the modification
of all fuzzy sets used in the antecedent or just of that fuzzy set µmin

r which yields
the minimum degree of membership:

µmin
r = µ(j)

r with µ(j)
r (xj) = τr = µr(x) = min{µ(1)

r (x1), . . . , µ
(n)
r (xn)} (5.8)

Updating only µmin
r is motivated by the idea to keep the changes to the fuzzy systems

as small as possible. To change the degree of fulfilment of a rule it is sufficient to
change µmin

r . If µmin
r is not unique, then ties are either broken arbitrarily or all fuzzy

sets with this property are modified.

Figure 5.5 shows the difference between both approaches for an antecedent of a rule
using two input variables x1 and x2. The fuzzy set µ : x1 × x2 → [0, 1], µ(x1, x2) =
min(µ(1)(x1), µ

(2)(x2), which represents the rule antecedent has the form of a pyramid
and is seen from above. Assume we present a training pattern as seen in Figure 5.5a.
The degree of fulfilment of the rule is equal to the degree of membership of µ(1)(x1).
Let us further assume the degree of fulfilment of the rule must be increased. In this
case it is sufficient to modify µ(1) (Figure 5.5b). Only if the goal of the training
procedure is to move the core of the antecedent closer to the training pattern in
both dimensions, must both fuzzy sets be modified (Figure 5.5c).

The algorithms for computing the updates of the membership functions in the con-
sequent and the antecedent of a rule are simple heuristics (Algorithms 5.2 and 5.3).
The computations are given such that the membership functions stay symmetrical.
If this is not required, only that section of a membership function needs to be mod-
ified, where the current input value is located. Bell-shaped membership functions
are always symmetrical. Depending on whether the fuzzy set to be modified is used
in an antecedent or in a consequent of a rule one of the following two strategies is
used.

100 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Algorithm 5.1: Fuzzy set learning in a Mamdani-type fuzzy system

1: repeat
2: for all patterns (p, t) ∈ L̃ do (* there are s training patterns *)
3: propagate the next training pattern (p, t);
4: for all output variables yj do
5: compute the output error Ej; (* based on tj − oj, see page 96 *)
6: end for
7: for each rule Rr with Ar(p) > 0 do
8: for all ν(j)

r do (* modify all output fuzzy sets *)
9: ComputeConsequentUpdates(ν(j)

r , Ej, Ar(p), tj); (* see Alg. 5.2 *)
10: if (ONLINELEARNING) then (* update after each pattern *)
11: Update (ν(j)

r , 1); (* see Algorithm 5.4 *)
12: end if
13: end for

14: Er = Ar(p) · (1−Ar(p)) · 1
m

∑
yj

(2 · ν(j)
r (tj)− 1) · |Ej|; (* see Eq. (5.10) *)

15: if (MINFSONLY) then (* modify only one antecedent fuzzy set *)
16: j = argmin

i∈{1,...,n}
{µ(i)

r (pi)};
17: ComputeAntecedentUpdates(µ(j)

r , Er, pj); (* see Algorithm 5.3 *)
18: if (ONLINELEARNING) then (* update after each pattern *)
19: Update (µ(j)

r , 1); (* see Algorithm 5.4 *)
20: end if
21: else (* modify all antecedent fuzzy sets *)
22: for all µ(i)

r do
23: ComputeAntecedentUpdates(µ(i)

r , Er, pi); (* see Algorithm 5.3 *)
24: if (ONLINELEARNING) then (* update after each pattern *)
25: Update (µ(i)

r , 1); (* see Algorithm 5.4 *)
26: end if
27: end for
28: end if
29: end for (* end for each rule *)
30: end for (* end for all training patterns *)
31: if (BATCHLEARNING) then (* update after complete epoch *)
32: for all output variables yi do
33: for all fuzzy sets ν

(i)
j do

34: Update (ν
(i)
j , s); (* see Algorithm 5.4 *)

35: end for
36: end for
37: for all input variables xi do
38: for all fuzzy sets µ

(i)
j do

39: Update (µ
(i)
j , s); (* see Algorithm 5.4 *)

40: end for
41: end for
42: end if
43: until end criterion;

5.3. MAMDANI-TYPE FUZZY SYSTEMS 101

� � � � � = � � (&

� + &

� (

� +

� (

� +

� (

� +

 � & & � &

� � = � � � � � / � (& � � � + & 0

Figure 5.5: An antecedent of two variables in the product space x1 × x2 (a). To
increase the degree of fulfilment it is sufficient to modify only fuzzy set
µmin = µ(1) (b). Both fuzzy sets are changed, if the core of the antecedent
is to be moved towards the training pattern (c).

• Antecedent: If the degree of membership must be increased, the support of
the fuzzy set is enlarged and shifted such that the core of the fuzzy sets is
moved towards the current input value. If the degree of membership must be
decreased the opposite modification is carried out: the support is reduced and
shifted such that the core is moved away from the current input value. An
example for the modification of a triangular membership function is shown in
Figure 5.6.

• Consequent: A heuristics for modifying consequent fuzzy sets must take the
defuzzification procedure into account. Usually a defuzzification strategy that
computes a weighted average is used, for example, center of gravity or mean
of maximum. To move the output value of a fuzzy system closer to the target
value the support of a consequent fuzzy set must shifted such that the core
of the fuzzy sets moves closer to the target value. If the target has non-zero
membership with the fuzzy set to be modified, then the support of this fuzzy
set is also reduced to focus the fuzzy set on the target value. If the target has
zero membership with a fuzzy set to be modified, then the support of this fuzzy
set is extended towards the target value. An example for the modification of
two triangular membership functions is shown in Figure 5.7.

The modifications of the consequent fuzzy sets are computed by using the output
error of the corresponding variable. In order to compute updates for an antecedent
fuzzy set, we need to know the error of a fuzzy rule. If we assume the neural network
view of a fuzzy system, we can compute a suitable error value by backpropagating
the output error from the output nodes to the rule nodes. To correct the output of a

102 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

����

���

��	�

���

� � � �

�	�

Figure 5.6: To increase the degree of membership for the current input pattern the
original representation of the fuzzy set (center) assumes the representa-
tion on the right, to decrease the degree of membership, it assumes the
representation on the left

� � � �

Figure 5.7: To move an output value o of a fuzzy system closer to a current target
value t the consequent fuzzy sets are moved towards t

fuzzy system by modifying the degrees of fulfilment of the rules we must increase the
influence of rules where a consequent fuzzy set yields a high degree of membership for
the target value. If the target value has only a small degree of membership with the
consequent fuzzy set, the influence of the corresponding rule must be decreased. A
fuzzy rule Rr obtains the following error signal from its output variables y1, . . . , ym:

1

m

m∑
j=1

2ν(j)
r (tj)− 1|Ej| (5.9)

For ν(j)
r (tj) > 0.5 we obtain a positive error signal from yj in order to increase the

degree of fulfilment. For ν(j)
r (tj) < 0.5 the error signal from yj is negative in order

to decrease the degree of fulfilment of Rr. For ν(j)
r (tj) = 0.5 it cannot be decided

5.3. MAMDANI-TYPE FUZZY SYSTEMS 103

if it would be better to increase or decrease the influence of Rr given the current
target tj and therefore the error signal from yj is zero.

The rule error must also depend on the current degree of fulfilment τr of a rule.
Because a fuzzy system is a combination of local models, we can try to reach a state
where a fuzzy rule either provides a very high or a very low degree of fulfilment for
all training patterns. This means, the partitioning of the data space by the fuzzy
rules should be as crisp as possible. The final rule error is therefore computed by

Er = τr(1− τr)
1

m

m∑
j=1

(2ν(j)
r (tj)− 1)|Ej|. (5.10)

The rule error is zero for τr = 0 and τr = 1. A rule with τr = 0 does not contribute
to the current output and should not be trained. A rule with τr = 1 perfectly
matches the current input pattern. In this case we assume the the consequent alone
is responsible for the error and that the antecedent must not be changed. The rule
error is maximum for τr = 0.5 in order to force a rule to “decide” to either provide
large or small degrees of fulfilment.

To compute the parameter updates of a fuzzy set, we must take the form of the
membership function, i.e. the meaning of the parameters, into account. The pro-
cedure ComputeUpdates (Algorithm 5.4) provides the necessary computations for
triangular (5.11), trapezoidal (5.12) and bell-shaped membership functions (5.13)
as given by the following equations:

µa,b,c : IR→ [0, 1], µa,b,c(x) =

x− a
b− a if x ∈ [a, b),

c− x
c− b if x ∈ [b, c],
0 otherwise,

(5.11)

with a ≤ b ≤ c,

µa,b,c,d : IR→ [0, 1], µa,b,c,d(x) =

x− a
b− a if x ∈ [a, b),

1 if x ∈ [b, c],
d− x
d− c if x ∈ (c, d],
0 otherwise,

(5.12)

with a ≤ b ≤ c ≤ d,

µa,b,c : IR→ [0, 1], µa,b,c(x) = e

(
c·(x−b)

a

)2

(5.13)

with a > 0, c > 0, b ∈ IR.

A triangular membership function (5.11), which can be used to represent fuzzy num-
bers (approximately b), is given by its center b and its support [a, c]. A trapezoidal

104 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

membership function (5.12) can be used to represent a fuzzy interval (approximately
between b and c). It is given by its core [b, c] and its support [a, d]. A bell-shaped
membership function (5.13) is also useful to represent fuzzy numbers and can be
used, for example, if a differentiable function is needed, or if the support must cover
the whole domain. The parameter b specifies the center of the function and a speci-
fies the half width of the α-cut at e−c2 . Commonly c = 1.7 or c = 2.2 is chosen such
that a specifies the half width of the α-cut at e−2.89 ≈ 0.05 or e−4.84 ≈ 0.01.
To ensure an acceptable interpretability of the fuzzy rule base after learning, the
training algorithm must not apply arbitrary updates to the fuzzy sets. Before the
updates computed by Algorithms 5.2 and 5.3 are applied we must check whether
the resulting forms of the membership functions are acceptable. We usually specify
a number of constraints on the parameters before learning which must be satisfied
by the training algorithm.

We can separate the parameters of a membership function into position parameters
and width parameters, which determine the location and size of the support, re-
spectively. For example, in a bell-shaped membership function (5.13) b is a position
parameter and a is a width parameter. In a triangular membership function (5.11)
b is a position parameter and a and c are both position and width parameters. Posi-
tion parameters determine the relative position of the fuzzy sets in a fuzzy partition
and width parameters determine the overlap of the fuzzy sets.

In order not to apply computationally expensive constraint satisfaction strategies
we can use the following approach to meet the four most common constraints while
applying the updates by Algorithm 5.4.

(i) Valid parameters: If updating the parameters would lead to invalid values
the updates are corrected. For example, for a triangular membership function
(5.11) l ≤ a ≤ b ≤ c ≤ u must always hold, where [l, u] is the domain of the
corresponding variable.

(ii) Do not pass: If an update causes a position parameter of the current fuzzy set
to become smaller than the corresponding parameter of the left neighbour or
larger than the corresponding parameter of the right neighbour, the update is
corrected.

(iii) Must overlap: If an update causes a width parameter of the current fuzzy set
to change in such a way that the current fuzzy set no longer sufficiently overlap
with one of its neighbours, the update is corrected.

(iv) Stay symmetric: If the parameter updates of the current fuzzy set lead to an
undesired asymmetry, the update is corrected.

5.3. MAMDANI-TYPE FUZZY SYSTEMS 105

Algorithm 5.2: Compute updates for consequent fuzzy sets

ComputeConsequentUpdate (ν, e, τ, t)

(* The algorithm obtains the following input parameters: *)
(* ν: fuzzy set for which parameter updates must be computed *)
(* e: error value *)
(* τ : degree of fulfilment of the rule that uses ν in the consequent *)
(* t: current target value from the domain of ν*)
(* a, b, c, d are parameters of ν, see (5.11) - (5.13)*)

1: if (ν is triangular) then (* triangular fuzzy set *)
2: shift = σ · e · (c− a) · τ · (1− ν(t));
3: ∆b = ∆b+ shift;
4: if ν(t) > 0 then (* t ∈ support(ν), focus ν on t *)
5: ∆a = ∆a+ σ · τ · (b− a) + shift;
6: ∆c = ∆c− σ · τ · (c− b) + shift;
7: else (* t �∈ support(ν), shift ν to cover t *)
8: ∆a = ∆a+ sgn(t− b) · σ · τ · (b− a) + shift;
9: ∆c = ∆c+ sgn(t− b) · σ · τ · (c− b) + shift;

10: end if
11: else if (ν is trapezoidal) then (* trapezoidal fuzzy set *)
12: shift = σ · e · (d− a) · τ · (1− ν(t));
13: if ν(t) > 0 then (* t ∈ support(ν), focus ν on t *)
14: ∆a = ∆a+ σ · τ · (b− a) + shift;
15: ∆b = ∆b+ σ · τ · (c− b) + shift;
16: ∆c = ∆c− σ · τ · (c− b) + shift;
17: ∆d = ∆d− σ · τ · (d− c) + shift;
18: else (* t �∈ support(ν), shift ν to cover t *)
19: ∆a = ∆a+ sgn(t− b) · σ · τ · (b− a) + shift;
20: ∆b = ∆b+ sgn(t− b) · σ · τ · (c− b) + shift;
21: ∆c = ∆c+ sgn(t− b) · σ · τ · (c− b) + shift;
22: ∆d = ∆d+ sgn(t− b) · σ · τ · (d− c) + shift;
23: end if
24: else if (ν is bell-shaped) then (* bell-shaped fuzzy set *)
25: shift = σ · e · a · τ · (1− ν(t));
26: ∆b = ∆b+ shift;
27: if ν(t) > e−c2 then (* t ∈ support(ν), focus ν on t *)
28: ∆a = ∆a− shift;
29: else (* t �∈ support(ν), shift ν to cover t *)
30: ∆a = ∆a+ shift;
31: end if
32: end if

106 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Algorithm 5.3: Compute antecedent fuzzy set updates

ComputeAntecedentUpdates(µ, e, p)

