## Data Mining: Methods and Applications

# in Engineering and Management 

## Detlef Nauck

Faculty of Computer Science University of Magdeburg, Germany


## Data Mining: Introduction (contd.)

K DD: process of finding knowledge in data by "high level" application of data mining methods

Data mining is only one step of KDD

- Blind application of data mining methods can be dangerous as invalid patterns might be detected
- Data mining is not a single method - "data mining" refers to various methods
- More and more data is gathered due to progress in computers and databases

Manual analysis, charts etc. are no longer feasible

- Scientific progress stimulates needs and offers solutions
- Problem: Find information nuggets in vast amounts of data Solution: Knowledge Discovery in Databases (KDD)


## KDD: Knowledge Discovery in Databases

KDD is the non-trivial process of identifying

- valid,
novel,
- potentially useful,
- ultimately understandable,
patterns in data (Fayyad, Piatetsky-Shapiro \& Smyth, 1996).


Data Mining is:
or:
The application of various methods of analysis and learning to discover knowledge in data

Torture your data until they confess.

Data Mining is not: Ad-hoc queries, reports, data warehousing, OLAP software agents, XPS, alerting,...

## Data Mining is Interdisciplinary



## Data Warehouse




## Data Mining Tasks

- Classification

Is this a good customer ?

- Concept Description

What makes a good customer ? (age, income, ...)

- Segmentation (Clustering)

What kind of customers do I have?

## Data Mining Tasks

- Prediction

What will be the demand for my product?

- Dependency Analysis
$80 \%$ of customers who buy diapers buy beer, too
- Deviation Analysis

Why do we sell less insurances in Cleveland ?

## Model Selection

## Imperfect Information



## Uncertain Information

I am 90\% certain that Peter is married
My belief that Peter is married is 0.9

Usually modeled by (subjective) probabilities e.g. $\mathbf{p}($ Peter is married $)=\mathbf{0 . 9}$

It can become worse:
I am 90\% certain that Peter is tall I am very certain that Peter is tall

| Uncertain Information |
| :--- |
| I am 90\% certain that Peter is married |
| My belief that Peter is married is 0.9 |
| Usually modeled by (subjective) probabilities |
| e.g. p(Peter is married) $=0.9$ |$\underbrace{}_{\text {It can become worse: }}$| I am 90\% certain that Peter is tall |
| :--- |
| I am very certain that Peter is tall |

$x=0.127 \quad$ precise (crisp)
$x \in[0,1] \quad$ imprecise (interval valued)
$x$ is approximately zero vague (fuzzy)
$x=$ ?
missing value

## Scenario A

You are a marketing manager for an insurance company

- The company sells liability insurance, personal effects insurance, life/accident insurance and car insurance.
- There are many cancelations / new contracts in car insurance each year.
- There are 1 million customers

Goals: Prevent cancellations, cross-selling.

## Solution A1

## Solution A2

## Prevent cancelations:

Use historic data to predict which customers are likely to cancel their contract within the next 3 months.

Contact these customers (send sales representative, offer better rates or benefits, ...).

- How can we predict future behavior?


## Cross-selling:

Use historical data:

- find car insurance customers who bought life or accident insurance, create a classifier.
- classify new customers according to your findings and send them an offer (mailing).
- same method as used for solution to prevent cancellations


## Solution A3

## Cross-selling:

If there is no historical data for this task:

- find groups of customers, analyse and label them (young parent, parsimonious, pensioners, ...)
- select groups that may be responsive to mailings (pensioners don't buy life insurance, young parents do)
- How to find groups, how many are there?



## Scenario B

You are an engineer who wants to automate a process
There is a time-controlled process, but you want to tell from process data, when it is completed.

pd: process data
T : process is stopped
c: process is completed

## Scenario B - Solution

## Find the real end of the process

There is a database of (noisy) process data
Use this data to compute criteria to detect $c$.
Signal that $c$ was reached by observing process data.
How can we find $c$ in the process data?


- Discriminant Analysis
- Regression Analysis

Cluster Analysis

- Bayesian Learning

Problem: Often only linear models are applied, because non-linear models are not understood or cannot be handled by the user.

