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0.1 Introduction

This paper consists of a systematical study of the model-theoretic properties of higher order logic with

Henkin semantics, in a simplified version (who will be denoted in the following HNK). This logic is

organized as an institution [14] and we develop a framework for applying known institution-independent

model theory results, including borrowing properties along institution mappings, to the particular case of

HNK.

Higher order logic or type theory was invented by Bertrand Russell [27] in order to provide foundations

for mathematics. In [31] various fundamental parts of mathematics are formalized in this system. The

term ’higher order’ means that we allow variables to range over functions and predicates. In general, the

formulation of Church is now used [5]. This variant was proved complete by Henkin [19] and in the same

paper the so-called higher order logic with Henkin semantics is introduced. The difference is that types are

interpreted not as entire function spaces but as function subspaces instead. We refer to [1] for a complete

overview on higher order logics.

From a computer-science perspective, higher order logics may be used for directly proving theorems,

when they provide a suitable specification language for the task (e.g. hardware verification, see for example

[4] for a motivation, or for describing data structures, see [25]) or as theorem proving support. Widely-

used higher-order theorem provers are the HOL system [16] and Isabelle [26]. Since in practice it can be

convenient to use only term-denotable subsets of function spaces as carriers for higher order types, higher

order logic with Henkin semantics seems an appropriate choice.

The simplifications mentioned before on the higher order logic with Henkin semantics are that we

do not allow λ-abstraction as terms, which does not represent a loss in power of expressiveness (because

we can add replace them with a new constant symbol and an axiom), and we do not introduce logical

connectives and quantifiers in the signature, but keep them in the meta-language. One of the consequences

is that the valuation of formulas is possible in any model.

The paper is organized as follows:

After a short preliminary recall of the category theory results used in the paper, the institution of higher

order logic with Henkin semantics is introduced and we prove its satisfaction condition. In the next two

sections we define two institution comorphisms. The first maps higher order logic with Henkin semantics

to the institution of presentations over first order equational logic and will be widely used in the paper for

obtaining results about HNK. The definition of this comorphism is based on a transcription in the institu-

tional framework of the ideas from [24] and its significance is that the power of expressivity of HNK can

be obtained in the framework of first order logics only with a certain cost. The second one, mapping first

order equational logic to HNK, shows the contrary: HNK is expressive enough to encode first order logic

without any supplementary requirements. The last section contains the analysis of the model-theoretic

properties of HNK. In each case, we either give a proof or provide a counterexample. The results obtained

for HNK are extremely useful both from a model-theoretic and computer-science perspective: signature

pushouts, weak model amalgamation, quasi-representability for signature extensions with constants, sub-

stitutions between signature inclusions, direct products and ultraproducts of models, elementary diagrams

1



and even though we obtain that not all HNK atoms are basic sentences, we show that HNK is a Łoś insti-

tution and thus is compact. We also obtain interpolation results for HNK both via axiomatizability and by

borrowing along institution comorphisms. To facilitate the reading, we preferred to introduce each concept

of institution-independent model theory at the beginning of each paragraph instead of making a separate

section.

Categories

We will assume that the reader is familiar with the basic notions of category theory, like functor, natural

transformation, colimit etc. We refer to [20] as the standard textbook on this topic and we will follow its

terminology, except that we denote the composition ; and write it in a diagrammatic order.

Let C and S be two categories such that S is small. A functor D : S−→C is also called a diagram. We

usually identify a diagram D : S−→ C with its image in C, D(S). Any set with a partial order defined on

it (J,≤) can be regarded as a category in the obvious way, with the arrows being pairs i≤ j. (J,≤) is said

to be directed if for all i, j ∈ J, there exists k ∈ J such that i≤ k and j≤ k. A diagram defined on a directed

set will be called directed diagram , and a colimit of such a diagram directed colimit .

Given a functor U : C′→ C, for any object A ∈ |C| we define the comma category A/U which has as

objects the arrows from C of form f : A→U(B), sometimes denoted as ( f ,B) and A/U(( f ,B),( f ′,B′)) =

{h ∈ C′(B,B′)| f ;U(h) = f ′}. If C = C′ and U = 1C, we denote A/U = A/C.

An indexed category is a functor B : Iop→Cat. Sometimes, B(i) is denoted Bi for i ∈ |I| and similarly

B(u) is denoted Bu for i ∈ I(i, j). We define the Grothendieck category over B, denoted B], as the category

that has as objects pairs < i,Σ > with i ∈ |I| and Σ ∈ |Bi| and arrows from < i,Σ > to < i′,Σ′ > pairs

< u,ϕ > with i ∈ I(i, i′) and u ∈ Bi(Σ,Bu(Σ′)).

Theorem 0.1 [30]

Given an indexed category B : Iop→ Cat, then for each category J the Grothendieck category B] has:

• J-limits when I has J-limits, Bi has J-limits for each index i and Bu preserves J-limits for each index

morphism u and

• J-colimits when I has J-limits, Bi has J-limits for each index i and Bu has a left adjoint for each

index morphism u.

Definition 1 An adjunction from the category X to the category A consists of a tuple (U,F,η,ε) such that

U : A→X and F : X→A are functors and eta : 1X→ F ;U and ε : U ;F→ 1A are natural transformation

such that the following equations hold: ηF ;Fη = 1F and Uη;εU = 1U .

Given an adjunction (U,F,η,ε), for any object X ∈ |X| there exists an object XF called U-free over

A and an arrow ηX : X →U(F(X)) such that for each object A ∈ |A| and any arrow h : X →U(A) there

exists an unique arrow h′ : F(X)→ A such that h = ηX ;U(h′).

The object F(X) is persistently U-free when ηX is an isomorphism and the adjunction is persistent if

for each object X of X F(X) is persistently U-free.
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0.2 Institutions

Institutions were introduced by Goguen and Burstall [14] to formally capture the informal notion of logical

system from a model-oriented perspective. The original goal was to provide an abstract, logic-independent

framework for algebraic specifications of computer science systems, since any such algebraic specifica-

tions formalism relies on a logical system allowing the user to describe the properties of the software to

be developed. The software itself is represented as a model of the system, and a notion of satisfaction

determines whether an axiom holds in a model, and therefore for the system the model represents. It is

natural to develop a theory of specification formalisms in a way that is as much as possible independent

from the choice of underlying system: this would not only bring a separation of different issues (details

of a particular logic and general concepts, logic independent) but it would also allow to apply the abstract

results of the theory to a certain formalism well suited for a given task.