(* The algorithm obtains the following input parameters: *)
(* µ: fuzzy set for which parameter updates must be computed *)
(* e: error value *)
(* p: current input value from the domain of µ *)
(* a, b, c, d are parameters of µ, see (5.11) - (5.13)*)

1: if (e < 0) then (* take degree of membership into account *)
2: f = σ · µ(p) (* σ is a learning rate *)
3: else
4: f = σ(1− µ(p))
5: end if
6: if (µ is triangular) then (* triangular fuzzy set *)
7: shift = f · e · (c− a) · sgn(p− b);
8: ∆a = ∆a− f · e · (b− a) + shift; (* lower bound of support *)
9: ∆c = ∆c+ f · e · (c− b) + shift; (* upper bound of support *)

10: ∆b = ∆b+ shift; (* center *)
11: else if (µ is trapezoidal) then (* trapezoidal fuzzy set *)
12: if (b ≤ p ≤ c) then (* p ∈ core(µ) *)
13: ∆b = ∆b− f · e · (c− b); (* lower bound of core *)
14: ∆c = ∆c+ f · e · (c− b); (* upper bound of core *)
15: else (* p �∈ core(µ) *)
16: shift = f · e · (d− a) · sgn(p− b);
17: ∆a = ∆a− f · e · (b− a) + shift; (* lower bound of support *)
18: ∆b = ∆b− f · e · (c− b) + shift; (* lower bound of core *)
19: ∆c = ∆c+ f · e · (c− b) + shift; (* upper bound of core *)
20: ∆d = ∆d+ f · e · (d− c) + shift; (* upper bound of support *)
21: end if
22: else if (µ is bell-shaped) then (* bell-shaped fuzzy set *)
23: temp = f · e · b;
24: ∆a = ∆a+ temp; (* width of α-cut at ec

2
*);

25: ∆b = ∆b+ temp · sgn(p− b); (* center *)
26: end if

5.3. MAMDANI-TYPE FUZZY SYSTEMS 107

Algorithm 5.4: Carry out the update of a fuzzy set

Update (µ, k)

(* The algorithm obtains the following input parameters: *)
(* µ: fuzzy set for which parameter updates must be computed *)
(* k: k = 1 for online learning, k = s for batch learning *)

1: if (the update of µ conflicts with the constraints for µ) then
2: modify the updates of µ such that the constraints are satisfied;
3: end if

4: for all parameters w of µ do
5: w = w +∆w/k; (* apply parameter updates *)
6: ∆w = 0; (* reset parameter updates *)
7: end for

Example 5.4 In Figure 5.8 an example for online learning is shown. We assume
that the fuzzy set in the middle would obtain the form shown in part (1) of Figure
5.8, if the updates computed during the last training step were applied. We further
assume that fuzzy sets must have valid parameters, must not exchange the posi-
tions with adjacent fuzzy sets, must overlap with adjacent fuzzy sets and must stay
symmetric. Figure 5.8 illustrates the application of the four steps given in the list
above.

If we used batch learning, we would obtain a different solution, because we would
have to process the fuzzy sets either from left to right or from right to left in order
to avoid an iterated constraint satisfaction procedure. In this case we would have
to extend the support of the leftmost fuzzy set in order to ensure overlapping and
then we would have to make it symmetric again. ✸

The most restrictive constraint for the training algorithm is the requirement that
the degrees of membership add up to 1 for each value of a domain. In contrast
to the above-mentioned constraints, this restriction can obviously not be enforced
by simply correcting the parameter modifications of the currently updated fuzzy
set. The left and right neighbours in the fuzzy partition must also be modified.
This feature cannot be implemented by the update procedure in Algorithm 5.4. An
additional subroutine must be defined for this and must be called after updating all
fuzzy sets of a variable.

The easiest way to implement this constraint is to use online learning. In this case
it is sufficient to correct the left and right neighbour of a fuzzy set after updating it.
This approach was implemented, for example, in the software tools NEFCLASS-PC
[Nauck et al., 1996, Nauck and Kruse, 1997b] and NEFCLASS-X [Nauck

108 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

(

+

;

:

Figure 5.8: Constraint satisfaction after computing updates by online learn-
ing: (1) the second fuzzy set would not satisfy the constraints if
the updates were applied, (2) restore relative positions, (3) restore
overlap, (4) restore symmetry

and Kruse, 1998b].

If, however, batch learning is used, then we must correct the whole fuzzy partition
after each epoch. To simplify the computation we process the fuzzy partition from
left to right (or from right to left). Two consecutive fuzzy sets of the partition are
considered and the overlapping between them is adjusted such that the membership
degrees add up to 1. After each pair of consecutive fuzzy sets has been processed,
the fuzzy partition satisfies the constraint.

The adjustment should take into account the shift of the core of the fuzzy sets,
which was caused by the previous parameter updates. This means, if possible, the
constraint is enforced by first trying to adjust width parameters; only if that fails
are position parameters adjusted. This approach is implemented, for example, in
the software tool NEFCLASS-J [Nauck et al., 1999].

Example 5.5 Figure 5.9 shows an example for correcting a fuzzy partition during
batch learning such that the degrees of membership add up to 1. We assume that
the fuzzy partition looks like part (1) of Figure 5.9 after Algorithm 5.4 has been
executed. We further assume that the membership functions need not be symmetric.

5.3. MAMDANI-TYPE FUZZY SYSTEMS 109

To correct the partition we begin at the lower bound and consider two adjacent
fuzzy sets. The arrows above the fuzzy sets in part (1) of Figure 5.9 denote the
direction in which the cores of the fuzzy sets have moved due to the recent update
step. In part (2) we adjust the overlapping between the first and second fuzzy set
and in part (3) the overlapping between the second and third fuzzy set is corrected.
We take the shift of the cores into account and try to maintain or – if that is not
possible – to increase the shift while correcting the parameters of the membership
functions. ✸

(

+

;

Figure 5.9: Correcting a partition after an update step in batch learning (1) by
adjusting the overlap between each two adjacent fuzzy sets (2 and
3) in order to satisfy the constraint “add up to 1”

110 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

5.4 Fuzzy Classifiers

In this section we consider learning in fuzzy classifiers. The degree of fulfilment of
a rule is interpreted as the degree of membership of the input pattern to the class
that is referred to in the consequent (Definition 3.5).

This means learning in a fuzzy classifier only needs to tune antecedent parameters.
Each fuzzy classification rule can be interpreted as a (labelled) fuzzy cluster in
the input space. Learning then corresponds to changing the size and location of
the clusters. The number and initial locations of the clusters have already been
determined by a rule learning procedure (Chapter 4).

If a fuzzy classifier is implemented by using differentiable membership functions and
a differentiable t-norm like the product, then gradient descent methods to determine
the antecedent parameters can be used (Section 5.2). In this section, however, we do
not make this assumption and view a fuzzy classifier as a simplified Mamdani-type
fuzzy system (Definition 3.5). This means, we use the min operation to determine
the degree of fulfilment of a rule, and use the max operation to determine the degree
of membership of some pattern to a class. We also allow non-continuous forms of
membership functions like triangles and trapezoids and fuzzy sets over symbolic
variables.

This means, as in Mamdani-type fuzzy systems, we cannot use gradient descent
procedure for training. Instead we will apply the same heuristics as in Section 5.3.

The learning algorithm 5.5 can be applied to any fuzzy classifier. The algorithm
uses the same notations and options as Algorithm 5.1 (compare p. 98). In addition
the following notations are used:

• (p, t) ∈ L̃: a training pattern consists of an input pattern p ∈ X and a target
vector t ∈ [0, 1]m. In contrast to Algorithm 5.1 we do not require X = IRn and
also allow symbolic variables xi ∈ Xi, where Xi is a finite set. For numeric
variables we have xj ∈ Xj ⊆ IR. A target vector t ∈ [0, 1]m of a training
pattern (p, t) ∈ L̃ denotes a (fuzzy) classification of an input pattern p ∈ X.

• cj: output variable that stores the degree of membership of an input pattern
to class j.

• con(R): index that specifies the class used in the consequent of rule R.

The end criterion that terminates Algorithm 5.5 can depend on any combination of
the following conditions:

• the number of misclassified patterns has been sufficiently decreased,
• the overall output error is small enough,

5.4. FUZZY CLASSIFIERS 111

• the number of misclassified patterns and/or the overall output error have
reached a local minimum,

• a maximum number of iterations has been exceeded.

It is useful to observe these conditions on a separate validation set and not on the
training set in order to avoid over-generalization.

We must note that the number of misclsassifications can increase, if the overall error
decreases. The error value measures how crisp the classification is. Let us consider a
simplified example of two patterns p1 and p2 with class(p1) = c1 and class(p2) = c2

as shown in the following table.

c1 c2 c1 c2

p1 0.51 0.49 0.90 0.30
p2 0.49 0.51 0.51 0.49
SSE 0.96 0.62
miscl. 0 1

We can see that the sum of squared errors decreases, while the number of misclas-
sifications increases. An end criterion for training the membership function can
take both indicators – the error and the number of misclassifications – into account.
A classifier with a slightly higher number of misclassifications but a substantially
smaller error may be more desirable.

The modification of the antecedent fuzzy sets follows the same guidelines that are
used in Section 5.3 for Mamdani-type fuzzy systems. We need to specify an error
value for each individual rule that depends on the output error for the class used in
the consequent and from the current degree of fulfilment τr (compare (5.10)). The
classification of an input pattern is obtained by partitioning the input space with
fuzzy clusters which correspond to the rules of the classifier. An optimal classifier
would output 1 for the correct class and 0 for all other classes. This means we want
the partitioning of the input space to be as crisp as possible. The rule error should
be maximum for τr = 0.5 in order to force a rule to produce degrees of fulfilment
near 1 or 0.

In analogy to (5.10) we could use

Er = τr(1− τr) Econ(Rr)

to compute the rule error. As in (5.10) the rule error would be zero for τr = 0 and
τr = 1. A rule with τr = 0 that does not contribute to the current classification
would not be trained. A rule with τr = 1 perfectly matches the current input
pattern. If such a rule causes a misclassification, we have no means to correct the
output, because the consequent of a rule does not have any adaptable parameters.
One possibility to overcome this problem is to use rule weights. However, as we

112 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Algorithm 5.5: Fuzzy set learning in fuzzy classifiers

1: repeat
2: for all patterns (p, t) ∈ L̃ do (* there are s training patterns *)
3: propagate the next training pattern (p, t);
4: for each output variable cj do
5: compute the output error Ej; (* based on tj − oj, see page 96 *)
6: end for

7: for each rule Rr with Ar(p) > 0 do
8: j = con(Rr);
9: Er = (Ar(p) · (1− Ar(p)) + ε) · Ej; (* rule error 5.14 *)

10: if (MINFSONLY) then (* modify only one fuzzy set in each rule *)
11: k = argmin

i∈{1,...,n}
{µ(i)

r (pi)};
12: ComputeUpdates(µ(k)

r , Er); (* see Algorithm 5.6 *)
13: if (ONLINELEARNING) then (* update after each pattern *)
14: Update (µ(k)

r , 1); (* see Algorithm 5.4 *)
15: end if
16: else (* modify all fuzzy sets in each rule *)
17: for all µ(i)

r do
18: ComputeUpdates(µ(i)

r , Er); (* see Algorithm 5.6 *)
19: if (ONLINELEARNING) then (* update after each pattern *)
20: Update (µ(i)

r , 1); (* see Algorithm 5.4 *)
21: end if
22: end for
23: end if
24: end for (* end for each rule *)
25: end for(* all training patterns *)

26: if (BATCHLEARNING) then (* update after complete epoch *)
27: for all input variables xi do
28: for all fuzzy sets µ

(i)
j do

29: Update (µ
(i)
j , s); (* see Algorithm 5.4 *)

30: end for
31: end for
32: end if
33: until end criterion;

5.4. FUZZY CLASSIFIERS 113

pointed out in Section 5.1, we prefer not to use weighted rules due to the semantical
problems they cause.

Another possibility is not to train such a rule and to assume that the current pattern
is an outlier that should not influence the training procedure. However, this means,
that ill-defined rules cannot be corrected by the training procedure. Therefore we
compute the rule error by

Er = (τr(1− τr) + ε) Econ(Rr), (5.14)

where ε is a small positive number, e.g. ε = 0.01. By doing this we can ensure,
that the rule error is only zero, if the output error is zero. Rules with a degree of
fulfilment of 0 or 1 are also trained to a small extent and thus we compensate for
the absence of adaptable consequent parameters. This means that a fuzzy cluster
that corresponds to a rule can be moved even it it is located in an area of the input
space with no data, or if it exactly matches certain outliers.

The procedure ComputeUpdates (Algorithm 5.6) must provide the necessary com-
putations for triangular (5.11), trapezoidal (5.12) and bell-shaped membership func-
tions (5.13). Because computations are identical to the computations in Mamdani-
type fuzzy systems, we can call ComputeAntecedentUpdates (Algorithm 5.3, Section
5.3) in this case. In addition we consider fuzzy sets of the form

µ : X → [0, 1], µ = {(x1, a1), . . . , (xq, aq)},with
µ(xi) = ai, ai ∈ [0, 1], xi ∈ X, i ∈ {1, q}

(5.15)

where X is some finite domain. Such kinds of membership functions are used to
represent fuzzy sets for symbolic variables. We call this kind of representation a
list fuzzy set. The necessary computations to update such fuzzy sets are given in
Algorithm 5.6. To apply the computed updates, we can use Algorithm (5.4) from
Section 5.3.

114 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Algorithm 5.6: Compute fuzzy set updates for a fuzzy classifier

ComputeUpdates(µ, e, p)

(* The algorithm obtains the following input parameters: *)
(* µ: fuzzy set for which parameter updates must be computed *)
(* e: error value *)
(* p: current input value from the domain of µ *)

1: if (µ is triangular or trapezoidal or bell-shaped) then
2: ComputeAntecedentUpdate(µ, e, p); (* see Algorithm 5.3 *)
3: else if µ is a list then (* list fuzzy set, see (5.15) *)
4: if (e < 0) then (* take degree of membership into account *)
5: f = σ · µ(p) (* σ is a learning rate *)
6: else
7: f = σ(1− µ(p))
8: end if
9: ∆µ[p] = ∆µ[p] + f · e; (* modification for degree of membership of p *)

10: end if

5.5. PRUNING FUZZY RULE BASES 115

5.5 Pruning Fuzzy Rule Bases

In order to improve the readability of a fuzzy rule base derived by a learning process
pruning techniques can be used. Pruning techniques are well-known from neural
networks [Haykin, 1994, Neuneier and Zimmermann, 1998] and decision tree
learning [Quinlan, 1993]. They are used to reduce the complexity of a model.