## Alternative Approaches

Machine Learning (ML, symbelic)

- Inductive Logic Programming creating propositional rule bases
r Conceptual Clustering clustering of symbolic data
- Instance Based Learning case based reasoning, detection of similar cases
- Decision Trees construct tree-based classifiers


## Alternative Approaches

Soft Computing (SC, numerical)

- Neural Networks the final black box, can be very powerful
n Furzy Systems and Neuro-Fuzhy Systems based on linguistic (fuzry) rules
- Evolutionary Computation parallel search algorithms, optimization
- Probabilistic Appraoches, Bayesian Networks dependencies modeled by probabilities


## Classification

Storing Known Cases: K-Nearest Neighbor- Statistics: Discriminant Analysis, Logistic RegressionInduction of Decision Trees
- Neural Networks: MLP or RBFN

Fuzzy Classifier, Neuro-Fuzzy Classifier
Classification: K-Nearest Neighbor

| Add the new case to the |
| :--- |
| code book. |
| The code book can become large (when to stop?) |


| Classifier simple to create, but |
| :--- |
| classification takes long. |


| Possible: Store prototypes |
| :--- |
| of clusters or mean values. |

## Classification: Statistics

Logistic Regression
Use for dichotomic (binary) classifications
Less strict assumptions than discriminant analysis, it does not rely on a multivariate normal distribution

Linear model to predict class
Independent variables: categorical or continuous
Dependent variable: categorical, dichotom

## Classification: Decision Trees



If Savings $>6,400$ then send information
If Savings $<6,400$ and Age $>24$ then send information

Classification: Induction of Decision Trees
Machine Learning (ML) Approach
A decision tree is a tree-like classifier that can be interpreted by rules

Inner nodes of tree: testing attributes

## Leaf nodes: class labels

Idea: use an information theoretic measure to select "best" attributes first.


## Classification: Decision Trees

## Goal: Create smallest tree,

each leaf node should represent many cases.
Problem: NP-hard, therefore greedy algorithm (heuristics)

ID3 (Quinlan): information gain
C4.5 (Quintan): information gain ratio
CART: Classification and Regression Trees
CHAID: Chi Square Automatic Interaction Detection.


## Classification: Neural Networks



Non-linear model, universal function approximator, connection weights found by "learning".


## Classification: Neural Networks

Multilayer feedforward network with hidden layers
Nodes receive weighted sum as input
Hidden (and output) nodes use non-linear transfer functions
Multilayer Perceptron (MLP):
s-shaped (sigmoid) function
Radial Basis Function Network (RBFN): bell-shaped (Gaussian) function

## Classification: Neural Networks

Common activation functions in neural networks


MLP: sigmoid


RBFN: Gaussian


MLP:
global classification using hyperplanes


RBFN:
local classification using hyperellipsoids


Learning in NN: estimate weights iteratively by gradient descent.

Learning method: Error Backpropagation (BP) or variations like Resilient Propagation (RPROP: adaptive learning rate
for each weight, just sign of gradient used, faster than BP)
Problems: local minima, oscillations, can be time-consuming

## Classification: Neural Networks

NN are called model-free estimators
(actually they represent a very general model, but there is no interpretation of model parameters)

NN do not rely on any special distribution of the data
NN cannot be interpreted (the ultimate black box)
Parameters of the NN are hard to determine without proper experience (e.g. how many hidden units?)

NN can outperform other methods, but there is no guarantee

## Classification: Fuzzy Systems

Classification with linguistic (fuzzy) rules, e.g. mailing:
if age is medium and income is high then send informtion
if age is young and income is low then don't send information
Advantages:
simple model, easy to understand and to apply
a case can belong to several classes to different degrees $\mathrm{N}_{\mathrm{F}}$

Function Approximation with Fuzzy Rules
Function Approximation with Fuzzy Rules
if $x$ is small and $y$ is small then $z$ is small


## Classification with Fuzzy Rules



## Classification: Fuzzy Systems

How to derive a fuzzy system from data?
Fuzzy rules and fuzzy sets must be found.
Fuzzy rules: clustering or structuring
Fuzzy sets: learning techniques derived from NN
$\rightarrow$
Neuro-Fuzzy Systems
$\overline{\text { Delef Nauck }}$

Neuro-Fuzzy Classification: NEFCLASS


Fuzzy system drawn as a special kind of neural network

Fuzzy rules and fuzry sets are obtained by learning, e.g.:
$R_{2}$ : if $x_{1}$ is small and $x_{2}$ is large then class $c_{1}$

Neuro-Fuzzy: learn fuzzy systems from data by NN-like heuristics, usually no real NN involved

## Fuzzy Systems: Typical Fuzzy Sets



## Classification: Creating Fuzzy Rules

Creating furzy rules by projection of furzuy clusters


## Classification: Creating Fuzzy Rules

Creating furfy rules by structuring the data space


Data Mining Tuoroill 1998

## Classification: Medical Example

Data: Results obtained from testing for breast cancer.