Since they were defined, institutions gained the position of major tool in the development of the theory

of specification and it became standard in the field to express the logical system underlying a particular

language or system in the language of the theory of institutions (see CASL[2] or CafeOBJ[12]).

Besides its importance for algebraic specifications, the theory of institutions also provides an appro-

priate level of generality for the development of abstract model theory, by offering an uniform approach to

the model theory of various logics and facilitating a deeper understanding of model theoretic phenomena.

One can obtain new non-trivial results for non-classsical logics in a considerably easier manner. Institution

independent model theory also provides an efficient framework for translating properties along mappings

between institutions.

We cite the following papers among the most relevant results on abstract model theory: [11], [13],

[23], [18], [17], [9], [8], [7], [22].

Definition 2 An institution I = (Sign,Sen,Mod, |=) [14] consists of:

• a category Sign, whose objects are called signatures and whose arrows are called signature mor-

phisms;

• a functor Sen : Sign→ Set, (corresponding intuitively to the syntax of the logic) that assigns to each

signature a set called the set of sentences over that signature;

• a functor Mod : Signop→ Cat, (giving the semantics of the logic) such that for any signature Σ, the

objects of Mod(Σ) are called Σ-models or just models and the arrows of Mod(Σ) are called model

homomorphisms;

• a binary relation |== {|=Σ: |Mod(Σ)|×Sen(Σ)|Σ ∈ Sign} called the satisfaction relation

such that the following satisfaction condition holds:

Mod(ϕ)(M′) |=Σ e ⇐⇒ M′ |=Σ′ Sen(ϕ)(e)

for each signature morphism ϕ : Σ→ Σ′ , each Σ-sentence e and each Σ′-model M′.
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Notice that this formalization only assumes abstract categories or classes of signatures, sentences and

models, without any constraint on their structure. The only requirement is the satisfaction condition, with

the meaning that truth is invariant under change of notation and enlargement of context.

For a signature morphism ϕ : Σ→ Σ′, we sometimes denote Sen(ϕ)(e) = ϕ(e) for any Σ-sentence e and

Mod(ϕ)(M) = M �ϕ for any Σ′-model M, where Mod(ϕ) is the functor determined by ϕ between Mod(Σ′)

and Mod(Σ), called the model reduct functor. For any Σ′-model M′ and any Σ-model M, when M = M′ �ϕ

we say that M is the reduct of M′ and M′ is an expansion of M.

Examples of institutions.

1. First order logic with equality(denoted FOL).

We quote [28] for an introduction to classical first order logic. FOL was first organized as an

institution in [14].

Signatures. Signatures are triples (S,F,P), where S is a set (of sorts), F = ∪w∈S∗,s∈SFw→s is the

collection of operation symbols gruped by their arity w ∈ S∗ and their rank s ∈ s and P = ∪w∈S∗Pw

is the collection of predicate symbols, also grouped by arity.

A signature morphism ϕ : (S,F,P)→ (S′,F ′,P′) consists of a mapping ϕ between sorts and for each

w∈ S∗, s∈ S a mapping between Fw→s and F ′
ϕ∗(w)→ϕ(s) and a mapping between Pw and P′

ϕ∗(w), where

if w = s1..sn, ϕ∗(w) = ϕ(s1)...ϕ(sn).

Models. A model M of a signature (S,F,P) interpret sorts as sets, operation symbols as functions

such that if σ ∈ Fw→s, Mσ : Mw→Ms and predicate symbols π ∈ Pw as subsets Mπ ⊆Mw, where if

w = s1..sn, Mw = Ms1× ...×Msn .

A model homomorphism h : M→ N is an S-sorted function {h : Ms→ Ns|s ∈ S} that preserves both

operation and predicate symbols: hs(Mσ(m1, ..,mn)) = Nσ(hs1(m1), ...,hsn(mn)) for any operation

symbol σ ∈ Fs1...sn→s and any mi ∈Msi and hw(Mπ)⊆ Nπ for any predicate symbol π ∈ Pw.

For each signature morphism ϕ : Σ→ Σ′, the functor Mod(ϕ) = ( �ϕ) assigns to each Σ′-model

M′ a Σ-model M such that Mx = M′
ϕ(x), where x stands for each sort, operation symbol or predicate

symbol, and to each Σ′-model homomorphism h′ : M′→N′ the model homomorphism h′ �ϕ: M′ �ϕ→
N′ �ϕ defined by (h′ �ϕ)s = h′

ϕ(s).

Sentences. Given a signature (S,F,P), we define the F-terms inductively: each σ ∈ F→s is a term

of sort s and for each σ ∈ Fw→s, σ(t1, .., tn) is a term of sort s if ti are terms of sort si. The atomic

formulae are either of form t = t ′, where t, t ′ are terms of the same sort or π(t1, .., tn), where ti is a

term of sort si. The set of (S,F,P)-sentences is the least set that contains the atoms and is closed

under Boolean connectives and quantification. A quantified sentence by a finite set of variables X

is of form (∀X)ρ where ρ is a (S,F
U

X ,P)-sentence and we added to the signature the variables as

new constants.

The sentence translation along a signature morphism ϕ : Σ→ Σ′ is defined inductively on the struc-

ture of sentences by replacing the symbols from Σ with their corresponding symbols by ϕ in Σ′. The
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only thing that requires attention is that when translating a variable symbol of sort s, it becomes a

variable symbol of sort ϕ(s).

Satisfaction. Each term t = σ(t1, ..tn) is interpreted in the model M as Mσ(Mt1 , ..,Mtn).

The satisfaction relation between models and sentences is defined inductively on the structure of

sentences. For a fixed signature (S,F,P):

• M |= t = t ′ if Mt = M′t ;

• M |= π(t1, .., tn) if (Mt1 , ..Mtn) ∈Mπ;

• M |= e1∧ e2 if and only if M |= e1 and M |= e2, and similarly for all Boolean connectives,

• M |= (∀X)e if for each (S,F
U

X ,P)-expansion M′, M′ |= e and similarly for existential quan-

tification.

One can show that the satifaction condition holds, which defines completely the institution of the

first order logic with equality.

2. The institution of first order equational logic with equality, denoted FOEQL, is obtained from FOL

by discarding the predicate symbols from all signatures and their interpretations in models.