In neural networks, tests are made for the parameters of a network (weights or
nodes) to determine how the error would change, if the parameter is removed. Fre-
quently applied pruning strategies are, for example, OBD (optimal brain damage)
[Le Cun et al., 1990] or EBD (early brain damage) [Neuneier and Zimmer-
mann, 1998], which try to remove weights from a neural network. There are also
pruning techniques known from decision tree learning [Quinlan, 1993].

Fuzzy rule base pruning can be based on a simple greedy algorithm that does not
need to compute complex test values as in neural network pruning methods like
OBD or EBD.

In order to prune a rule base we consider four heuristic strategies that can work in
an automatic fashion without the necessity of user interaction.

(i) Pruning by correlation: The variable that has the smallest influence on the
output is deleted. To identify this variable statistical measures like correlations
and χ2 tests or measures from information theory like the information gain can
be used.

(ii) Pruning by classification frequency: The rule that yields the largest degree of
fulfilment in the least number of cases is deleted. Such a rule is only responsible
for the classification of a small number of patterns. If these patterns are also
covered by other rules, the performance of the fuzzy rule base may not decrease.
But if these patterns represent exceptions it may not be possible to delete the
selected rule without a decrease in performance.

(iii) Pruning by redundancy: The linguistic term that yields the minimal degree
of membership in an active rule in the least number of cases is deleted. This
pruning strategy assumes that the min operator is used in order to evaluate
the antecedent of a rule. In this case a term that always provides large degrees
of membership, does not influence the computation of the degree of fulfilment
and the term assumes the role of a don’t care variable. This pruning strategy
can also be applied, if other t-norms are used, e.g. the product, but it may be
less effective in these cases.

(iv) Pruning by fuzziness: The fuzzy set with the largest support is identified and
all terms that use this fuzzy set are removed from the antecedents of all rules.
This pruning strategy is comparable to (iii), because it assumes that fuzzy sets
with large supports provide large degrees of membership for many input values

116 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

and thus terms that use this fuzzy set do not influence the computation of the
degree of fulfilment in a rule. Another justification for this strategy is that
fuzzy sets actually get very large supports during training, if the corresponding
variable has a large variance and is thus less useful for prediction.

An automatic pruning algorithm can be obtained by applying the four strategies
consecutively. After each pruning step the membership functions should be trained
again before a pruning step is declared a failure or a success. If a pruning step has
failed, the rule base is restored to its previous state. This means the modifications
caused by a pruning step are only kept, if the step has successfully improved the
rule base. In the case of a classification problem, the pruning algorithm must take
care not to remove the last rule for a class.

After an application step of one of the strategies has failed, it must be decided
whether to carry on with this strategy and the next parameter it recommends for
pruning, or to switch to the next pruning strategy. In order to reduce runtime,
usually each of the four pruning strategies is iterated until a pruning step fails
to improve the performance of the rule base. Then the next pruning strategy is
selected. An implementation of this approach produces good results for neuro-fuzzy
classification systems [Nauck et al., 1999].

The improvement of the rule base can be defined in terms of performance (i.e. reduc-
tion of error) and in terms of complexity or simplicity (i.e. number of parameters).
There is usually a trade-off between performance and simplicity. To obtain high
accuracy, a large number of free parameters is needed, which again result in a very
complex and thus less comprehensible model. However, often the performance of a
model can actually increase with the reduction of the number of parameters because
the generalization capabilities of the model may increase. If the model has too many
parameters, it tends to overfit the training data and displays poor generalization on
test data. But if the number of parameters is too small, sufficient accuracy can no
longer be attained.

The pruning algorithm can take this trade-off into account and can continue pruning,
even if the performance decreases slightly, because a more comprehensible model
is obtained. For implementation, a measure based on the minimum description
length principle (MDL) [Rissanen, 1983] can be used. The MDL turned out to
be well suited for decision trees [Kononenko, 1995] and favours models with few
parameters and good performance. An approach where a pruning process for a rule
base of a fuzzy classifier is guided by a measure based on the MDL can be found in
[Klose et al., 1998].

If variables are deleted from the rule, the rule base can become inconsistent during
pruning. This may happen for the above-mentioned pruning strategies (i), (iii) and
(iv). Inconsistencies must be resolved by deleting some rules. If the rule learning
algorithms from Section 4.2 are used, the performance values of the rules can be

5.6. ANALYSIS OF THE LEARNING ALGORITHMS 117

used to select rules for deletion until the rule base is consistent again.

A consistent rule base is a rule base that does not contain contradictions or redun-
dancies.

• A contradiction occurs if there are two rules with different consequents and if
their antecedents are either equal or one antecedent is more general than the
other. An antecedent A is more general than an antecedent B, if A contains
fewer linguistic terms than B and all linguistic terms of A also appear in B.

• The rule base is redundant, if there are two rules with identical consequents
and if the antecedent of one rule is more general than the antecedent of the
other rule.

The rule base can be made consistent by identifying pairs of contradictory and/or
redundant rules and deleting rules with smaller performance values.

5.6 Analysis of the Learning Algorithms

In this section we analyze the time and memory complexity of the fuzzy set learn-
ing algorithms 5.1 and 5.5 presented in Sections 5.3 and 5.4. We make the same
assumptions and use the same notations as in Section 4.5.

We consider the following operations:

• computation of a degree of membership,
• computation of the parameter modifications of a fuzzy set,
• modification of a fuzzy set,
• comparison of degrees of membership.

The operations may have different costs, but the costs do not depend on the problem
size which is given by the number of patterns s, the number of rules r, the number
of input variables n, the number of output variables v and the number of free
parameters per variable, which is estimated by q (Eq. 4.7).

The propagation of one pattern requires rn computations of degrees of membership
and rv aggregations of the conclusions (by a maximum operation). For a function
approximation problem we have to do a defuzzification. This is usually done by
sampling the output domains and computing weighted sums. These costs only
increase with the number of output variables and do not otherwise depend on the
size of the problem. This means the number of operations for propagating a pattern
is rn+ rv + v.

118 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

The computation of the output error requires v operations and the cost for comput-
ing the updates for the consequent fuzzy sets are rv. The rule errors can be computed
by rv operations, because the degrees of fulfilment for each rule are already deter-
mined by the propagation of the current pattern. To compute the updates for the
antecedent fuzzy sets rn operations are required, because we either have to find the
variable with the smallest degree of membership (MINFSONLY) or to process all
variables.

If online learning is selected, we can regard the computation of the update values
and their (constrained) application as one operation. In the case of batch learning
we must add 2q(n + v) operations after all patterns are processed to consider the
application of the parameter updates and the possible constraint that degrees of
membership must add up to one for each value of a domain.

Altogether, in the case of batch learning, we obtain for the number of operations

ft(s, r, n, v, q) ≤ s(rn+ rv + v + v + rv + rn) + 2q(n+ v). (5.16)

If we consider that only those membership functions must be updated which really
occur in the fuzzy rules, we can simplify (5.16) and obtain

ft(s, r, n, v) ≤ sr(2n+ 2v) + 2v + 2r(n+ v) = O(sr(n+ v)). (5.17)

For a fuzzy classifier we set v = 1 and ignore all constant parts in the sum. In
addition, we do not need to update output fuzzy sets. We obtain

ft(s, r, n) ≤ 2srn+ 2rn = O(srn). (5.18)

From these considerations we can conclude that training the membership functions
of a fuzzy system has the complexity O(srn), if we assume that n denotes the number
of all variables with adaptive membership functions.

The predominant factor is the number of training patterns s. We can expect r � s
because we are interested in fuzzy systems with generalization capabilities and we
can also expect n� s, because we demand nq ≤ s (see Section 4.5).

The memory requirements of algorithms 5.1 and 5.5 are the same as for the algo-
rithms 4.1 and 4.4 analyzed in Section 4.5. In addition to the fuzzy set parameters
we must also store their modifications, but this does not change the memory com-
plexity and we obtain

fm(s, n, q) = O(sn+ sq). (5.19)

The convergence of the training algorithms can only be guaranteed by a suitable end
criterion for their outermost loop. We stop training after the error or the number
of misclassifications have reached a local maximum from which the algorithm could
not escape or if the number of cycles exceeds a certain limit. After training we

5.6. ANALYSIS OF THE LEARNING ALGORITHMS 119

restore the best solution, we have obtained so far. By this we guarantee that the
performance of the resulting fuzzy system is not worse than the performance of the
initial fuzzy system.

The computation of the parameter updates is based on simple heuristics. The success
of the training procedure depends on the initial fuzzy partitions, the rule base, the
distribution of training patterns and the learning rate. For example, if we select
a learning rate that is too large we can observe oscillations in the error just as in
the training of neural networks. In Figure 5.10 we can see a training process of
NEFCLASS-J using the Iris data set (see Chapter 6), where the learning rate was
set to σ = 10. A value of σ < 1 would be appropriate for this learning problem.

(" ""

(" "

Figure 5.10: Oscillation of the error, if the learning rate is too large

120 CHAPTER 5. OPTIMIZATION OF FUZZY RULE BASES

Chapter 6

Data Analysis with NEFCLASS

In this chapter we show how a neuro-fuzzy system for a special application area –
fuzzy classification – can be derived using the definition of a fuzzy perceptron from
Chapter 3 and the learning algorithms provided in Chapters 4 and 5.

NEFCLASS (neuro-fuzzy classification) is a neuro-fuzzy approach to derive fuzzy
classification rules from a set of labelled data [Nauck and Kruse, 1997b, Nauck
and Kruse, 1998b, Nauck and Kruse, 1999b]. NEFCLASS creates a fuzzy
classifier according to Definition 3.5 by using the structure-oriented rule learning
algorithms 4.1 and 4.5 discussed in Sections 4.2 and 4.3. After the rule base was
created, NEFCLASS trains the membership functions using Algorithm 5.5 given in
Section 5.4. Subsequently the rule base is reduced by applying the pruning strategies
described in Section 5.5.

Because NEFCLASS uses structure-oriented rule learning, each created fuzzy rule is
a multi-dimensional fuzzy set whose support is a hyperbox in the data space. The
degree of membership of a pattern in the multi-dimensional fuzzy set is the degree to
which that pattern belongs to the class that was assigned to the multi-dimensional
fuzzy set by the learning process. Adjacent rules overlap, i.e. a pattern can belong to
several classes with non-zero degree of membership. The main goal of NEFCLASS
is to create an interpretable fuzzy rule base. Therefore it uses constraints during
fuzzy set learning as described in Section 5.3.

In the following section we show how NEFCLASS can be represented in a connection-
oriented feed-forward network Afterwards we present some considerations concerning
implementations. The last four sections discuss the applicaton of NEFCLASS to
classification problems. In Section 6.3 we illustrate the effect of rule weights, which
was discussed in detail in Section 5.1. In Sections 6.4 and 6.5 we use a medical data
set with a few missing values to show how very compact and highly interpretable
classifiers can be obtained by NEFCLASS. This chapter concludes with an example
where NEFCLASS was applied as a preprocessing tool in image analysis. In this
example the interpretability of the result is not important, but it shows, that neuro-
fuzzy methods are applicable in complex real world problems.

121

122 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

6.1 Network Representation of NEFCLASS

A NEFCLASS system (Figure 6.1) can be represented as a special kind of fuzzy
perceptron, because Definition 3.12 is flexible enough to allow for the representation
of fuzzy classifiers.

Definition 6.1 A NEFCLASS system represents a fuzzy classifier FR according to
Definition 3.5 with a set of class labels C = {c1, . . . , cm}, �1 = min, �2 = min and
⊥ = max. A connection-oriented network representation of a NEFCLASS system is
a fuzzy perceptron according to Definition 3.12 with the following specifications:

(i) W , the network structure, is a partial mapping from U × U → F(IR) and is
given by

W (u, v) =

µ

(i)
j if u = xi (i ∈ {1, . . . , n}) ∧ v = Rj (j ∈ {1, . . . , r})
1I{1} if u = Rj ∧ v = cij = con(Rj)

(j ∈ {1, . . . , r}) (ij ∈ {1, . . . ,m})
undefined otherwise

In addition every two connections with weights W (u, v) and W (u′, v′)
(u = u′, v �= v′, u, u′ ∈ U1, v, v′ ∈ U2) become coupled connections, if
W (u, v) = W (u′, v′) holds.

(ii) The network input for the third layer is computed as follows:

NETu : ([0, 1]×F(IR))U2 → F(IR),

netu : IR→ [0, 1], netu(y) = max
u′∈U2

{min{ou′ ,W (u′, u)(y)}}

for u ∈ U3.

(iii) The output of a unit in the third layer is given by

Ou : F(IR)→ IR, ou = Ou(au) = defuzz(au) = height(au)

for u ∈ U3.

In Figure 6.1 a NEFCLASS system with two inputs, five rules and two classes is
shown. The main difference between a fuzzy perceptron and a NEFCLASS system
is that only one connection protrudes from each unit of the second layer to one unit
of the third layer. This connection represents the connection between a rule unit
and the class used in the consequent of the corresponding rule. As we have shown in
Figure 3.3(b) these connections have a constant weight of 1, which actually means

6.1. NETWORK REPRESENTATION OF NEFCLASS 123

R1 R2 R3 R4 R5

x 1 x 2

c1

µ
1
(1)

µ
2
(1)

µ
3
(1) µ

1
(2)

µ
2
(2) µ

3
(2)

c2

1 1 1 1 1

Figure 6.1: A connection-oriented network representation of a NEFCLASS system

they are not weighted. In order to keep the structure of a fuzzy perceptron that
demands a fuzzy set attached to these connections we use the membership function
1I{1} – which is the characteristic function of the set {1} – to represent the singleton
1 as a fuzzy set (Definition 6.1(i)).