Cases: $\quad 699$ (16 cases have missing values)
Features: 9 discrete attributes per pattern, ranges: 1 - 10
Classes: 2 (benign: 458, malignant: 241)
Origin: University of Wisconsin Hospitals, Madison (W.H. Wolberg), available by FTP from (ics.uci.edu, Wisconsin Breast Cancer (WBC) data)

## WBC Example: NEFCLASS Results

Using two fuzzy sets (small and large) for each variable results in $\mathbf{2}^{9}=\mathbf{5 1 2}$ possible rules.
NEFCLASS detects 83 rules and uses the best 4 rules.
The result is then further improved by pruning
After pruning: 2 fuzzy rules with 6 or 5 variables using 2 fuzzy sets per variable


Fuzzy Sets for WBC Data


Data Mining Tutorial 1998

WBC Example: Other Results

| Mode! | Tool | Remarks | Error | Validation |
| :---: | :---: | :---: | :---: | :---: |
| Discriminant Analysis | SPSS | linear model, 9 variables | 3.95\% | 1 leave out |
| MLP | SNNS | 9-4-2 MLP, <br> RProp | 5.18\% | $50 \% \text { test }$ <br> set |
| Decision Tree | C4.5 | 31 (24.4) nodes, pruned | 4.9\% | 10-fold |
| Rules from Decision Tree | C4.5rules | 8 (7.5) rules, 1-3 variables | 4.6\% | 10-fold |
| NEFCLASS | NEFCLASS-X | 2 (2.1) rules, 5-6 variables | 4.94\% | 10-fold |
| Wuk ${ }^{\text {data Mining Tueraid } 1998}$ |  |  |  |  |

Tools to create furzy systems from data.

- Not fuzzy logic in the narrow sense.
- Neuro furzy systems perform function approximation.
- The learning algorithms must be constrained to not destroy the semantics of the underlying fuzzy sytem.

Neuro fuzzy systems are used, if a fuzzy systems is sought as a solution and/or if prior knowledge is available.

Association Rules: If A then B in $x \%$ of all cases

Bayesian Networks: Dependencies are modeled by conditional probabilities

- Possibilistic Networks: Dependencies can be modeled by fuzzy rule bases (different inference mechanism then in furzy systems!)


## Association Rules

Bar-code technology makes it possible to store huge amounts of sales data.

Find rules in basket data for

- cross-marketing
- mailings
- catalog design
- store layout
- customer segmentation


## Association Rules

Data: Set of transactions with several items each

1. Find large item sets $L$ that occur in more than $s \%$ of all transactions
2. For every large item set $L$ find all its subsets $A$
3. Create rule $A \rightarrow(L-A)$ if more than $c \%$ of transactions containing $A$ contain also $L$
4. Analyze rules and keep only the "interesting" ones


## Association Rules

## Bayesian Networks

The rules are probalistic in nature, not logical: $X \rightarrow A$ does not necessarily mean $X+Y \rightarrow A$ holds. $X \rightarrow Y$ and $Y \rightarrow Z$ does not necessarily mean $X \rightarrow Z$ holds.

It is not feasible to enumerate and test all possible rules.
Therefore the user provides minimum values for $s$ (support) and $c$ (confidence)

The main costs are in finding large item sets
Fast algorithms are availiable (Agrawal, Srikant 1994)

Dependency Graph (directed acyclic graph)


For A and B specify prior probabilities, e.g. $\mathrm{p}\left(\mathrm{A}=\mathrm{a}_{1}\right)=0.3 \mathrm{etc}$.

For C-F specify conditional probabilities, egg. $\mathrm{p}\left(\mathrm{D}=\mathrm{d}_{1} \mid \mathbf{A}=\mathrm{a}_{1}, \mathrm{~B}=\mathrm{b}_{1}\right)=0.2$ etc.

Algorithm operates only on subspaces, e.g. $\{\mathbf{A}, \mathbf{B}, \mathrm{D}\}$.

Reasoning in all directions


## Possibilistic Networks

For A and B specify possibility distributions (by fuzzy sets)

For C-F specify conditional possibility distributions (in form of fuzzy rules)

Algorithm operates only on subspaces, e.g. \{A, B, D\}.

Reasoning in all directions

## Bayesian vs. Possibilistic Networks

| Bayesian Network | Possibilistic Network |
| :--- | :--- |
| precise data | precise, imprecise <br> and vague data |
| uncertainty modeled <br> by probability distribution | uncertainty modeled <br> by possibility distribution |
| Result: which combination <br> of attributes has the <br> highest belief | Result: which combination <br> of attributes has the <br> highest possibility |



## Example: Mercedes Benz Database

Two large data sets:

- passenger cars (18,500 cases)
- trucks (13,000 cases)

More than 100 attributes

- Learning a Bayesian network from data
- Less than 30 min runtime on a SUN Sparcstation 20
- Interesting dependencies found between special equipment and faults
electrical roof top

| type of |
| :--- |

engine

| type of <br> tyres |
| :--- |

slippage control


## faulty

 brakesFictituous example: There are significantly more faulty batteries, if both air conditioning and electrical roof top are built into the car.