3. The institution of presentations Ip over a base institution I.

Given an institution I = (Sign,Sen,Mod, |=), a presentation is a pair (Σ,E), with Σ ∈ |Sign| and

E ⊆ Sen(Σ). A presentation morphism ϕ : (Σ,E)→ (Σ′,E ′) is a signature morphism ϕ : Σ→ Σ′

such that E ′ |= ϕ(E)(where we denote by |= the relation of semantical consequence between sets of

sentences - for any two sets of sentences E,E ′ ∈ Sen(Σ), E |= E ′ if and only if any Σ-model M of E

is also a model of E ′).

We define the institution of the presentations Ip over the base institution as follows:

• Signp is the category Pres of the presentations of I;

• for each presentation (Σ,E), Modp(Σ,E) = Mod(Σ,E);

• for each presentation (Σ,E), Senp(Σ,E) = Sen(Σ);

• M |=p
(Σ,E) e ⇐⇒ M |=Σ e, for each (Σ,E)-model M and each (Σ,E)-sentence e.

0.3 The institution of higher order logic with Henkin semantics

Higher order logic with Henkin semantics was introduced in [19], where also a completeness result is

proven. What is particular to this logic is that, unlike the original version of higher order logic(see [5] for

a formulation), where a type s→ s′ is interpreted in a model D as the entire function space [Ds → Ds′ ],

types are interpreted as function subspaces of [Ds→ Ds′ ].

The institution we present here follows the conventions from [24]; as same as there, we do not allow λ-

abstractions as terms, since any λ-abstraction λx.t may be replaced with a new constant symbol f together
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with the axiom f x = t. Therefore, using the terminology of [19], the models of our institution are not

frames, but general models, since any formula may be evaluated in a model (this is true also because the

logical connectors are not introduced as symbols in the signature, but are contained in the meta-language).

We quote as related work the paper of Borzyszkowski [3], where the higher order logic used in theorem

provers like Isabelle [26] and the HOL system is organized as an institution.

0.3.1 Signatures

Definition 3 A signature in higher order logic with Henkin semantics is a pair (S,F) where:

• S is a set (of sorts). We define the set of types over S, denoted
−→
S , as the least set that contains S and

for any s,s′ ∈ −→S , s→ s′ ∈ −→S .

• F =
S

s∈−→S Fs,where Fs is a set (of constant symbols of type s), for every s ∈ −→S .

Definition 4 Given two signatures, (S,F) and (S′,F ′), a signature morphism ϕ : (S,F)→ (S′,F ′) consists

of:

• a sort function ϕsort : S→ S′ and

• a function between operation symbols ϕop : F → F ′ such that ϕop(Fs)⊆ F ′
ϕtype(s),

where ϕtype :
−→
S →

−→
S′ is the extension of ϕsort to types inductively defined by ϕtype(s) = ϕsort(s), for any

s ∈ S and ϕtype(s→ s′) = ϕtype(s)→ ϕtype(s′), for any s,s′ ∈ −→S .

We may omit superscripts to facilitate reading.

If the sort function of a signature morphism ϕ : (S,F)→ (S′,F ′) assigns to each sort of S a type of
−→
S′

instead of a type over S′ (i.e. ϕsort : S→
−→
S′ ), the signature morphism will be called type-derived.

Fact 0.2 The signatures and the signature morphisms form a category, denoted SignHNK , under the obvi-

ous composition of signature morphisms.

Remark 1 The type-derived signature morphisms also form a category.

0.3.2 Models

Definition 5 Given a signature (S,F), a model M interprets:

• each sort s ∈ S as a set, Ms;

• each type s→ s′ ∈−→S as a subset Ms→s′ ⊆ [Ms→Ms′ ], where [Ms→Ms′ ] = { f : Ms→Ms′ | f f unction};

• each constant symbol σ ∈ Fs, where s ∈ −→S , as an element of Ms.

Convention: The interpretation of a type s in a model M is assumed empty if it is not defined explicitly.
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Definition 6 A (S,F)-model homomorphism h : M→ N is a
−→
S -sorted function {hs : Ms→ Ns}s ∈−→S such

that hs(Mσ) = Nσ for any s ∈−→S and any σ ∈ Fs and hs′( f (x)) = hs→s′( f )(hs(x)), for any s→ s′ ∈−→S , any

x ∈Ms and any f ∈Ms→s′ .

Ms
f //

hs
��

Ms′

hs′
��

Ns hs→s′ ( f )
// Ns′

Fact 0.3 For any signature (S,F), the (S,F)-models and (S,F)-model homomorphisms form a category,

ModHNK(S,F), where the composition of homomorphisms is made component-wise.

For any signature morphism ϕ : (S,F)→ (S′,F ′) and any (S′,F ′)-model M′, we define ModHNK(ϕ)(M′)=

M′ �ϕ by (M′ �ϕ)s = M′
ϕtype(s), for any type s and (M′ �ϕ)σ = M′

ϕop(σ) for any operation symbol σ ∈ F . Each

model homomorphism h : M→ N is mapped to Mod(ϕ)(h) = h �ϕ: M �ϕ→ N �ϕ, defined by (h �ϕ)s(x) =

hϕtype(s)(x) for each type s.

Fact 0.4 For each signature morphism ϕ : (S,F)→ (S′,F ′), ModHNK(ϕ) : ModHNK(S′,F ′)→ModHNK(S,F)

is a functor.

Moreover, ModHNK : Signop→ Cat is a functor.

0.3.3 Sentences and satisfaction

Definition 7 Let (S,F) be a HNK signature. For each s ∈ −→S , an operation symbol σ ∈ F→s is a term of

type s and t(t ′) is a term of type s1 if t is a term of type s→ s1 and t ′ is a term of type s.

We denote TF the
−→
S -sorted set of F-terms.

The interpretation of terms in a model is defined inductively, by extending the interpretation of opera-

tion symbols: if t(t ′) is a term of type s′ and M is a model, Mt(t ′) = Mt(Mt ′).

The atomic sentences are equations of form t = t ′, where t, t ′ are terms of the same type. The HNK-

sentences are obtained from the atomic sentences by using the usual Boolean connectives and higher order

quantification.