An output unit receives a modified version of this fuzzy set, i.e. its height is reduced
to the maximum of the output values of all rule units connected to the considered
output unit (Definition 6.1(ii)). The output values of the rule units are the degrees
of fulfilment of the corresponding fuzzy rules. The output unit then defuzzifies this
output fuzzy set by means of a special defuzzification function that computes the
height of the output fuzzy set (Definition 6.1(iii)).

Because NEFCLASS uses coupled connections (shared weights), for each linguistic
value there is only one representation as a fuzzy set. This ensures the interpretabil-
ity of the fuzzy rule base. During learning it cannot happen that two fuzzy sets
corresponding to the same label (e.g. positive big) develop differently. In Figure 6.1
shared weights are denoted by ellipses around the connections. Connections that
share a weight always come from the same input unit.

124 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

6.2 Implementational Aspects

To be useful as a data analysis tool for classification problems, an implementation
of NEFCLASS should provide the following features:

• fast generation of fuzzy classifiers through simple learning strategies,
• constrained fuzzy set learning to retain the interpretability of a generated
classifier,

• automatic pruning to reduce the complexity of a generated classifier,
• automatic cross-validation to generate error estimates for a generated classifier,
• methods for the integration of prior knowledge and for the modification of a
generated classifier by a user.

An overview over different implementations of NEFCLASS and their capabilities is
given below.

Neuro-fuzzy approaches are a way to heuristically find parameters of fuzzy models
by processing training data with a learning algorithm. Neuro-fuzzy approaches must
be seen as development tools that can help to construct a fuzzy model. They are not
“automatic fuzzy model creators”. An implementation of a neuro-fuzzy approach
must therefore enable a user to always supervise and interpret the learning process.
We also have to keep in mind that as in neural networks the success for the learning
process of a neuro-fuzzy model is not guaranteed. In addition the solution that is
being built by a neuro-fuzzy tool is not only judged on its performance but also –
if not especially – on its interpretability and simplicity. Thus the user must be able
to build models fast by trying different parameter settings. This approach can be
supported by using simple and fast learning procedures as discussed in Sections 4.2
and 5.4. Table 6.1 gives an overview on the algorithms involved in an implementation
of NEFCLASS.

NEFCLASS is available in implementations for MS-DOS based Personal Computers
(NEFCLASS-PC) [Nauck et al., 1996, Nauck and Kruse, 1997b] for Unix
workstations under X-Window (NEFCLASS-X) [Nauck and Kruse, 1998b] and
as a platform-independent Java application (NEFCLASS-J) [Nauck et al., 1999]
that can run under any operating system for which a Java Virtual Machine (JVM)
is available. Table 6.2 gives an overview on the features of the different implemen-
tations.

One of the most important aspects for implementing a neuro-fuzzy approach for
generating interpretable fuzzy systems is that each linguistic value is represented by
exactly one fuzzy set. This can be done, for example, by using an object-oriented
programming language and specifying objects for fuzzy sets, fuzzy partitions and

6.2. IMPLEMENTATIONAL ASPECTS 125

Table 6.1: Learning algorithms involved in a NEFCLASS implementation

remark algorithms
rule learning structure-oriented
- in general 4.1, 4.2, 4.3
- for symbolic attributes based on 4.1 4.5
- for missing values based on 4.1 4.6
fuzzy set learning heuristic approach
- in general based on 5.3 5.5, 5.6
- constraints see p. 104 5.4
pruning see Section 5.5 –

Table 6.2: Features of the different implementations of NEFCLASS

NEFCLASS-PC NEFCLASS-X NEFCLASS-J
rule learning yes yes yes
fuzzy set learning yes yes yes
constraints for fuzzy sets yes yes yes
can use prior knowledge yes yes yes
online learning yes yes yes
batch learning no no yes
manual rule pruning no yes no
automatic rule pruning no no yes
symbolic attributes no no yes
treatment of missing values no no yes
cross validation no no yes
programming language Pascal C++, TCL/TK Java
operating system MS-DOS Unix any OS

(with X-Window) with JVM

fuzzy rules (Figure 6.2). Each object has fields to store data and methods to process
data.

A list of fuzzy partition objects is created, one object per variable. Each fuzzy
partition object contains a list of qi fuzzy set objects. A fuzzy rule object contains
a list of references to fuzzy sets to construct its antecedent (and consequent in the
case of a function approximation system). By using references, we ensure that a
linguistic expression that appears in several rules always uses the same fuzzy set.
The fuzzy rule base is implemented as a list of fuzzy rule objects. In Figure 6.3 this
approach is visualised. Note that rules R1 and R2 both use the linguistic expression
“x2 is µ

(2)
1 ” and that therefore fuzzy set µ

(2)
1 is shared by both rules. During learning

126 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

> ? � � � � � � � �
 � � � � �

 � � � � � 2 � � $ � � �
 � � � � � � � � � 	 �
 � - - � � � � � �

� � � � $ � � � � 	 �

� � � � $ � � � �
 	 � � � � � �

� � � � $ �)))

� � � � 	 � � 2 � $ �
 � �
 � � � � � �

� � � � $ � � � � 	 �

� � � � $ � � � � � � � �

� � � � $ � � � �
 	 � � � � � �

� � � � $ �)))

> ? � � � � � � � �
 � � � � � � � � � �

 � � � � � 2 � � $ � � � � � � 	
 �
 � - - � � � � � �

� � � � $ �)))

� � � � 	 � � 2 � $ � � � � � � � � � �

� � � � $ � � � � � � � �

� � � � $ � 	 � � � � � � � � �

� � � � $ � � � � ,

� � � � $ �)))

> ? � � � � � � � �
 � � � �

 � � � � � 2 � � $ � � � � � � � � � � �

� � � � $ � � � � � � � �

� � � � $ � � � � � � � � � �

� � � � $ �)))

� � � � 	 � � 2 � $ � � � � � � � � � �

� � � � $ � � � � � � � �

� � � � $ � � 	 � � � � � � � �

� � � � $ � � � � ,

� � � � $ �)))

Figure 6.2: Three central objects in a NEFCLASS implementation

� (� � (
 (&

� � � (
 (&

� + � � (
 + &

� � � +
 + &

� � � � (
 � &

� � � �
 � &

� (
� � (

� +
� � +

� ;
� � ;

@ � � � � 	
 � � � - - � � � � � � � � � 	 � � > ? � � � � 1 � � � � � � � � � @ � � � � 	
 � � � - - � � 1 � � � � > ? � � � � &

Figure 6.3: Implementation of a fuzzy rule base in NEFCLASS – note that fuzzy set
µ

(2)
1 is shared by rules R1 and R2

both rules R1 and R2 generate training signals that are used to modify µ
(2)
1 . Both

rules always use the same version of µ
(2)
1 for computing degrees of fulfilment.

We will demonstrate some of the learning capabilities of neuro-fuzzy systems in the
following four sections using the most recent implementation NEFCLASS-J, which
provides the most features.

6.3. EFFECTS OF RULE WEIGHTS 127

Table 6.3: The rule base of the two experiments

sepal length sepal width petal length petal width class
R1: small medium small small Iris Setosa
R2: medium small medium medium Iris Versicolor
R3: medium small large large Iris Virginica
R4: large medium large large Iris Virginica
R5: large small large large Iris Virginica

6.3 Effects of Rule Weights

To illustrate the effect of rule weights we use a simple example. We apply the
software tool NEFCLASS-J [Nauck et al., 1999] to the well-known Iris data set1

[Fisher, 1936], which consists of 150 patterns with four features. There are three
classes with 50 patterns each. One class is linearly separable from the other two
classes and two classes slightly overlap. The Iris data can be very easily classified by
almost any classification method and is very often used as a benchmark. Therefore
it is suitable for demonstrating the effect of rule weights. The learning outcome
that is presented below is not the best that can be obtained with NEFCLASS for
this data set. But we need a learning outcome where we can compare weighted and
unweighted rules and so the result presented is adequate. The best result that can
be obtained for the Iris data is briefly mentioned at the end of this section.

For the following two experiments three fuzzy sets (small, medium and large) for
each variable are specified. The membership functions for small (large) are equidis-
tant triangles (Eq. 5.11) and the leftmost and rightmost triangles are “shouldered”.
This means that for the fuzzy set small µsmall(a) = 1 and for the fuzzy set large
µlarge(c) = 1 holds. The membership function for medium is a regular triangle. The
degrees of membership for any value of the domain add up to 1 in the beginning.
In both experiments the best five rules (see Algorithm 4.2) were selected from the
rule learning procedure.

In the first experiment the rule base is trained without rule weights by just adapting
the parameters of the membership functions. The second experiment additionally
uses adaptive rule weights. In the second experiment the parameters of the mem-
bership functions must be also trained, because a sufficient learning outcome cannot
be found if only rule weights are trained.

The rule base that is found by NEFCLASS-J is shown in Table 6.3. The learning
process randomly selects 50% (stratified sample) of the complete data set for train-

1The data set is available at the machine learning repository of the University of Irvine at
ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

128 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

Table 6.4: Learning results for the two experiments on the Iris data set

errors rule weights
train. test epochs R1 R2 R3 R4 R5

3 3 200 – – – – –
4 2 70 1.58 1.59 1.24 1.13 1.23

ing. The other half of the data set is used for testing. The remaining parameter
settings of the software are: learning rate = 0.01, online learning, maximum number
of epochs = 200, stop training 30 epochs after a local minimum of the error was
reached, and in each rule only the fuzzy set that provides the smallest degree of
membership is trained.

Figure 6.4 shows the fuzzy sets of the variable “petal width” after training. In
Figure 6.4(a) the fuzzy sets of the first experiment (unweighted rules) are shown.
Figure 6.4(b) shows the fuzzy sets of the second experiment (weighted rules), where
the rule weights are still attached to the rules and are not yet replaced by modifying
the membership functions. Replacing the weights is considered below. As we can
see the fuzzy sets are similar in both cases. However, the learning results are slightly
different as shown in Table 6.4.

1.0

0.5

0.0

0.0 0.6 1.2 1.8 2.4 3.0

petal width

sm md lg1.0

0.5

0.0

0.0 0.6 1.2 1.8 2.4 3.0

petal width

sm md lg

(a)

1.0

0.5

0.0

0.0 0.6 1.2 1.8 2.4 3.0

petal width

sm md lg1.0

0.5

0.0

0.0 0.6 1.2 1.8 2.4 3.0

petal width

sm md lg

(b)

Figure 6.4: Fuzzy sets for variable “petal width” after learning without rule weights
(a) and with rule weights (b); in (b) the rule weights are not yet replaced

We do not want to discuss the quality of the learning outcome. In order to demon-
strate the effect of rule weights it is only important that the results are similar. We
consider rules R3 and R4 after the second experiment, where we used adaptive rule
weights. Both rules use “petal width is large” in the antecedent.

As discussed in Section 5.1, we can now replace the weighted rules by equivalent
unweighted rules with modified membership functions in the antecedents. For the

6.3. EFFECTS OF RULE WEIGHTS 129

rules of the second experiment we obtain for R3

large : IR −→ [0, 1.24],

and for R4 we have

large : IR −→ [0, 1.13].

This means we now have two different interpretations for “petal width is large” in
the result of the second experiment. There is only one representation of large in the
first experiment, where no rule weights are used. Strictly speaking, in the second
result large is no longer a fuzzy set. Even if we normalize the weights – which we
can do in this case without changing the performance of the classifier – we still have
the problem of two different non-normal fuzzy sets for the same linguistic term.

As the result for the first experiment shows, we can obtain an acceptable learn-
ing outcome without using rule weights and enjoy the benefit of an interpretable
solution.

The best result (without rule weights) that can be obtained for the Iris data set by
NEFCLASS-J uses three rules and only the variable petal width:
if petal width is small then class is Iris Setosa
if petal width is medium then class is Iris Versicolor
if petal width is large then class is Iris Virginica
This rule base causes 6 errors on the whole data set of 150 patterns. It was also
discovered in 6 validation cycles of a 10-fold cross validation. The 99% confidence
interval (Eq. 5.7) for the estimated error for unseen data that is computed by cross
validation is 2.7%± 2.8%. The membership functions for petal width are shown in
Figure 6.5

1.0

0.5

0.0

0.0 0.6 1.2 1.8 2.4 3.0

Petal Width

sm md lg

Figure 6.5: Membership function of variable petal width for the best learning
result obtained by NEFCLASS-J for the Iris data (no rule weights
are used)

130 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

6.4 Creating Small Classifiers

In this section we consider the creation of small well interpretable classifiers. We
use the “Wisconsin Breast Cancer” (WBC) data set2 to illustrate rule learning and
automatic pruning of a rule base. The WBC data set is a breast cancer database
that was provided by W.H. Wolberg from the University of Wisconsin Hospitals,
Madison [Wolberg and Mangasarian, 1990]. The data set contains 699 cases
and 16 of these cases have missing values. Each case is represented by an id number
and 9 attributes (x1: clump thickness, x2: uniformity of cell size, x3: uniformity
of cell shape, x4: marginal adhesion, x5: single epithelial cell size, x6: bare nuclei,
x7: bland chromatin, x8: normal nucleoli, x9: mitoses). All attributes are from the
domain {1, . . . , 10}. Each case belongs to one of two classes (benign: 458 cases, or
malignant: 241 cases).

The goal of this experiment is to obtain a very small classifier. Therefore we use two
fuzzy sets (small and large) per variable. The membership functions are shouldered
triangles (see p. 127 and Figure 6.6).

Training is done with 10-fold cross validation. During rule learning the best two
rules per class are selected and the membership functions are trained until the error
on the validation set reaches a local minimum which the algorithm cannot escape
within 30 epochs. The maximum number of training cycles is set to 200 epochs.
After training the classifier is automatically pruned (compare Section 5.5).

1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

uniformity of cell size

sm lg1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

uniformity of cell size

sm lg

Figure 6.6: Initial membership functions for the variables of the WBC data set

With the described settings we create a fuzzy partition of 29 = 512 overlapping
hyperboxes on the data space. This means there are 512 possible fuzzy rules. During
the 11 runs of the training process (10 validation runs and a final run to create

2The data set is available at the machine learning repository of the University of Irvine at
ftp://ftp.ics.uci.edu/pub/machine-learning-databases.