## Segmentation

Goal: Detect groups of cases that are similar and belong together

Problem: We don't know how many groups there are and how they should look like

Approach: Cluster Analysis

## Segmentation: Cluster Analysis

## Numerical Attributes

- similarity is defined by a distance measure
- clusters are high-dimensional spheres or ellipsoids (hyper-ellipsoids)


## Symbolic Attributes

there is no distance between symbols
conceptual clustering - try to find separating descriptions


How many clusters are there?

## Segmentation: Cluster Analysis



How to describe the clusters?

## Statistical Cluster Analysis

## Statistical Cluster Analysis

Non-Hierarchical Cluster Analysis (k-means, c-means)

- clusters are defined by a prototype and a distance measure
- specify number of clusters $\boldsymbol{k}$, use $\boldsymbol{k}$ random prototypes (cases)
- iteratively update prototypes until they do not change anymore, or maximum number of iterations is over

Distance measure: $\sqrt{\left(\vec{x}_{0}-\vec{x}^{\top} \Sigma^{-1}\left(\vec{x}_{0}-\vec{x}\right)\right.}$
$x_{0}$ is the prototype and $\Sigma^{-1}$ is an inverse covariance matrix (i.e. symmetrical and only positive Eigenvalues)

Goal: find prototypes with large distance between them
Each case belongs to exactly one cluster
The number of clusters must be known (guessed)
If $\Sigma^{-1}$ is - the identiy matrix: sphere (Euklidean distance)

- a diagonal matrix: axes-paralles hyper-ellipsoid
- otherwise: arbitrarily rotated hyper-ellipsoid



## Segmentation: Self-Organizing Maps (NN)

## Clustering with Kohonen Feature Maps

Training by adaptive vector quantization
Similar patterns activate adjacent neurons in the map


Kohonen's self-organizing feature map

Weight vectors of the map neurons are prototypes
Competitive learning, weights are slowly "frozen"
Topology preserving mapping from high-dimensional data space onto 2-dimensional map

Parts of the data space with many data are represented by more neurons in the map than parts with few data

Can be used for visualization of high-dimensional data

Each case can belong to serveral clusters with different degree of membership

Overlapping of clustes is tolerated
Each cluster is a high-dimensional furzy set (furzy relation)
Membership degrees of each case must sum up to 1 probabilistic interpretation

If this restriction is not applied
$\rightarrow$ possibilistic clustering (more robust against outliers)

Minimize $J(X, U, v)=\sum_{i=1}^{c} \sum_{k=1}^{n}\left(u_{i k}\right)^{m} d^{2}\left(v_{i}, x_{k}\right)$
with $\sum_{i=1}^{c} u_{i k}=1$ and $\sum_{k=1}^{n} u_{i k}>0$

## $X$ : data set, $m$ : furvifier (usually $1<m<2$ )

$\boldsymbol{u}_{i k}$ : degree of membership of $x_{k}$ to cluster $\boldsymbol{i}$
$v_{i}$ : prototype of cluster $i, d$ : distance measure

## Segmentation: Fuzzy Cluster Analysis

Most often used algorithm: furky c-means (FCM)

- searches for hyper-spheres of similar size
- fuzzification of c-means clustering

Advanced approaches:

- Gustafson \& Kessel: hyper-ellipsoids of same size
- Gath \& Geva: hyper-ellpsoids of arbitrary size

Rule creation by projection of clusters:

- search for axis-parallel ellipsoids only
- search for rectangular clusters (hyper-boxes)

Problem: Number of clusters must be given!

## Segmentation: Fuzzy Cluster Analysis

The quality of the clustering result can be estimated by goodness measures.

Idea: patterns should have high membership degrees (msd) with "their" cluster and low msd with other clusters.

Determine number of cluster automatically:

- Compute cluster analyses for $2,3,4, \ldots$ clusters.
- Continue as long the goodness measure improves.


Problem: There is a loss of informaton, clusters and rules are not identical.

The resulting fuzzy sets must be labeled with suitable linguistic terms.