The sentence translation SenHNK(ϕ) : SenHNK(S,F)→ SenHNK(S′,F ′) along a signature morphism

ϕ : (S,F)→ (S′,F ′) is defined by using the function ϕ : TF → T ′F induced by ϕ. Then

• SenHNK(ϕ)(t = t ′) = (ϕ(t) = ϕ(t ′));

• SenHNK(ϕ)(¬e) = ¬SenHNK(ϕ)(e), and similarly for all Boolean connectives;

• SenHNK(ϕ)((∀X)e) = (∀Xϕ)SenHNK(ϕ′)(e), where X is a finite
−→
S -sorted set of variables(because

we admit quantification over variables of any higher-order type), Xϕ
s =

S
ϕ(s′)=s Xs′ and ϕ′ : (S,F

U
X)→

(S′,F ′
U

Xϕ) extends ϕ canonically.
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We denote SenHNK(ϕ)(e) = ϕ(e).

Fact 0.5 Sen : Sign→ Set is a functor.

The satisfaction relation is defined inductively on the structure of sentence. Given a signature (S,F):

• M |= t = t ′ if and only if Mt = Mt ′ ;

• M |= e1∧ e2 if and only if M |= e1 and M |= e2, and similar for all Boolean connectives;

• M |= (∀X)e′ if and only if for each expansion M′ of M along the signature inclusion

(S,F) ↪→ (S,F
U

X), M′ |= e′.

Proposition 0.6 For any signature morphism ϕ : (S,F)→ (S′,F ′), any M′ ∈ |ModHNK(S,F)| and any

e ∈ SenHNK(S,F), M′ �ϕ|= e if and only if M′ |= ϕ(e).

Proof: We begin with a lemma which we prove later:

Lemma 0.7 For each signature morphism ϕ : (S,F)→ (S′,F ′), each (S′,F ′)-model M′ and each term

t ∈ TF , (M′ �ϕ)t = M′
ϕ(t).

The proof of the proposition will be given by induction on the structure of e.

For the basic case, assume that e = (t = t ′). Then M′ |= ϕ(t = t ′) ⇐⇒ M′ |= ϕ(t) = ϕ(t ′) ⇐⇒ M′
ϕ(t) =

M′
ϕ(t ′) ⇐⇒ (by using the lemma) (M′ �ϕ)t = (M′ �ϕ)t ′ ⇐⇒ M′ �ϕ|= t = t ′.

For the general case, we consider only the nontrivial subcase of universal quantification. Suppose that

e = (∀X)e′. We show that M′ �ϕ|= (∀X)e′ ⇐⇒ M′ |= ∀(Xϕ)ϕ′(e′):

(S,F)
ϕ //

� _

��

(S′,F ′)� _

��
(S,F ∪X)

ϕ′ // (S′,F ′∪Xϕ)

For the direct implication, let N′ be a Xϕ-expansion of M′, N = N′ �ϕ′ and M = M′ �ϕ. Because

N′ �Xϕ�ϕ= M and the diagram commutes, we have that N �X= M, so by using the hypothesis N |= e′,

which implies by using the induction hypothesis N′ |= ϕ′(e′).

For the converse, let N be a X-expansion of M. We define an expansion for M′, denoted N′, by

interpreting x ∈ Xϕ as Nx. We check that the definition is correct: because Nx ∈ Ns, we also have that

Nx ∈Ms, so by using the definition of the reduct, Nx ∈M′
ϕ(s) = N′

ϕ(s). By using the hypothesis we have that

N′ |= ϕ′(e′), so N |= e′ by the induction hypothesis.

Proof of lemma

Induction on the structure of term.

If t = σ with σ ∈ F , by definition of the reduct functor we have that (M′ �ϕ)σ = M′
ϕ(σ).

Assume that t = t1(t2) and the conclusion holds for t1 and t2. Then (M′ �ϕ)t1(t2) =

(M′ �ϕ)t1((M
′ �ϕ)t2) =(by using the induction hypothesis)M′

ϕ(t1)
(M′

ϕ(t2)
) = M′

ϕ(t1)(ϕ(t2))
= M′

ϕ(t1(t2))
.

8



0.3.4 The institution of higher order logic

The institution of higher-order logic, denoted HOL, is obtained from HNK by restricting the models to

those that interpret each type s→ s′ as the entire function space [Ms→Ms′ ] instead of a subset of it.

We check that HOL is an institution, which means the functor Mod maps HOL-models into HOL-

models. Let ϕ : (S,F)→ (S′,F ′) be a signature morphism and let M′ be a HOL (S′,F ′)-model. We denote

M = M′ �ϕ and prove that Ms→s′ = [Ms→Ms′ ] for any types s,s′. Ms→s′ = M′
ϕ(s)→ϕ(s′) = [M′

ϕ(s)→M′
ϕ(s′)] =

[Ms→M′s′ ].

0.4 Comorphism HNK→ FOEQLp

Institution comorphisms

The original paper about institutions [14] introduces the notion of institution morphism, concept which

includes structure forgetting and arises naturally. Because not all important relationships between institu-

tions are captured, the dual concept of comorphism [15], introduced first in [21] under the name of ’plain

map’, then under the name of ’representation’ [29], is also meaningful. Institution comorphisms formalize

an embedding or a encoding of the source institution to the target one.

Definition 8 Given two institutions, I = (Sign,Sen,Mod, |=) and I′ = (Sign′,Sen′,Mod′, |=′), an institu-

tion comorphism [21] [15] (φ,α,β) : I→ I′ consists of:

• a functor φ : Sign→ Sign′;

• a natural transformation α : Sen⇒ φ;Sen′;

• a natural transformation β : φop;Mod′⇒Mod;

such that the following satisfaction condition holds

M′ |=′
φ(Σ) αΣ(e) ⇐⇒ βΣ(M′) |=Σ e

for each signature Σ ∈ |Sign|, each Σ-sentence e and each φ(Σ)-model M′.

As an example, we briefly describe the institution comorphism from FOL to FOEQL that encodes

the relation symbols of a FOL signature as operation symbols in the corresponding FOEQL signature.

Each signature (S,F,P) is mapped to (S
U
{b},F

U
P

U
{true}), where b is a new sort, true is a constant

symbol of sort b, Pw→s = Pw if s = b or the empty set otherwise. Each relational atom π(t) is mapped to

π(t) = true. For each (S
U
{b},F

U
P

U
{true})-model A, β(A) interprets the sorts and the operations like

A and β(A)π = A−1
π (Atrue). One can prove that we obtain thus an institution comorphism.