6.4. CREATING SMALL CLASSIFIERS 131

the classifier) NEFCLASS-J detects between 127 and 137 rules that actually cover
training data. From these rule base candidates the best two rules per class are
selected in each run. This means that before pruning a classifier consists of four
rules using nine variables.

The classifier that is created based on the complete data set contains the following
two rules:

if uniformity of cell size (x2) is large and
uniformity of cell shape (x3) is large and
bare nuclei is (x6) large

then class is malignant

if uniformity of cell size (x2) is small and
uniformity of cell shape (x3) is small and
bare nuclei is (x6) small

then class is benign

During cross validation five different rule bases were created, each consisting of two
rules. Four rule bases just used one variable (x3 or x6). The variables x3 and x6

were present in eight and nine rule bases respectively. x2 appeared only once in
a rule base during cross validation. The training protocol reveals, that it was not
pruned from the final rule base, because the error slightly increases and one more
misclassification occurs if x2 is removed.

The mean error that was computed during cross validation is 5.86% (minimum:
2.86%, maximum: 11.43%, standard deviation: 2.95%). The 99% confidence interval
(Eq. 5.7) for the estimated error is computed to 5.86% ± 2.54%. This provides an
estimation for the error on unseen data processed by the final classifier created from
the whole data set.

On the training set with all 699 cases the final classifier rules causes 40 misclassi-
fications (5.72%), i.e. 94.28% of the patterns are classified correctly. There are 28
errors and 12 unclassified patterns which are not covered by one of the two rules.
The confusion matrix for this result is given in Table 6.5. If one more misclassifica-
tion can be tolerated, we can also delete variable x2 from both rules. In this case
41 patterns are misclassified (32 errors and 9 unclassified patterns).

The linguistic terms small and large for each variable are represented by membership
functions that can be well associated with the terms, even though they intersect at
a slightly higher membership degree than 0.5 (Figure 6.7)

132 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

Table 6.5: The confusion matrix of the final classifier obtained by NEFCLASS-J

Predicted Class
malignant benign not classified sum

malignant 215 (30.76%) 15 (2.15%) 11 (1.57%) 241 (34.48%)
benign 13 (1.86%) 444 (63.52%) 1 (0.14%) 458 (65.52%)
sum 228 (32.62%) 459 (65.67%) 12 (1.72%) 699 (100.00%)

correct: 659 (94.28%), misclassified: 40 (5.72%), error: 70.77.

1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Uniformity of Cell Size

sm lg 1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Uniformity of Cell Shape

sm lg 1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Bare Nuclei

sm lg

Figure 6.7: The membership functions for the three variables used by the final clas-
sifier

6.5 Using Symbolic Variables

This section illustrates the learning algorithm for mixed fuzzy rules (Algorithm 4.5),
which is discussed in Section 4.3.

The WBC data from the previous section is also used for this experiment, because
the values of all nine variables are actually from an ordinal scale. Classifiers usually
simply treat them as metric values and good classification results can be obtained
this way (see Table 6.7). To illustrate Algorithm 4.5 we chose to interpret variables
x3 and x6 as categorical variables and the rest as metric variables. x3 and x6 are
selected, because these two variables usually turn out to be influential in other
classification approaches. They have been also included in almost all rule bases
created during cross validation in the experiment from the previous section. All
other parameters in NEFCLASS-J are set to the same values as in Section 6.4.

We use a 10-fold cross validation, and let the tool select the best two rules per class
during rule learning. For each metric variable two initial membership functions are
given (shouldered triangles, compare Figure 6.6). The fuzzy sets for the categorical
variables are created during rule learning. The fuzzy sets are trained until the error
on the validation set cannot be further decreased, but not longer than 200 cycles.

6.5. USING SYMBOLIC VARIABLES 133

The final classifier contains only two rules using one and two variables, respectively
(Figure 6.8):

(i) if x2 (uniformity of cell size) is small and x6 (bare nuclei) is term
(6)
1 then benign

(ii) if x2 (uniformity of cell size) is large then malignant

The membership functions after training are shown in Figure 6.9. The fuzzy set for
the categorical variable x6 is drawn as a histogram. Its exact representation is

term
(6)
1 = {(1, 1.0), (2, 1.0), (3, 0.66), (4, 0.37), (5, 0.61),

(6, 0.0), (7, 0.01), (8, 0.01), (9, 0.0), (10, 0.14)}.

Figure 6.8: The rule editor of NEFCLASS-J displaying the learning result

This classifier causes 28 misclassifications (4.01%) on the training data, i.e. its clas-
sification rate is 95.99% (see Table 6.6). This classifier covers all data, there are no
unclassified cases. The error estimation for unseen data obtained from cross vali-
dation yields 4.58% ± 1.21% misclassifications, i.e. an estimated classification rate
of 95.42% ± 1.21% (99% confidence interval). This error estimation must be inter-
preted this way: A classifier that is obtained by the described learning procedure
and using the described parameters and training data is estimated to produce an
error of 4.58%± 1.21% on unseen data.

134 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Uniformity of Cell Size

sm lg

(a)

1.0

0.5

0.0

1.0 2.8 4.6 6.4 8.2 10.0

Bare Nuclei

fs0

(b)

Figure 6.9: Membership functions for the metric variable x2 and the categorical vari-
able x6 after training

The final rule base was also discovered in one of the validation cycles. Altogether
seven different rule bases were discovered during validation (nine rule bases with
two rules, one rule base with four rules). However, most of the other rule bases were
very similar and differed only in additionally using the other categorical variable x3,
using x3 instead of x2, or using just x2.

Table 6.6: The confusion matrix of the final classifier obtained by NEFCLASS-J

Predicted Class
malignant benign not classified sum

malignant 228 (32.62%) 13 (1.86%) 0 (0.00%) 241 (34.99%)
benign 15 (2.15%) 443 (63.38%) 0 (0.00%) 458 (65.01%)
sum 243 (34.76%) 456 (65.24%) 0 (0.00%) 699 (100.00%)

correct: 671 (95.99%), misclassified: 28 (4.01%), error: 60.54.

Table 6.7 compares the result obtained with NEFCLASS-J (last entry) to results
obtained with other approaches. The classification performance on unseen data is
very good and the classifier is very compact. The error estimates given in the col-
umn “Validation” of Table 6.7 are either obtained from 1-leave-out cross validation
(discriminant analysis), 10-fold cross validation, or from testing the solution once by
withholding 50% of the data for a test set (MLP). Note that the cases with missing
values had to be removed only for the MLP. All other approaches are able to handle
missing values.

6.6. CLASSIFICATION AS PREPROCESSING 135

Table 6.7: Comparing the NEFCLASS learning outcome for the WBC data set to
some other approaches. Numbers in () are mean values from cross validation. The
column “Error” contains an estimated error for unseen data.

Model Tool Remarks Error Validation
Discriminant SPSS linear model 3.95% 1-leave-out
Analysis 9 variables
Multilayer SNNS 4 hidden units, 5.18% 50% test set
Perceptron RProp
Decision Tree C4.5 31 (24.4) nodes, 4.9% 10-fold

pruned
Rules from C4.5rules 8 (7.5) rules using 4.6% 10-fold
Decision Tree 1–3 variables
NEFCLASS NEFCLASS-J 2 (2) rules using 5.86% 10-fold
(metric variables) (Java version) 1–5 variables
NEFCLASS NEFCLASS-J 2 (2.1) rules using 4.58% 10-fold
(2 categorical variables) (Java version) 1–3 variables

6.6 Classification as Preprocessing

This section describes an application of NEFCLASS in a Machine Vision Domain
[Klose et al., 1999]. In this example the interpretability of the classifier is not
important, because it is only to be used for data preprocessing. The purpose of
this example is to show that good classification results can be obtained for complex
problems even with a relatively simple learning algorithm as used in neuro-fuzzy
learning.

In many real world data sets the available training data is more or less unbalanced,
i.e. the number of cases of each class can vary dramatically. This is a serious problem
for many classification approaches and their learning algorithms. The problem is
especially severe, if the classes are not well separated. A typical example is database
marketing, where the task of the classifier is to identify prospective buyers who are
to receive an offer by mail. A classifier is trained from historical data of “good”
customers (who once responded to a mailing) and “bad” customers (who never
responded). As response rates of mailings are typically very low (below 5%), there
are only few positive examples. Moreover, these cases can be very similar to negative
cases and proper separation is hardly possible. In such cases classifiers tend to
predict the majority class. This is completely reasonable to minimize the error
measure, but does not take into account the special semantics of the problem: the

136 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

error is higher, if a good customer is classified as bad than vice versa. A mailing to a
bad customer costs no more than the postage, while ignoring a prospective customer
means a bigger financial loss. A straightforward way to model this asymmetry is to
directly specify the costs of the possible misclassifications.

The modified version of the software tool NEFCLASS-X (Unix version) was applied
to a machine vision problem which has quite similar characteristics to the customer
classification problem explained above, because the error of misclassifying one of the
classes is also much larger in this example. In the classification task described in the
following too many false negatives can completely prevent the correct recognition of
objects, whereas false positives “only” lead to considerably longer execution times.

The considered problem was examined for an industrial project. It deals with the
automatic analysis of man-made objects in remotely sensed images. The task is,
for example, to detect a runway in an SAR (synthetic aperture radar) image. The
detection process is based on edge features which are typical for man-made ob-
jects. Figure 6.10(a) shows the result of gradient-based edge detection in an SAR
image. These edges are the primitive objects of a subsequent structural analysis.
Figure 6.10(b) shows the detected runway. The analysis of the process for this image
shows that only 20 lines of about 37, 000 are used to construct this stripe (see Fig-
ure 6.10(c)). However, the analysing system must take all of the lines into account.
Unfortunately, time consumption is, typically, at least O(n2). The production pro-
cess could significantly be speeded up if only the most promising primitive objects
are identified and the analysis is started with them.

The idea is to extract features from the image that describe the primitive objects
and allow a classifier to decide which lines can be discarded. Each line was described
by 11 features. For every image the production process is performed on the complete
set of lines. The result is used to divide the lines into those that were used for the
construction of complex structures (the positive class) and those that were not used
(the negative class). A classifier has to take into account the special semantics of
the task. A classifier that simply always predicts the majority class would have an
error rate close to 0% (i.e. only 20 errors out of 37.000 objects in Figure 6.10(a)),
but the result would be completely useless and would hinder any object recognition.
As a matter of fact, every missed positive can turn out to be very expensive. This
has to be considered in the misclassification costs.

For this experiment — whose results were provided by the industrial partner of this
project – 17 SAR images depicting 5 different airports were used. Each of the images
was analysed in order to detect the runway(s) and the lines were labeled as positive
or negative. Four of the 17 images were used as a training set for NEFCLASS-X.
The training set contains 253 runway lines and 31, 330 negatives.

The lines from the remaining 13 images were used as test data. The assessment of the
classification results takes the specific requirements of the application into account.
The ideal classifier for this problem should find all edges which were used to assemble

6.6. CLASSIFICATION AS PREPROCESSING 137

(a) (b)

(c) (d)

Figure 6.10: (a) 37, 659 lines extracted from SAR image (b) detected runway (c) the
20 lines used for the construction of the runway (d) 3, 281 lines classified
as positive by a modified version of NEFCLASS-X

a runway. On the one hand missing edges can cause the subsequent image analysis
to fail. On the other hand the classifier should assign as few negatives as possible
to the positive class to reduce the processing time. The behaviour of a classifier can
be characterized by a detection and a reduction rate:

detection rate =
correctly detected positives

number of positives
,

reduction rate =
classified as positive

total number of lines
.

The tool NEFCLASS-X, which was applied in this task, was modified to take into
account different misclassification costs for rule creation (rule performance measure)
and fuzzy set training [Klose et al., 1999]. In this application the misclassifica-
tion costs cannot be specified exactly, as the costs of false positives and negatives
are barely comparable. The costs of false negatives were empirically set at 300 times
the costs of false positives. This results in a detection rate of 97.6% on the training
set after learning. The final classifier used 3 fuzzy sets per variable and had a rule
base of 601 rules. An interpretation of such a large rule base is obviously infeasible.
But this was not in the scope of this experiment anyway.

138 CHAPTER 6. DATA ANALYSIS WITH NEFCLASS

The averages of the detection and reduction rates on the unseen 13 images are
84% and 17%, respectively. The detection rates on the single images vary from
50% to 100%. Figure 6.10(d) shows the lines NEFCLASS classified as positives in
one of the unseen images Apparently this image allows rather high detection and
extremely good reduction rates. But also for most of the lower detection rates the
higher levels of image analysis were successful, as the missed lines are mainly shorter
and less important [Klose et al., 1999].

This example shows, that a neuro-fuzzy approach like NEFCLASS can also be suc-
cessfully applied in areas where the interpretation of the classifier is not important
and only the classification result is of interest. This means that learning algorithms
that are mainly designed with interpretable results in mind, do not necessarily cause
a decrease in performance. The examples in this chapter show that neuro-fuzzy
methods are both useful to obtain interpretable results and to obtain a good per-
formance in data analysis.

Chapter 7

Conclusions

Research in neuro-fuzzy models is less than 10 years old. Most of the early ap-
proaches, like the well-known models by Berenji and Jang, concentrated on the
area of fuzzy control or on Sugeno-type models where gradient-descent learning can
be used [Berenji, 1990, Jang, 1991]. Approaches like ARIC [Berenji, 1992],
GARIC [Berenji and Khedkar, 1992], ANFIS [Jang, 1993], or
NEFCON [Nauck and Kruse, 1993] were all of this kind. The learning problems
considered were mainly function approximation [Wang and Mendel, 1992] or
control [Brown and Harris, 1994, Eklund et al., 1992].

Learning fuzzy classifiers from data is a rather new area. Approaches like an early
version of NEFCLASS [Nauck and Kruse, 1995] or Fuzzy RuleNet [Tschichold
Gürman, 1995] are two of the first models. The interest in learning not only fuzzy
sets but also complete fuzzy rule bases increased. These algorithms are usually
based on detecting hyperboxes by clustering [Abe and Lan, 1995, Abe et al.,
1996] or structure-oriented methods [Simpson, 1992a, Simpson, 1992b, Nauck
et al., 1996, Tschichold Gürman, 1997].