## Preprocessing

Reduction of Dimensionality (Number of Variables)
Select influential variables

- approaches: statistical tests, e.g. correlations

Combine variables to create new influential variables

- approaches: main component analysis, factor analysis


## Preprocessing

Reduction of Size (Number of Cases)
Remove outliers
approach: do "sanity checks" on the attribute values

Select a subset from all cases
approach: select randomly, but watch distribution

## Preprocessing

## Preprocessing

## Data Cleansing (Reduce Size, Improve Data)

## Missing Values

- delete cases with missing values
- estimate missing values by statistical methods
- do nothing, if your data mining method can handle them


## Remove Noise

- filter the data to remove high frequency noise (mainly for function approximation and time series prediction)


## Know Your Data Like Yourself

Compute basic descriptive statistics (mean, variance, ...).
Try simple linear models to see how they perform.
Visualize the data

- plot bar charts, 2D and 3D projections, ...

Ask "experts", i.e. persons who work with the data and collected it.

## Validation

Always validate the model that is created during data mining!

## N-fold Cross Validation:

Divide the data in $n$ equal parts (same size and distribution).
Use $n-1$ parts to create a model and test on the remaining part.
Repeat $\boldsymbol{n}$ times, and compute the mean error.
Create a final model from the whole data set.
The mean error is an estimate for the error on unseen data.

## Postprocessing

Interpret the result
Is is usable, efficient, easy to understand and to maintain?
Report all steps of the data mining process
It is essential that the result can be reproduced
Visualize the result
It is important that other persons can understand the result
Update the result, if your data changes
Specify when the result may be out of date

## Evaluation Criteria

Scalability

- Integretation with data warehouse
- Completeness
- Is it an algorithm or a solution (application)?
- Usability
- Does it solve a marketing problem?
- Who is going to use it?
- How is it going to be used?
- How much does it cost?


## Explaining the Results

Depending on the selected model the results can be quite complex

- The results may influence strategical decisions

Words are often better than numbers

- Interaction with users:
- users must "get a feeling" for the result
- let users identify their customers
- reveal the data on several levels of detail, from a broad overview to the fine structure


## Legal and Ethical Questions

## Back to Scenario A - Solutions 1 and 2

Prevention of cancelation and cross-selling (classification)

- Assumption: we cannot handle all 1 mio cases
- Select a subset from the data base for training
- Preprocess, deal with missing values (estimation, deletion)
- Begin with statistical analysis to learn more about the data
- Select classifier(s) (black box or easy to understand)
- Validate the solution(s), select one


## Back to Scenario A - Solution 3

## Back to Solution of Scenario B

Cross-selling without historic data (clustering)

- Begin like in solutions 1 and 2
- Select a cluster analysis appraoch (e.g. fuwzy clustering)
- Create rules to describe the cluster
- Try to identify and label groups described by rules
- Direct validation is not possible (no targets are given), but is the cluster goodness similar on unseen data?

Detect the end of the process
Expert selects "typical" processes and marks process end $c$.

Filter the data to reduce noise.
Detect $c$ using the process history as input.
The company tried NN at first, but failed due to lack of expertise in handling NN.

It turned out, that a simple linear filter and observing the deviation from a regression line was sufficient.

## Philosophies of Tools

## Ground Level:

- add more sophisticated approaches to existing tools
- very flexible, but require a lot of expertise

One Step Up:

- data mining toolboxes
- problematic: often aim at users with insufficient expertise to consider tradeoffis

High Level Tools:

- end user applications, integrated into data warehouse
- interactive graphical tools: aimed at non-experts
- ease of use more important then accuracy


## Some Tools

## Statistics

- SAS (also data warehousing, statistics, NN, decision trees)
- SPSS (standalone statistics, add-ons for NN, CHAII)

Neural Networks

- SNNS (Stuttgart Neural Network Simulator, free)
- ECANSE, SENN (Siemens)


## Data Mining

- Clementine (decision trees, NN)
- Data Engine (MIT GmbH, furry, NN, plug-in extensions)
- IBM Data Mining Tool (statistics, NN, decision trees)
- Kepler (multi-relational data, logical rules, dec. trees)


## Resources

## Book:

Fayyad U.M. et al.:
Advances in Knowledge Discovery and Data Mining
MIT Press, Cambridge, MA 1996

WWW:
Knowledge Discovery Nuggets (with links to software) http://www.kdnuggets.com

Journal on Data Mining and Knowledge Discovery http://www.research.microsoft.com/research/datamine/

## Conclusions

There is not a single best method for data miningThere are many methods, some are interchangeable.Thoroughly preprocess your data (get to know them).Know your objectives: interpretability or accuracy?At first, try methods and tools your are familiar with.- Thoroughly validate and evaluate your results.