We define an institution comorphism (φ,α,β) : HNK → FOEQLp. Its significance is that one can

encode the institution of higher order logic with Henkin semantics into first order equational logic, but the

only algebras that are the image of HNK-models under the comorphism are those satisfying the axioms
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of extensionality. Because the latter do not fall into any usual format (for example they are not Horn

clauses), an analysis of the properties of the class of models of the presentations Γ(S,F) is not trivial. This

comorphism is very useful for borrowing results along it, since we will show that α(S,F) is isomorphism

and β(S,F) is an equivalence of categories, for any HNK signature (S,F).

• The functor φ : SignHNK → PresFOEQL :

Each HNK signature (S,F) is mapped to a FOEQL presentation φ(S,F) = ((
−→
S ,
−→
F ),Γ(S,F)), where

−→
S is the set of types over the sorts in S,

−→
F →s = Fs for any type s ∈ −→S ,

−→
F (s→s′,s)→s′ = {applys→s′}

and
−→
F x = /0 otherwise. The set of axioms for each presentation state that the models are extensional,

i.e. two elements cannot be differrent if they act the same when ’applied’ to the same element:

Γ(S,F) = { (∀ f )(∀g)[((∀x)applys→s′( f ,x) = applys→s′(g,x)) =⇒ f = g]|s,s′ ∈ −→S }

For each signature morphism ϕ : (S,F)→ (S′,F ′), we define φ(ϕ) : (
−→
S ,
−→
F )→ (

−→
S′ ,
−→
F ′) as follows:

– φ(ϕ)(s) = ϕtype(s), for each type s ∈ −→S (notice that this implies φ(ϕ)(s) = ϕ(s) on sorts);

– φ(ϕ)(σ) = ϕ(σ), for each constant symbol σ ∈ F ;

– φ(ϕ)(applys→s′) = applyϕtype(s)→ϕtype(s′).

Notice that φ(ϕ) is indeed a presentation morphism.

Fact 0.8 φ : SignHNK → PresFOEQL is a functor.

Remark 2 The functor φ : SignHNK → PresFOEQL does not preserve pushouts.

Proof:

Let us consider the following pushout of signature inclusions in HNK:

({s}, /0)

��

// ({s,a}, /0)

��
({s,b}, /0) // ({s,a,b}, /0)

By applying φ we get the following square of signature inclusions in FOEQL:

(
−→
{s},
−→
/0 )

��

// (
−−−→
{s,a},

−→
/0 )

��

(
−−−→
{s,b},

−→
/0 ) // (

−−−−→
{s,a,b},

−→
/0 )

which is not a pushout because
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−→
{s}

��

// −−−→{s,a}

��−−−→
{s,b} // −−−−→{s,a,b}

is not a pushout in Set.

• The natural transformation α is the canonical extension of the mapping on terms αtm defined by

αtm(t(t ′)) = applys→s′(αtm(t),αtm(t ′)), where t is a term of type s→ s′ and t ′ a term of sort s.

• Given a signature (S,F), we denote β(S,F)(M) = M for each (S,F)-model M and β(S,F)(h) = h for

each (S,F)-model homomorphism h.

For each model M, M is inductively defined by the isomorphism f unM : M→M.

– On each sort s ∈ S, Ms = Ms and f unM
s is the identity;

– On each type s→ s′ ∈−→S , assuming that f unM
s and f unM

s′ have been defined, we must interpret

Ms→s′ as a subset of [Ms→Ms′ ].

The isomorphisms f unM
s and f unM

s′ determine an isomorphism between [Ms→M′s] and [Ms→
Ms′ ], denoted f unM

s→s′ , such that f unM
s→s′( f )( f unM

s (x)) = f unM
s′ ( f (x)) for each f ∈ [Ms→M′s]

and each x ∈Ms.

Notice that to any g ∈Ms→s′ we can associate a function, also denoted g : Ms→Ms′ , defined

by g(x) = Mapplys→s′ (g,x) for any x ∈Ms. Thus Ms→s′ is in a bijective correspondence with a

subset of the function space [Ms→Ms′ ], denoted M[]
s→s′ .

We define Ms→s′ = f unM
s→s′(M

[]
s→s′) and we restrict and co-restrict f unM

s→s′ to Ms→s′ and Ms→s′

respectively. Notice that f unM
s→s′( f )( f unM

s (x)) = f unM
s′ (Mapplys→s′ ( f ,x)).

– Finally, Mσ = f unM
s (Mσ) for each σ∈ Fs and any type s∈−→S - notice that this means Mσ = Mσ

if σ ∈ Fs and s is a sort, not a proper type.

Remark 3 For any signature morphism ϕ : (S,F)→ (S′,F ′) and for any (S′,F ′)-model M′, f unM′�ϕ

s =

f unM′
ϕ(s), for each type s ∈ −→S .

Proof:

Induction on the type s. If s is a sort, then f unM′�ϕ

s = 1(M′�ϕ)s = 1M′
ϕ(s)

= f unM′
ϕ(s).

Let s→ s′ be a type such that the inductive hypothesis holds for s and s′. By definition, f unM′�ϕ

s

is a function with the domain (M′ �ϕ)s→s′ and codomain (M′ �ϕ)s→s′ . By the definition of the

reduct, this means that the domain is M′
ϕ(s)→ϕ(s′). By using the definition of f un, we have that for

any f ∈M′
ϕ(s)→ϕ(s′) and any x ∈M′

ϕ(s), f unM′�ϕ

s→s′ ( f )( f unM′�ϕ

s (x)) = f unM′�ϕ

s′ ((M′ �ϕ)applys→s′ ( f ,x)) =

f unM′�ϕ

s′ (M′apply
ϕ(s)→ϕ(s′)

( f ,x)) = (by induction hypothesis for s′) = f unM′
ϕ(s′)(M

′
apply

ϕ(s)→ϕ(s′)
( f ,x)) =
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f unM′
ϕ(s)→ϕ(s′)( f )( f unM′

ϕ(s)(x)). By induction hypothesis for s, f unM′�ϕ

s (x) = f unM′
ϕ(s)(x), so the func-

tions f unM′�ϕ

s→s′ ( f ) and f unM′
ϕ(s)→ϕ(s′)( f ) are equal. It follows that f unM′�ϕ

s→s′ and f unM′
ϕ (s→ s′) are equal.

For each model homomorphism h : M→ N, we define h : M→ N as follows:

– hs( f unM
s (x)) = f unN

s′ (h(x)), for any type s ∈ −→S .