Discussions on the interpretability of fuzzy systems and how neuro-fuzzy learning
affects the semantics of fuzzy systems are rare [Bersini and Bontempi, 1997b,
Bersini et al., 1998, Nauck and Kruse, 1997d, Nauck and Kruse, 1998a,

Nauck and Kruse, 1998c]. Usually, the usefulness of neuro-fuzzy approaches is
only demonstrated by their performance in prediction. If neuro-fuzzy techniques
are used, we must accept that there is a trade-off between precision and readability
[Bersini and Bontempi, 1997b, Nauck et al., 1997].

This thesis contributes to the discussion on interpretable learning outcomes by
means of neuro-fuzzy methods. We have pointed out that interpretability of a fuzzy
system – especially if applied in data analysis – is one of its key advantages. Neuro-
fuzzy models can be conveniently used as a link between models for understanding
and prediction. To support the readability of a fuzzy model resulting from a training
process, one should use approaches that keep the learning algorithms simple – and

139

140 CHAPTER 7. CONCLUSIONS

therefore understandable – and do not touch the semantics of the underlying fuzzy
models. The algorithms in Chapters 4 and 5 conform to this idea.

It was shown that learning algorithms can be defined for successfully creating inter-
pretable fuzzy systems from data. These learning algorithms are based on simple
heurisitics that do not require complex computations. We have shown that fuzzy
rule learning can be very efficiently done by structure-oriented approaches. These
algorithms have clear advantages over cluster-oriented or hyperbox-oriented rule
learning procedures. Structure-oriented rule learning algorithms create fuzzy rule
bases, which can be easily interpreted. Because they are also very fast, they support
the exploratory nature of data analysis. In addition structure-oriented fuzzy rule
learning is able to process data that contains numeric and non-numeric attributes
and can also easily handle missing values.

The training of membership functions must be constrained in order to obtain an in-
terpretable learning outcome. We have shown that we can define learning algorithms
based on the idea of backpropagation, which use an output error to locally compute
modifications of parameters in a fuzzy system. The learning algorithms are able to
create both accurate and comprehensible solutions for data analysis problems. The
neuro-fuzzy learning techniques discussed in this thesis can be readily applied in
data analysis or data mining. This was illustrated by some examples using the tool
NEFCLASS-J.

In this thesis neuro-fuzzy approaches are viewed as a way to heuristically find pa-
rameters of fuzzy models by processing training data with a learning algorithm.
Neuro-fuzzy approaches should be seen as development tools that can help to con-
struct a fuzzy model. They are not “automatic fuzzy model creators”. The user
should always supervise and interpret the learning process. This view matches the
exploratory nature of data analysis.

It was shown that although rule weights are a very simple way to create adaptive
fuzzy systems, they can destroy the readability of the rule base completely. Rule
weights can always be replaced by changes in the fuzzy sets of a rule. However, these
changes can lead to non-normal fuzzy sets and to the fact that identical linguistic
values are represented in different ways in different rules. Therefore learning rule
weights in neuro-fuzzy approaches is not suitable for such data analysis problems,
where we need to obtain interpretable models.

If we are only interested in using a neuro-fuzzy model for prediction, we could –
from an applicational point of view – ask: why bother with interpretability and
semantics? It is important that the model does its job. It is of course possible to
leave out all constraints in the learning procedures of a neuro-fuzzy model, consider
it only as a convenient tool that can be initialized by prior knowledge and trained by
examples, and not look at the final model, as long as it performs to the satisfaction
of the user. However, interpretability and clear semantics provide us with obvious
advantages like checking the model for plausibility and maintaining it during its life

141

cycle. These aspects are also important if a model is only to be used for prediction.

In order to applying a neuro-fuzzy learning strategy one more important aspect
should be considered: for whatever reason we choose a fuzzy system to solve a
problem it cannot be because we need an optimal solution. Fuzzy systems are used
to exploit the tolerance for suboptimal solutions. So it does not make much sense
to select a very sophisticated and expensive training procedure to squeeze the last
bit of information from the training data. To do this we must usually forsake the
standard fuzzy system architectures but, however, we are confronted with semantical
problems instead. The author prefers the view that fuzzy systems are used because
they are easy to implement, easy to handle and easy to understand. A learning
algorithm to create a fuzzy system from data should also have these features.

142 CHAPTER 7. CONCLUSIONS

Bibliography

S. Abe andM.-S. Lan (1995). A Method for Fuzzy Rules Extraction Directly from
Numerical Data and Its Application to Pattern Classification. IEEE Trans.
Fuzzy Systems, 3(1):18–28.

S. Abe, M.-S. Lan and R. Thawonmas (1996). Tuning of a Fuzzy Classifier
Derived from Data. Int. J. Approximate Reasoning, 14(1):1–24.

R. Babuska (1998). Fuzzy Modeling for Control. Kluwer Academic Publishers,
Boston.

H. R. Berenji (1990). Neural Networks and Fuzzy Logic in Intelligent Control. In
5th IEEE Int. Symposium on Intelligent Control, Vol. 2, pages 916–920.

H. R. Berenji (1992). A Reinforcement Learning-Based Architecture for Fuzzy
Logic Control. Int. J. Approximate Reasoning, 6:267–292.

H. R. Berenji (1998). Learning and Tuning of Fuzzy Rules. In H. T. Nguyen
and M. Sugeno, eds.: Fuzzy Systems Modeling and Control, The Handbooks
on Fuzzy Sets, chapter 8, pages 291–310. Kluwer Academic Publishers, Norwell,
MA.

H. R. Berenji and P. Khedkar (1992). Learning and Tuning Fuzzy Logic Con-
trollers through Reinforcements. IEEE Trans. Neural Networks, 3:724–740.

H. Bersini and G. Bontempi (1997a). Fuzzy Models Viewed as Multi-Expert
Networks. In M. Mares, R. Mesiar, V. Novak, J. Ramik and A. Stup-
nanova, eds.: Proc. Seventh International Fuzzy Systems Association World
Congress IFSA’97, volume II, pages 354–359, Prague. Academia.

H. Bersini and G. Bontempi (1997b). Now Comes the Time to Defuzzify Neuro-
Fuzzy Models. Fuzzy Sets and Systems, 90:161–170.

H. Bersini, G. Bontempi and M. Birattari (1998). Is Readability Compatible
with Accuracy? From Neuro-Fuzzy to Lazy Learning. In Fuzzy-Neuro Sys-
tems ’98 – Computational Intelligence. Proc. 5th Int. Workshop Fuzzy-Neuro-
Systems ’98 (FNS’98) in Munich, Germany , volume 7 of Proceedings in Artifical
Intelligence, pages 10–25, Sankt Augustin. infix.

143

144 BIBLIOGRAPHY

H. Bersini, J.-P. Nordvik and A. Bonarini (1993). A Simple Direct Adaptive
Fuzzy Controller Derived from Its Neural Equivalent. In Proc. IEEE Int. Conf.
on Fuzzy Systems 1993, pages 345–350, San Francisco.

M. Berthold and D. J. Hand, eds. (1999). Intelligent Data Analysis: An Intro-
duction. Springer-Verlag, Berlin. To appear.

M. Berthold and K.-P. Huber (1997). Tolerating Missing Values in a Fuzzy En-
vironment. In M. Mares, R. Mesiar, V. Novak, J. Ramik and A. Stup-
nanova, eds.: Proc. Seventh International Fuzzy Systems Association World
Congress IFSA’97, volume I, pages 359–362, Prague. Academia.

M. Berthold and K.-P. Huber (1999). Constructing Fuzzy Graphs from
Examples. Int. J. Intelligent Data Analysis, 3(1). Electronic journal
(http://www.elsevier.com/locate/ida).

J. Bezdek (1994).What is Computational Intelligence? . In J. Zurada, R. Marks
and C. Robinson, eds.: Computational Intelligence: Imitating Life, pages 1–
12. IEEE Press, Piscataway.

J. C. Bezdek (1981). Pattern Recognition with Fuzzy Objective Function Algo-
rithms. Plenum Press, New York.

J. C. Bezdek, E. C.-K. Tsao and N. R. Pal (1992). Fuzzy Kohonen Clustering
Networks. In Proc. IEEE Int. Conf. on Fuzzy Systems 1992, pages 1035–1043,
San Diego, CA.

J. Bezdek, J. Keller, R. Krishnapuram and N. Pal (1998). Fuzzy Models
and Algorithms for Pattern Recognition and Image Processing. The Handbooks
on Fuzzy Sets. Kluwer Academic Publishers, Norwell, MA.

C. Borgelt and R. Kruse (1998). Attributauswahlmaße für die Induktion von
Entscheidungsbäumen. In G. Nakhaeizadeh, ed.: Data Mining. Theoretische
Aspekte und Anwendungen, number 27 in Beiträge zur Wirtschaftsinformatik,
pages 77–98. Physica-Verlag, Heidelberg.

X. Boyen and L. Wehenkel (1999). Automatic Induction of Fuzzy Decision
Trees and its Application to Power System Security Assessment. Fuzzy Sets
and Systems, 102(1):3–19.

L. Breiman, J. Friedman, R. Olsen and C. Stone (1984). Classification and
Regression Trees. Wadsworth International.

M. Brown and C. Harris (1994). Neurofuzzy Adaptive Modelling and Control.
Prentice Hall, New York.

BIBLIOGRAPHY 145

J. J. Buckley and E. Eslami (1996). Fuzzy Neural Networks: Capabilities. In
W. Pedrycz, ed.: Fuzzy Modelling: Paradigms and Practice, pages 167–183.
Kluwer, Boston.

J. J. Buckley and Y. Hayashi (1994). Fuzzy Neural Networks: A Survey . Fuzzy
Sets and Systems, 66:1–13.

J. J. Buckley andY. Hayashi (1995). Neural Networks for Fuzzy Systems. Fuzzy
Sets and Systems, 71:265–276.

A. Dempster, N. Laird and D. Rubin (1977). Maximum Likelihood from In-
complete Data via the EM algorithm. Journal of the Royal Statistic Society,
Series B, 39:1–38.

H. L. Dreyfus (1979). What Computers Can’t Do: The Limits of Artificial Intel-
ligence. Harper & Row, New York.

D. Dubois, J. Lang and H. Prade (1989). Automated Reasoning Using Pos-
sibilistic Logic: Semantics, Belief Revision and Variable Certainty Weights.
In Proc. 5th Workshop on Uncertainty in Artificial Intelligence, pages 81–87,
Ontario. Windsor.

D. Dubois and H. Prade (1988). Possibility Theory . Plenum Press, New York.

P. Eklund, F. Klawonn and D. Nauck (1992). Distributing Errors in Neural
Fuzzy Control. In Proc. 2nd Int. Conf. on Fuzzy Logic and Neural Networks
(IIZUKA’92), pages 1139–1142.

S. Fahlman and C. Lebiere (1990). The Cascade Correlation Learning Architec-
ture. In D. Touretzky, ed.: Advances in Neural Information Processing 2,
pages 524–532. Morgan Kaufmann Publishers, Inc., San Mateo, CA.

M. Fayyad, Usama, G. Piatetsky-Shapiro, P. Smyth and R. Uthurusamy,
eds. (1996). Advances in Knowledge Discovery and Data Mining . MIT Press,
Menlo Park, CA.

T. Feuring and W. M. Lippe (1996). Learning in Fuzzy Neural Networks. In
Proc. IEEE Int. Conf. on Neural Networks 1996 (ICNN’96), pages 1061–1066,
Washington.

R. Fisher (1936). The Use of Multiple Measurements in Taxonomic Problems.
Annual Eugenics, 7(Part II):179–188.

K. Funahashi (1989). On the Approximate Realization of Continuous Mappings
by Neural Networks. Neural Networks, 2:183–192.

146 BIBLIOGRAPHY

J. Gebhardt and R. Kruse (1994a). Focusing and Learning in Possibilistic De-
pendencyy Networks. In Postproceedings of 2nd Gauss Symposium (Conference
B: Statistical Sciences), Berlin. De Gruyter.

J. Gebhardt and R. Kruse (1994b). Learning Possibilistic Networks from Data.
In Proc. of Fifth Int. Workshop on Artificial Intelligence and Statistics, pages
233–244, Fort Lauderdale, Florida.

A. Grauel, G. Klene and L. Ludwig (1997). Data Analysis by Fuzzy Clustering
Methods. In A. Grauel, W. Becker and F. Belli, eds.: Fuzzy-Neuro-
Systeme’97 – Computational Intelligence. Proc. 4th Int. Workshop Fuzzy-
Neuro-Systeme ’97 (FNS’97) in Soest, Germany , Proceedings in Artificial In-
telligence, pages 563–572, Sankt Augustin. infix.

A. Grauel and L. Ludwig (1999). Construction of Differentiable Membership
Functions. Fuzzy Sets and Systems, 101(2):219–225.

A. Grauel andMackenberg (1997). Mathematical Analysis of the Sugeno Con-
troller Leading to General Design Rules. Fuzzy Sets and Systems, 85(2):165–
175.

N. Tschichold Gürman (1995). Generation and Improvement of Fuzzy Clas-
sifiers with Incremental Learning Using Fuzzy RuleNet. In K. M. George,
J. H. Carrol, E. Deaton, D. Oppenheim and J. Hightower, eds.: Ap-
plied Computing 1995. Proc. 1995 ACM Symposium on Applied Computing,
Nashville, Feb. 26–28, pages 466–470, New York. ACM Press.

N. Tschichold Gürman (1996). RuleNet – A New Knowledge-Based Artificial
Neural Network Model with Application Examples in Robotics. PhD thesis,
ETH Zürich.

N. Tschichold Gürman (1997). The Neural Network Model RuleNet and its
Application to Mobile Robot Navigation. Fuzzy Sets and Systems, 85:287–303.

J. F. Hair, R. E. Anderson, R. L. Tatham and W. C. Black (1998). Mul-
tivariate Data Analysis. Prentice-Hall, Upper Saddle River, NJ, Fifth Edition
edition.