We check that h is indeed a model homomorphism. Let σ ∈ Fs be an operation symbol. Then

h(Mσ) = h( f unM
s (Mσ)) = f unN

s (h(Mσ)) =(h is a model homomorphism)= f unN
s (Nσ) = Nσ.

Let f ∈Ms→Ms′ and x ∈Ms. We must prove that hs→s′( f unM
s→s′( f ))(hs( f unM

s (x))) =

hs′( f unM
s→s′( f )( f unM

s (x))).

Ms
f unM

s→s′ ( f )
//

hs
��

Ms′

hs′
��

Ns hs→s′ ( f unM
s→s′ ( f ))

// Ns′

hs→s′( f unM
s→s′( f ))(hs( f unM

s (x)))= f unN
s→s′(hs→s′( f ))( f unN

s (hs(x)))= f unN
s′ (Napplys→s′ (hs→s′( f ),hs(x)))=

f unN
s′ (hs′(Mapplys→s′ ( f ,x))) = hs′( f unM

s′ (Mapplys→s′ ( f ,x))) = hs′( f unM
s→s′( f )( f unM

s (x))).

Fact 0.9 For each HNK-signature (S,F), β(S,F) : ModFOEQL(φ(S,F))→ModHNK(S,F) is a func-

tor.

Proposition 0.10 β : φop;ModFOEQL→ModHNK is a natural transformation.

Proof:

ModFOEQL(φ(S′,F ′))
β(S′,F ′) //

ModFOEQL(φ(ϕ))

��

ModHNK(S′,F ′)

ModHNK(ϕ)

��
ModFOEQL(φ(S,F))

β(S,F)

// ModHNK(S,F)

Let M′ be a model in ModFOEQL(φ(S′,F ′)). We denote:

– M = M′ �φ(ϕ);

– M′ = β(S′,F ′)(M′);
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– M = β(S,F)(M);

We check that M = M′ �φ.

For each sort s ∈ S, Ms = Ms = M′
φ(ϕ)(s) = M′

ϕ(s). (M′ �φ)s = M′ϕ(s) = M′
ϕ(s)(the last equality holds

because ϕ(s) is a sort), so the models M and M′ �φ coincide on sorts.

For each type s∈−→S \S, Ms = f unM
s (Ms) = f unM

s ((M′ �φ(ϕ))s) = f unM
s (M′−→

ϕ (s)). (M′ �φ)s = M′−→
ϕ (s) =

f unM′−→
ϕ (s)(M

′−→
ϕ (s)). The equality holds by using remark 3.

For each constant symbol σ ∈ Fs, Mσ = f unM
s (Mσ) = f unM′�ϕ

s (M′
ϕ(σ)) = f unM′

ϕ(s)(M
′
ϕ(σ)) = M′ϕ(σ) =

(M′ �ϕ)σ.

Let h : M′→ N′ be a ϕ(S′,F ′)-model homomorphism. We must check that h′ �ϕ: M′ �ϕ→ N′ �ϕ and

h : M′ �φ(ϕ)→ N′ �φ(ϕ) are equal, where we denote h = h′ �φ(ϕ).

By using the first part of the proof, we obtain that the two homomorphisms have the same domain

and the same codomain.

Let f unM′
ϕ(s)(m) be an element of (M′ �ϕ)s = (M′ �φ(ϕ))s.

On one hand, (h′ �ϕ)s( f unM′
ϕ(s)(m)) = h′ϕ(s)( f unM′

ϕ(s)(m)) = f unN′
ϕ (s)(h′

ϕ(s)(m)).

On the other hand, hs( f unM′
ϕ(s)(m)) = f unN′

ϕ(s)(hs(m)) = f unN′
ϕ(s)(h

′
ϕ(s)(m)).

It follows that h′ �ϕ and h are equal.

We obtained that β is indeed a natural transformation.

Counterexample 1 If we consider type-derived signature morphisms, β is no longer a natural transfor-

mation.

Let us consider the HNK-signature Σ = ({s}, /0) with only a sort symbol and the set of constant

symbols empty for any type and the signature morphism ϕ : Σ→ Σ defined by ϕ(s) = s→ s. Accord-

ing to the definition of φ, φ(Σ) = ((
−→
{s},{applyt→t ′}t,t ′∈

−→
{s}),ΓΣ) and φ(ϕ)(t) = ϕtype(t) for each type t,

φ(ϕ)(applyt→t ′) = applyϕtype(t)→ϕtype(t ′).

M′ ModFOEQL(φ(Σ))
βΣ //

ModFOEQL(φ(ϕ))
��

ModHNK(Σ)

ModHNK(ϕ)
��

M′

M ModFOEQL(φ(Σ))
βΣ

// ModHNK(Σ) M

Let M′ be the following model in ModFOEQL(φ(Σ)):

• M′s = N;

• M′s→s = { f};
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• M′applys→s
( f ,x) = x, for any natural number x.

We denote:

• M = M′ �φ(ϕ);

• M′ = β(S′,F ′)(M′);

• M = β(S,F)(M);

Then:

• Ms =(definition of M)Ms =(definition of the reduct functor)M′
φ(ϕ)(s) =(definition of φ(ϕ))M′

ϕ(s) =

M′s→s′ , so Ms = { f}.

• (M′ �φ)s =(definition of the reduct functor)M′ϕ(s) = M′s→s′ = { f : N→ N| f (x) = x}, which is only

isomorphic to Ms

so the two models are not the same on the sort s.

Lemma 0.11 For each HNK−signature (S,F), each F-term t of type s and each model

M′ ∈ |ModFOEQL(φ(S,F))|, M′t = f unM′
s (M′

α(t)).

Proof

Induction on the structure of terms.

Basic case: t = σ, with σ ∈ Fs. Then M′σ = f unM′
s (M′σ), by using the definition of the interpretation of

constant symbols in M′.

General case: t = t1(t2) and the inductive hypothesis holds for t1 and t2. M′t1(t2) = M′t1(M′t2) =

(by using the inductive hypothesis) f unM′
s→s′(M

′
α(t1)

)( f unM′
s (M′

α(t2)
)) = f unM′

s′ (M′applys→s′
(M′

α(t1)
,M′

α(t2)
)) =

f unM′
s′ (M′applys→s′ (α(t1),α(t2))

) = f unM′
s′ (M′

α(t1(t2))
).

Proposition 0.12 For any HNK-signature (S,F), any φ(S,F)-model M′ and any (S,F)-sentence e,

M′ |=FOEQL
α(S,F)(e) ⇐⇒ M′ |=HNK e

Proof:

The statement is proven by induction on the structure of sentence e.

For the basic case, let e =(t = t ′). Then M′ |= t = t ′ ⇐⇒ M′t = M′t ′ ⇐⇒ f un(M′
α(t))= f un(M′

α(t ′)) ⇐⇒
(because f un is isomorphism) M′

α(t) = M′
α(t ′) ⇐⇒ M′ |= α(t) = α(t ′).

For the general case, the only non-trivial part is for universal quantification.

Assume that e = (∀X)ρ and the inductive hypothesis holds for ρ. We want to show that M′ |=
(∀X)α(S,F)(ρ) if and only if M′ |= (∀X)ρ.
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(S,F)
iX // (S,F

U
X)

((
−→
S ,
−→
F ),Γ(S,F))

i′X // ((
−→
S ,
−→
F

U
X),Γ(S,F))

i′−→
X // ((

−→
S ,
−−−→
F

U
X),Γ(S,F

U
X))

Notice that:

1.
−→
F

U
X =
−−−→
F

U
X so we can interchange the two of them. Indeed, (

−−−→
F

U
X)→s = (F ∪X)s = Fs∪Xs =

(
−→
F )→s∪Xs = (

−→
F

U
X)→s, for any type s ∈ −→S .

2. Γ(S,F) = Γ(S,F∪X), because the set of sorts is the same.

This implies that i′−→
X

is actually the identity.

For showing M′ |= (∀X)α(S,F)(ρ) implies M′ |= (∀X)ρ, let N be an iX -expansion of M′. We define a

(
−→
S ,
−−−→
F

U
X)-model, N′, as follows:

• for each sort s ∈ −→S , N′s = M′s. Notice that Ns = M′s = f unM′
s (M′[]s ) = f unN′

s (N′[]s );

• N′σ = M′σ;

• N′applys→s′
( f ,x) = M′applys→s′

( f ,x);

• for any x ∈ Xs, there exists a′ ∈M′s such that Nx = f unM′
s (a′). We define N′x = a′.

With this definition, we notice that N′= N and N′ is a i′X -expansion of M′. The latter implies N′ |= α(ρ)

so by using the inductive hypothesis, N |= ρ.

For showing M′ |= (∀X)α(S,F)(ρ) if M′ |= (∀X)ρ, let N′ be an i′X -expansion of M′. We check that N′ is

an iX -expansion of M′.

• N′s = f unN′
s (N′[]s ) = f unM′

s (M′[]s ) = Ms;

• N′σ = f unN′
s (N′σ) = f unM′

s (M′σ) = M′σ.

It follows that N′ |= ρ, so N′ |= α(ρ).

Remark 4 For each signature (S,F), β(S,F) : ModFOEQL(φ(S,F))→ModHNK(S,F) is an equivalence of

categories.

Proof:

We define β̃(S,F) : ModHNK(S,F)→ModFOEQL(φ(S,F)) as follows:

• for each model A ∈ModHNK(S,F), we denote Ã = β̃(S,F)(A):
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– for each type s ∈ −→S , Ãs = As (this means that the interpretation of each type in the model A

loses the significance of function subset and is only regarded as a set);

– for each constant symbol σ ∈ Fs of type s ∈ −→S , Ãσ = Aσ;

– Ãapplys→s′ ( f ,x) = f (x), for each f ∈ Ãs→s′ and each x ∈ Ãs (this means we define the interpre-

tation of the function applys→s′ on a argument f that was a function in the model A by using

the definition of f in the model A)

It is obvious that Ã |= Γ(S,F), because the interpretations of types in Ã were function subspaces.

• for each HNK−model homomorphism h : A→ B, we define h̃ = β̃(S,F)(h) by h̃s(x) = hs(x) for any

type s ∈ −→S and any x ∈ As. We check that h̃ is indeed a FOEQL-model homomorphism.

For any constant symbol σ ∈ Fs, h̃s(Ãσ) = hs(Aσ) = Bσ = B̃σ.

For any types s,s′ ∈−→S , any f ∈ Ãs→s′ and any x∈ Ãs, h̃s′(Ãapplys→s′ ( f ,x))= hs′( f (x))= hs→s′( f )(hs(x))=

B̃applys→s′ (h̃s→s′( f ), h̃s(x)).

Fact 0.13 β̃(S,F) is a functor.

We prove that β(S,F); β̃(S,F) ' 1ModFOEQL(φ(S,F)) and β̃(S,F);β(S,F) = 1ModHNK(S,F).

Let M ∈ |ModFOEQL(φ(S,F))|. Notice that M̃s = Ms = Ms = f unM
s (Ms) if s ∈ S and M̃s→s′ = Ms→s′ =

f unM
s→s′(M

[]
s→s′) if s,s′ ∈ −→S , so the function g : M→ M̃, gs(m) = f unM

s (m) is bijective.

We check that g is a model homomorphism.

For any σ ∈ Fs, gs(Mσ) = f unM
s (Mσ) = Mσ = M̃σ.

For any s,s′ ∈ −→S , any f ∈Ms→s′ and any x ∈Ms, M̃applys→s′ (gs→s′( f ),gs(x)) =

M̃applys→s′ ( f unM
s→s′( f ), f unM

s (x)) = f unM
s→s′( f )( f unM

s (x)) = f unM
s′ (Mapplys→s′ ( f ,x)) = gs′(Mapplys→s′ ( f ,x)).

It follows that g is an isomorphism of FOEQL models.

Let A ∈ |ModHNK(S,F)|. We show that Ã = A by induction over types.

Let s ∈ S. Ãs = Ãs = As.

Let s,s′ ∈ −→S such that Ãs = As and Ãs′ = As′ . We know that Ãs→s′ ⊆ [Ãs → Ãs′ ] = [As → As′ ]. Let

f ∈ Ãs→s′ = As→s′ and let x ∈ Ãs. By inductive hypothesis, f unÃ
s (x) = x. Then f unÃ

s→s′( f )( f unÃ
s (x)) =

Ãapply( f ,x) = f (x), so f unÃ
s→s′( f ) is equal to f . The equality between As→s′ and Ãs→s′ follows from the

observation that for any f ∈ As→s′ there exists f unÃ
s→s′( f ) ∈ Ãs→s′ such that f unÃ

s→s′( f ) = f .

Let σ ∈ F→s. Ãσ = f unÃ
s (Ãσ) = Ãσ = Aσ.