S. K. Halgamuge (1995). Advanced Methods for Fusion of Fuzzy Systems
and Neural Networks in Intelligent Data Processing . PhD thesis, Technische
Hochschule Darmstadt.

S. K. Halgamuge andM. Glesner (1994). Neural Networks in Designing Fuzzy
Systems for Real World Applications. Fuzzy Sets and Systems, 65:1–12.

BIBLIOGRAPHY 147

D. J. Hand (1998). Intelligent Data Analysis: Issues and Opportu-
nities. Int. J. Intelligent Data Analysis, 2(2). Electronic journal
(http://www.elsevier.com/locate/ida).

S. Haykin (1994). Neural Networks. A Comprehensive Foundation. Macmillan
College Publishing Company, New York.

D. O. Hebb (1949). The Organization of Behavior. Wiley, New York.

R. Hecht-Nielsen (1989). Theory of the Back-Propagation Neural Network. In
Proc. Int. Joint Conf. on Neural Networks (IJCNN’89), Vol. 1, pages 593–606.

R. Hecht-Nielsen (1990). Neurocomputing . Addison-Wesley, Reading, MA.

D. Heckerman (1988). Probabilistic Interpretation for MYCIN’s Certainty Fac-
tors. In J. Lemmer and L. Kanal, eds.: Uncertainty in Artificial Intelligence
(2), pages 167–196. North-Holland, Amsterdam.

C. Higgins andR. Goodman (1993). Learning Fuzzy Rule-based Neural Networks
for Control. Advances in Neural Information Processing Systems, 5:350–357.

J. Hopf and F. Klawonn (1994). Learning the Rule Base of a Fuzzy Controller by
a Genetic Algorithm. In [Kruse et al., 1994b], pages 63–73, Braunschweig.
Vieweg.

F. Höppner, F. Klawonn, R. Kruse and T. Runkler (1999). Fuzzy Cluster
Analysis. Wiley, Chichester.

M. Hornik, M. Stinchcombe and H. White (1989). Multilayer Feedfoward
Networks Are Universal Approximators. Neural Networks, 2:359–366.

M. Hornik, M. Stinchcombe and H. White (1990). Universal Approxima-
tion of an Unknown Mapping and Its Derivatives Using Multilayer Feedforward
Networks. Neural Networks, 3:551–560.

H. Ichihashi, T. Shirai, K. Nagasaka and T. Miyoshi (1996). Neuro-Fuzzy
ID3: A Method of Inducing Fuzzy Decision Trees with Linear Programming
for Maximizing Entropy and an Algebraic Method for Incremental Learning.
Fuzzy Sets and Systems, 81(1):157–167.

W. Inmon (1996). Building the Data Warehouse. Wiley, New York.

J. S. R. Jang (1991). Fuzzy Modeling Using Generalized Neural Networks and
Kalman Filter Algorithm. In Proc. Ninth National Conf. on Artificial Intelli-
gence (AAAI-91), pages 762–767.

J. S. R. Jang (1993). ANFIS: Adaptive-Network-Based Fuzzy Inference Systems.
IEEE Trans. Systems, Man & Cybernetics, 23:665–685.

148 BIBLIOGRAPHY

J.-S. R. Jang and C.-T. Sun (1993). Functional Equivalence Between Radial
Basis Function Networks and Fuzzy Inference Systems. IEEE Trans. Neural
Networks, 4:156–163.

J.-S. Jang, C. Sun and E. Mizutani (1997). Neuro Fuzzy and Soft Computing .
Prentice Hall, Upper Saddle River, NJ.

C. Z. Janikow (1996). Exemplar based Learning in Fuzzy Decision Trees. In Proc.
IEEE Int. Conf. on Fuzzy Systems 1996, pages 1500–1505, New Orleans.

C. Z. Janikow (1998). Fuzzy Decision Trees: Issues and Methods. IEEE Trans.
Systems, Man & Cybernetics. Part B: Cybernetics, 28(1):1–14.

L. P. Kaelbling, M. H. Littman and A. W. Moore (1996). Reinforcement
Learning: A Survey . J. Artificial Intelligence Research, 4:237–285.

A. Keller and F. Klawonn (1998). Generating Classification Rules by Grid
Clustering . In Proc. Third European Workshop on Fuzzy Decision Analysis and
Neural Networks for Management, Planning, and Optimization (EFDAN’98),
pages 113–121, Dortmund.

J. M. Keller and H. Tahani (1992). Backpropagation Neural Networks for Fuzzy
Logic. Information Sciences, 62:205–221.

J. Kinzel, F. Klawonn and R. Kruse (1994). Modifications of Genetic Algo-
rithms for Designing and Optimizing Fuzzy Controllers. In Proc. IEEE Con-
ference on Evolutionary Computation, pages 28–33, Orlando, FL. IEEE.

F. Klawonn, J. Gebhardt and R. Kruse (1995a). Fuzzy Control on the Basis
of Equality Relations with an Example from Idle Speed Control. IEEE Trans.
Fuzzy Systems, 3(3):336–350.

F. Klawonn and A. Keller (1997). Fuzzy Clustering and Fuzzy Rules. In
M. Mares, R. Mesiar, V. Novak, J. Ramik and A. Stupnanova,
eds.: Proc. Seventh International Fuzzy Systems Association World Congress
IFSA’97, volume I, pages 193–197, Prague. Academia.

F. Klawonn and R. Kruse (1995). Clustering Methods in Fuzzy Control. In
W. Gaul and D. Pfeifer, eds.: From Data to Knowledge: Theoretical and
Practical Aspects of Classification, Data Analysis and Knowledge Organization,
pages 195–202. Springer-Verlag, Berlin.

F. Klawonn and R. Kruse (1997). Constructing a Fuzzy Controller from Data.
Fuzzy Sets and Systems, 85:177–193.

BIBLIOGRAPHY 149

F. Klawonn, D. Nauck and R. Kruse (1995b). Generating Rules from Data
by Fuzzy and Neuro-Fuzzy Methods. In Proc. Fuzzy-Neuro-Systeme’95, pages
223–230, Darmstadt.

A. Klose, D. Nauck, K. Schulz and U. Thönessen (1999). Learning a Neuro-
Fuzzy Classifier from Unbalanced Data in a Machine Vision Domain. In Proc.
6th Int. Workshop on Fuzzy-Neuro Systems 1999 (FNS’99), pages 133–144,
Leipzig. Leipziger Universitätsverlag.

A. Klose, A. Nürnberger and D. Nauck (1998). Some Approaches to Im-
prove the Interpretability of Neuro-Fuzzy Classifiers. In Proc. Sixth European
Congress on Intelligent Techniques and Soft Computing (EUFIT98), pages 629–
633, Aachen.

T. Kohonen (1984). Self-Organization and Associative Memory. Springer-Verlag,
Berlin.

I. Kononenko (1995). On Biases in Estimating Multi-valued Attributes. In
Proc. 1st International Conference on Knowledge Discovery and Data Mining ,
pages 1034–1040, Montreal.

B. Kosko (1992). Neural Networks and Fuzzy Systems. A Dynamical Systems
Approach to Machine Intelligence. Prentice Hall, Englewood Cliffs, NJ.

A. Krone and H. Kiendl (1996). Rule-based Decision Analysis with FUZZY-
ROSA method. In Proc. First European Workshop on Fuzzy Decision Anal-
ysis and Neural Networks for Management, Planning, and Optimization (EF-
DAN’96), pages 109–114, Dortmund.

R. Kruse, J. Gebhardt and F. Klawonn (1994a). Foundations of Fuzzy Sys-
tems. Wiley, Chichester.

R. Kruse, J. Gebhardt and R. Palm, eds. (1994b). Fuzzy Systems in Computer
Science. Vieweg, Braunschweig.

R. Kruse andK. D. Meyer (1987). Statistics with Vague Data. Reidel, Dordrecht.

R. Kruse, E. Schwecke and J. Heinsohn (1991). Uncertainty and Vagueness
in Knowledge-Based Systems: Numerical Methods. Springer-Verlag, Berlin.

Y. Le Cun, J. Denker and S. S. (1990). Optimal Brain Damage. In Advances
in Neural Information Processing Systems, NIPS’89, volume 2, pages 589–605,
San Mateo, CA. Morgan Kaufmann.

M. Lee and H. Takagi (1993). Integrating Design Stages of Fuzzy Systems Using
Genetic Algorithms. In Proc. IEEE Int. Conf. on Fuzzy Systems 1993, pages
612–617, San Francisco.

150 BIBLIOGRAPHY

C.-T. Lin and C. S. G. Lee (1996). Neural Fuzzy Systems. A Neuro-Fuzzy Syn-
ergism to Intelligent Systems. Prentice Hall, New York.

E. H. Mamdani and S. Assilian (1975). An Experiment in Linguistic Synthesis
with a Fuzzy Logic Controller. Int. J. Man Machine Studies, 7:1–13.

W. S. McCulloch andW. Pitts (1943). A Logical Calculus of the Ideas Imma-
nent in Nervous Activity . Bulletin of Mathematical Biophysics, 5:115–133.

M. L. Minsky and S. Papert (1969). Perceptrons. MIT Press, Cambridge, MA.

T. M. Mitchell (1997). Machine Learning . McGraw-Hill, New York, NY.

S. Mitra and L. Kuncheva (1995). Improving Classification Performance Using
Fuzzy MLP and Two-Level Selective Partitioning of the Feature Space. Fuzzy
Sets and Systems, 70:1–13.

G. Nakhaeizadeh (1998). Wissensentdeckung in Datenbanken und Data Mining:
Ein Überblick. InG. Nakhaeizadeh, ed.: Data Mining. Theoretische Aspekte
und Anwendungen, number 27 in Beiträge zur Wirtschaftsinformatik, pages 1–
33. Physica-Verlag, Heidelberg.

D. Nauck (1994a). Building Neural Fuzzy Controllers with NEFCON-I . In
R. Kruse, J. Gebhardt and R. Palm, eds.: Fuzzy Systems in Computer
Science, pages 141–151. Vieweg, Braunschweig.

D. Nauck (1994b). Modellierung Neuronaler Fuzzy-Regler. PhD thesis, Technische
Universität Braunschweig.

D. Nauck and F. Klawonn (1996). Neuro-Fuzzy Classification Initialized by
Fuzzy Clustering . In Proc. Fourth European Congress on Intelligent Techniques
and Soft Computing (EUFIT96), pages 1551–1555, Aachen. Verlag und Druck
Mainz.

D. Nauck, F. Klawonn and R. Kruse (1997). Foundations of Neuro-Fuzzy
Systems. Wiley, Chichester.

D. Nauck and R. Kruse (1993). A Fuzzy Neural Network Learning Fuzzy Control
Rules and Membership Functions by Fuzzy Error Backpropagation. In Proc.
IEEE Int. Conf. on Neural Networks 1993, pages 1022–1027, San Francisco.

D. Nauck and R. Kruse (1994). NEFCON-I: An X-Window Based Simulator for
Neural Fuzzy Controllers. In Proc. IEEE Int. Conf. Neural Networks 1994 at
IEEE WCCI’94, pages 1638–1643, Orlando, FL.

BIBLIOGRAPHY 151

D. Nauck and R. Kruse (1995). NEFCLASS – A Neuro-Fuzzy Approach for
the Classification of Data. In K. M. George, J. H. Carrol, E. Deaton,
D. Oppenheim and J. Hightower, eds.: Applied Computing 1995. Proc.
1995 ACM Symposium on Applied Computing, Nashville, Feb. 26–28, pages
461–465. ACM Press, New York.

D. Nauck and R. Kruse (1996). Designing Neuro-Fuzzy Systems Through Back-
propagation. InW. Pedrycz, ed.: Fuzzy Modelling: Paradigms and Practice,
pages 203–228. Kluwer, Boston.

D. Nauck and R. Kruse (1997a). Function Approximation by NEFPROX . In
Proc. Second European Workshop on Fuzzy Decision Analysis and Neural Net-
works for Management, Planning, and Optimization (EFDAN’97), pages 160–
169, Dortmund.

D. Nauck and R. Kruse (1997b). A Neuro-Fuzzy Method to Learn Fuzzy Clas-
sification Rules from Data. Fuzzy Sets and Systems, 89:277–288.

D. Nauck and R. Kruse (1997c). Neuro-Fuzzy Systems for Function Approx-
imation. In A. Grauel, W. Becker and F. Belli, eds.: Fuzzy-Neuro-
Systeme’97 – Computational Intelligence. Proc. 4th Int. Workshop Fuzzy-
Neuro-Systeme ’97 (FNS’97) in Soest, Germany , Proceedings in Artificial In-
telligence, pages 316–323, Sankt Augustin. infix.

D. Nauck and R. Kruse (1997d). What are Neuro-Fuzzy Classifiers? . In
M. Mares, R. Mesiar, V. Novak, J. Ramik and A. Stupnanova,
eds.: Proc. Seventh International Fuzzy Systems Association World Congress
IFSA’97, volume III, pages 228–233, Prague. Academia.

D. Nauck and R. Kruse (1998a). How the Learning of Rule Weights Affects the
Interpretability of Fuzzy Systems. In Proc. IEEE Int. Conf. on Fuzzy Systems
1998, pages 1235–1240, Anchorage.

D. Nauck and R. Kruse (1998b). NEFCLASS-X – A Soft Computing Tool to
Build Readable Fuzzy Classifiers. BT Technology Journal, 16(3):180–190.

D. Nauck and R. Kruse (1998c). A Neuro-Fuzzy Approach to Obtain Inter-
pretable Fuzzy Systems for Function Approximation. In Proc. IEEE Int. Conf.
on Fuzzy Systems 1998, pages 1106–1111, Anchorage.

D. Nauck and R. Kruse (1999a). Neuro–Fuzzy Systems for Function Approxi-
mation. Fuzzy Sets and Systems, 101:261–271.

D. Nauck and R. Kruse (1999b). Obtaining Interpretable Fuzzy Classification
Rules from Medical Data. Artificial Intelligence in Medicine. Accepted.

152 BIBLIOGRAPHY

D. Nauck, U. Nauck and R. Kruse (1996). Generating Classification Rules
with the Neuro-Fuzzy System NEFCLASS. In Proc. Biennial Conference of
the North American Fuzzy Information Processing Society NAFIPS’96, pages
466–470, Berkeley, CA.

D. Nauck, U. Nauck and R. Kruse (1999). NEFCLASS for JAVA – New Learn-
ing Algorithms. In Proc. 18th International Conf. of the North American Fuzzy
Information Processing Society (NAFIPS99), pages 472–476, New York, NY.
IEEE.

R. Neuneier and H.-G. Zimmermann (1998). How to train neural networks. In
Tricks of the Trade: How to Make Algorithms Really Work, LNCS State-of-
the-Art-Survey. Springer-Verlag, Berlin.

H. Nomura, I. Hayashi and N. Wakami (1992). A Learning Method of Fuzzy
Inference Rules by Descent Method. In Proc. IEEE Int. Conf. on Fuzzy Systems
1992, pages 203–210, San Diego, CA.

A. Nürnberger, D. Nauck and R. Kruse (1999). Neuro-Fuzzy Control Based
on the NEFCON-Model: Recent Developments. Soft Computing, 2(4):168–182.

S. K. Pal and S. Mitra (1992). Multi-layer Perceptron, Fuzzy Sets and Classifi-
cation. IEEE Trans. Neural Networks, 3:683–697.

J. Pearl (1988). Probabilistic Reasoning in Intelligent Systems. Networks of Plau-
sible Inference. Morgan Kaufmann, San Francisco.

W. Pedrycz and H. C. Card (1992). Linguistic Interpretation of Self-Organizing
Maps. In Proc. IEEE Int. Conf. on Fuzzy Systems 1992, pages 371–378, San
Diego, CA.

T. Poggio and F. Girosi (1989). A theory of networks for approximation and
learning . A.I. Memo 1140, MIT, Cambridge, MA.

J. Quinlan (1986). Induction of Decision Trees. Machine Learning, 1:81–106.

J. Quinlan (1993). C4.5: Programs for Machine Learning . Morgan Kaufman, San
Mateo, CA.

J. Rissanen (1983). A Universal Prior for Integers and Estimation by Minimum
Description Length. Annals of Statistic, 11:416–431.

R. Rojas (1996). Neural Networks – A Systematic Introduction. Springer-Verlag,
Berlin.

F. Rosenblatt (1958). The Perceptron: A Probabilistic Model for Information
Storage and Organization in the Brain. Psychological Review, 65:386–408.

BIBLIOGRAPHY 153

F. Rosenblatt (1962). Principles of Neurodynamics. Spartan Books, New York.

D. E. Rumelhart,G. E. Hinton andR. J. Williams (1986a). Learning Internal
Representations by Error Propagation. In [Rumelhart and McClelland,
1986], pages 318–362. MIT Press, Cambridge, MA.

D. E. Rumelhart, G. E. Hinton and R. J. Williams (1986b). Learning Rep-
resentations by Back-Propagating Errors. Nature, 323:533–536.

D. E. Rumelhart and J. L. McClelland, eds. (1986). Parallel Distributed
Processing: Explorations in the Microstructures of Cognition. Foundations,
volume 1. MIT Press, Cambridge, MA.

S. Shao (1988). Fuzzy Self-Organizing Controller and Its Application for Dynamic
Processes. Fuzzy Sets and Systems, 26:151–164.

S. Siekmann, R. Neuneier, H. G. Zimmermann and R. Kruse (1999). Neuro-
Fuzzy Methods Applied to the German Stock Index DAX . In R. Ribero,
H.-J. Zimmermann, R. Yager and J. Kacprzyk, eds.: Soft Computing in
Financial Engineering . Physica-Verlag, Heidelberg. To appear.

P. K. Simpson (1992a). Fuzzy Min-Max Neural Networks – Part 1: Classification.
IEEE Trans. Neural Networks, 3:776–786.

P. K. Simpson (1992b). Fuzzy Min-Max Neural Networks – Part 2: Clustering .
IEEE Trans. Fuzzy Systems, 1:32–45.

M. Sugeno (1985). An Introductory Survey of Fuzzy Control. Information Sciences,
36:59–83.

M. Sugeno and T. Yasukawa (1993). A Fuzzy-Logic-Based Approach to Quali-
tative Modeling . IEEE Trans. Fuzzy Systems, 1:7–31.

H. Takagi and M. Lee (1993). Neural Networks and Genetic Algorithms. In
E. P. Klement and W. Slany, eds.: Fuzzy Logic in Artificial Intelligence
(FLAI93), pages 68–79, Berlin. Springer-Verlag.

T. Takagi andM. Sugeno (1985). Fuzzy Identification of Systems And Its Appli-
cations to Modeling and Control. IEEE Trans. Systems, Man & Cybernetics,
15:116–132.

H. Timm and F. Klawonn (1998). Classification of Data with Missing Values. In
Proc. Sixth European Congress on Intelligent Techniques and Soft Computing
(EUFIT98), pages 639–644, Aachen.

H. Timm and R. Kruse (1998). Fuzzy Cluster Analysis with Missing Values.
In Proc. 17th International Conf. of the North American Fuzzy Information
Processing Society (NAFIPS98), pages 242–246, Pensacola, FL.

154 BIBLIOGRAPHY

P. Vuorimaa (1994). Fuzzy Self-Organizing Map. Fuzzy Sets and Systems, 66:223–
231.

L.-X. Wang and J. M. Mendel (1991). Generation Rules by Learning from
Examples. In International Symposium on Intelligent Control, pages 263–268.
IEEE Press.

L.-X. Wang and J. M. Mendel (1992). Generating fuzzy rules by learning from
examples. IEEE Trans. Syst., Man, Cybern., 22(6):1414–1427.

P. J. Werbos (1974). Beyond Regressions: New Tools for Prediction and Analysis
in the Behavioral Sciences. PhD thesis, Harvard University, Cambridge, MA.

H. White (1990). Connectionist Nonparametric Regression: Multilayer Feedfor-
ward Networks Can Learn Arbitrary Mappings. Neural Networks, 3:535–549.

B. Widrow and M. E. Hoff (1960). Adaptive Switching Circuits. In IRE
WESCON Convention Record, pages 96–104, New York. IRE.

W. Wolberg and O. Mangasarian (1990). Multisurface Method of Pattern
Separation for Medical Diagnosis Applied to Breast Cytology. Proc. National
Academy of Sciences, 87:9193–9196.

Y. Yuan and M. J. Shaw (1995). Induction of Fuzzy Decision Trees. Fuzzy Sets
and Systems, 69(2):125–139.

L. A. Zadeh (1965). Fuzzy Sets. Information and Control, 8:338–353.

L. A. Zadeh (1994a). Fuzzy Logic, Neural Networks and Soft Computing . Com-
munications of the ACM, 37(3):77–84.

L. A. Zadeh (1994b). Soft Computing and Fuzzy Logic. IEEE Software, 11(6):48–
56.

L. A. Zadeh (1996). Fuzzy Logic and the Calculi of Fuzzy Rules and Fuzzy Graphs:
A Precis. Int. J. Multiple-Valued Logic, 1:1–38.

A. Zell (1994). Simulation Neuronaler Netze. Addision-Wesley, Bonn.

H. G. Zimmermann, R. Neuneier, H. Dichtl and S. Siekmann (1996). Model-
ing the German Stock Index DAX with Neuro-Fuzzy . In Proc. Fourth European
Congress on Intelligent Techniques and Soft Computing (EUFIT96), Aachen.
Verlag und Druck Mainz.

H. J. Zimmermann (1996). Fuzzy Set Theory and its Applications, 3rd edition.
Kluwer Academic Publishers, Boston.

J. M. Zurada (1992). Introduction to Artificial Neural Systems. West Publishing
Company, St. Paul, MN.

Index

α-cut, 15

activation, 22
ANFIS, 30
approximation problem, 25

backpropagation, 28, 29, 94
plain, 28
with momentum, 29

C4.5, 49
CART, 49
computational intelligence, 3
confirmatory data analysis, 8
conjugate gradient descent, 29
core, 15
coupled connections, 35, 122
cross validation, 97, 130

1-leave-out, 97
n-fold, 97

data analysis, 3, 7
data mining, 7, 12, 13
data warehouse, 13
decision tree, 2, 49

fuzzy, 49
degree of membership, 15
delta rule

generalized, 29
descriptive data analysis, 8

empirical model, 9
exploratory data analysis, 8

feature map, 47
function approximation, 55
fuzzy classifier, 19

fuzzy decision tree, 49
fuzzy logic, 3
fuzzy multilayer perceptron, 34
fuzzy neural network, 4
fuzzy partition, 16
fuzzy perceptron, 34, 35
fuzzy rule, 3, 16
fuzzy set, 3, 15
fuzzy system, 3, 17

GARIC, 30
genetic algorithm, 5
Grid clustering, 46

Hebb’s learning rule, 2
Higgins&Goodman algorithm, 49

ID3, 49
induction, 2
inferential data analysis, 8
information compression, 20
intelligent data analysis, 5, 7
interpolation problem, 24

KDD, 7, 11
process model, 12, 13

knowledge discovery in databases, 5, 7,
12

Kohonen, 47

learning, 15
learning problem, 21

fixed, 21
free, 21

learning rate, 29
logistic function, 23

machine learning, 2, 9

155

156 INDEX

mechanistic model, 9
membership function

bell-shaped, 103
trapezoidal, 103
triangular, 103

mixed fuzzy rule, 59
model, 9

empirical, 9
for prediction, 9
for understanding, 9
mechanistic, 9

momentum, 29
multilayer perceptron, 2

NEFCLASS, 30, 50, 52, 121
NEFCON, 30
NEFPROX, 30, 50, 55, 58
network input, 22
network representation

connection-oriented, 32
node-oriented, 31

network structure, 22
neural network, 1, 21
neuro-fuzzy system, 4, 11, 14, 15, 29
neuron, 22

outliers, 59

perceptron, 1
psuedo-inverse matrix, 25

radial basis function network, 2, 25
simple, 26

RBF networks, 47
RBFN, 25

simple, 26
reinforcement learning, 21

self-organizing feature map, 47
shared weight, 32
shouldered triangle, 127
sigmoid function, 23
soft computing, 3
statistics, 9

supervised learning, 21
support, 15

unsupervised learning, 21

Wang&Mendel algorithm, 48

List of Symbols

1IM characteristic function of set M
au activation of network unit u
Au activation function of network unit u
ant(R) antecedent of fuzzy rule R
con(R) consequent of fuzzy rule R
exu external input of network unit u
E fuzzy rule error
F(X) set of all fuzzy sets of X
F short form of F(IR)
FR fuzzy system with rule base R
L free learning problem

L̃ fixed learning problem
µ, ν fuzzy sets, membership functions
[µ]α α-cut of µ
MFR Mamdani-type fuzzy system with fuzzy rule base R
netu network input of network unit u
NETu propagation function of network unit u
ou output of network unit u
Ou output function of network unit u
IR the set of all real values
R rule base of a fuzzy system
R fuzzy rule, rule unit
SFR Sugeno-type fuzzy system with fuzzy rule base R
τ degree of fulfilment of a fuzzy rule
U set of network unit
UI set of input units of a network
UH set of hidden units of a network
UO set of output units of a network
W network structure
W (u, v) connection weight between network units u and v

157

Curriculum Vitae

Personal Data

Name: Detlef Nauck

Date of birth: March 20, 1964

Place of birth: Braunschweig, Germany

Marital status: married to Ulrike Nauck, nee Harder

Education

1970 – 1983 School education

1983 Final examination

1985 – 1990 Studies of computer science and business administration at the
Technical University of Braunschweig, Germany

1990 Master degree in computer science (Diplom-Informatiker)

1994 Ph.D. in computer science (Dr. rer. nat., summa cum laude)
from the Technical University of Braunschweig, Germany

Employment

1983 – 1985 German Federal Armed Forces, reserve officer

1987 – 1990 Research Assistant for software development, Department of
Mechanical Engineering, Technical University of Braunschweig,
Germany

1990 – 1994 Researcher, Department of Computer Science, Technical Univer-
sity of Braunschweig, Braunschweig, Germany

1994 – 1996 Senior Researcher and Lecturer (Postdoc), Department of Com-
puter Science, Technical University of Braunschweig, Germany

1991 – 1999 Lecturer for Computer Science at Fachhochschule Braunschweig-
Wolfenbüttel, FB Versorgungstechnik, Wolfenbüttel, Germany

1996 – 1999 Senior Research Fellow and Senior Lecturer, Faculty of Com-
puter Science, Otto-von-Guericke University of Magdeburg,
Germany

since October 1999 Senior Research Scientist, Intelligent Systems Research Group,
BT Labs, Adastral Park, Martlesham Heath, Ipswich, United
Kingdom

Magdeburg, 01.03.2000 Detlef Nauck

	Coverpage
	Titlepage
	Contents
	Abstract
	1 Introduction
	2 Intelligent Data Analysis
	2.1 What is Intelligent Data Analysis?
	2.2 Knowledge Discovery in Databases and Data Mining

	3 Neuro-Fuzzy Systems
	3.1 Fuzzy Systems
	3.2 Neural Networks
	3.3 Neuro-Fuzzy Systems
	3.4 Interpretable Fuzzy Systems for Data Analysis

	4 Learning Fuzzy Rules from Data
	4.1 Structure Learning
	4.2 Learning Mamdani-type Fuzzy Rules
	4.3 Handling Symbolic Data
	4.4 Treatment of Missing Values
	4.5 Analysis of the Learning Algorithms

	5 Optimization of Fuzzy Rule Bases
	5.1 Adaptive Rule Weights
	5.2 Training Membership Functions
	5.3 Mamdani-type Fuzzy Systems
	5.4 Fuzzy Classifiers
	5.5 Pruning Fuzzy Rule Bases
	5.6 Analysis of the Learning Algorithms

	6 Data Analysis with NEFCLASS
	6.1 Network Representation of NEFCLASS
	6.2 Implementational Aspects
	6.3 Effects of Rule Weights
	6.4 Creating Small Classifiers
	6.5 Using Symbolic Variables
	6.6 Classification as Preprocessing

	7 Conclusions
	Bibliography
	Index
	List of Symbols
	Curriculum Vitae