The equality h̃ = h for h HNK-model homomorphisms is obvious.

0.5 Comorphism FOEQL→ HNK

We define an institution comorphism (φ,α,β) : FOEQL→ HNK. We can thus conclude that the first

order equational logic (or even first order logic if we compose the comorphism defined here with the one

presented as an example) is at most expresive as higher order logic with Henkin semantics.
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• The functor φ : SignFOEQL→ SignHNK maps:

– each FOEQL-signature (S,F) to the HNK-signature (S,F), where Fs1→(s2→...(sn→s)..) = Fs1s2...s2→s

and Fx = /0 otherwise.

– each FOEQL signature morphism ϕ : (S,F)→ (S′,F ′) to the HNK signature morphism φ(ϕ) :

(S,F)→ (S′,F ′) such that φ(ϕ)(s) = ϕ(s) and associates to each constant symbol σ the con-

stant symbol corresponding to ϕ(σ). It is easy to see that φ(ϕ) is a HNK signature morphism.

• The natural transformation α is determined by the following mapping, also denoted α, on terms:

each term t = σ(t1, ..tn) is assigned the Polish prefix translation of the term σ(α(t1))(α(t2))..(α(tn)).

• Let (S,F) be a FOEQL signature. We define β(S,F) : ModHNK(φ(S,F))→ModFOEQL(S,F) and we

denote M̂ = β(S,F)(M) and ĥ = β(S,F)(h) :

– For any (φ(S,F))-model M, we define M̂ :

1. M̂s = Ms for any sort s ∈ S;

2. for each σ ∈ Fs1s2..sn→s, M̂σ(x1, ..xn) = Mσ(x1)(x2)..(xn)

– For each HNK-model homomorphism h : M→ N, we define ĥ : M̂→ N̂, ĥs = hs, for any sort

s ∈ S.

We check that ĥ is a FOEQL-model homomorphism. Let σ ∈ Fs1s2..sn→s and let mi ∈Msi , for

any i ∈ {1, ..,n}. Then ĥ(M̂σ(m1, ..mn)) = h(M̂σ(m1, ..mn)) = h(Mσ(m1)..(mn)) =

h(Mσ(m1)..(mn−1))(h(mn)) = .. = h(Mσ)(h(m1))..(h(mn)) = Nσ(h(m1))..(h(mn)) =

N̂σ(ĥ(m1), .., ĥ(mn)).

Remark 5 β is a natural transformation.

Proof:

M′ ModHNK(φ(S′,F ′))
β(S′,F ′) //

ModHNK(φ(ϕ))

��

ModFOEQL(S′,F ′)

ModFOEQL(ϕ)

��

M̂′

M ModHNK(φ(S,F))
β(S,F)

// ModFOEQL(S,F) M̂

Let M′ ∈ |ModHNK(φ(S′,F ′))|. We denote M = ModHNK(φ(ϕ))(M′) and we check that M̂ = M̂′ �ϕ.

Let s ∈ S. M̂s = Ms = M′
φ(ϕ(s)) = M′

ϕ(s) = M̂′ϕ(s) = (M̂′ �ϕ)s.

Let σ∈Fs1s2..sn→s. M̂σ(x1, ..,xn)= Mσ(x1)..(xn)= M′
ϕ(σ)(x1)...(xn). (M̂′ �ϕ)σ(x1, ..,xn)= M̂′ϕ(σ)(x1, ..,xn)=

M′
ϕ(σ)(x1)...(xn).
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Let h′ : M′→ N′ be a (φ(S′,F ′))−model homomorphism. We denote h = h′ �φ(ϕ) and we check that

ĥ = ĥ′ �ϕ.

The first part of the proof ensures us that the domain and the codomain of ĥ and ĥ′ �ϕ are the same.

Let s ∈ S and let x ∈ M̂s. Then ĥs(x) = hs(x) = h′
ϕ(s)(x). (ĥ′ �ϕ)s(x) = ĥ′ϕ(s)(x) = h′

ϕ(s)(x).

Lemma 0.14 For any FOEQL signature (S,F), any t ∈ TF and any φ(S,F)-model M, Mα(t) = M̂t .

Proof:

Induction on the structure of terms.

Basic case: t = σ, with σ∈F→s. Then M̂σ = Mσ by using the definition of the interpretation of constant

symbols in M̂.

General case: t = σ(t1, ..tn) and the inductive hypothesis holds for each of t1, ..tn. Then M̂σ(t1,...,tn) =

M̂σ(M̂t1 , ..,M̂tn)=(from the induction step and the definition of σ in M̂)Mσ(Mα(t1))..(Mα(tn))= Mσ(α(t1))...(α(tn)) =

Mα(σ(t1,..tn)).

Proposition 0.15 For any FOEQL signature (S,F), any sentence e ∈ Sen(S,F) and any φ(S,F) HNK-

model M′, M̂′ |= e ⇐⇒ M′ |= α(S,F)(e).

Proof:

Induction on the structure of e:

Basic case: e = (t = t ′). Then M̂′ |= t = t ′ ⇐⇒ M̂′t = M̂′t ′ ⇐⇒ M′
α(t) = M′

α(t ′) ⇐⇒ M′ |= α(t) =

α(t ′).

For the general case, we only consider universal quantification. Notice that (S,F ∪X) = (S,F ∪X).

Let us denote iX the signature inclusion from (S,F) to (S,F∪X) and i′X the signature inclusion from (S,F)

to (S,F ∪X). We check that M′ |= (∀X)α(ρ) ⇐⇒ M̂′ |= (∀X)ρ.

For the left to right implication, let N be a iX -expansion of M̂′. We define N′ ∈ |ModHNK(S,(F ∪X))|
as follows:

• N′s = M′s, for any sort s ∈ S;

• N′σ(x1, ..,xn) = M′σ(x1, ..,xn), for any σ ∈ Fs1..sn→s and any xi ∈ N′si
;

• for any x ∈ Xs, there exists a ∈Ms such that Nx = a. Then M′x is interpreted as the function a.

Notice that with this definition N′ is an i′X -expansion of M′ and therefore N′ |= α(ρ). Since N̂′ = N,

we obtain N |= ρ .

For the right to left implication, let N′ be a i′X -expansion of M′. One can easily check that N̂′ is a

iX -expansion of M̂′ and therefore N̂′ |= ρ, which further implies N′ |= α(ρ).
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0.6 Model-theoretic properties

0.6.1 Signature colimits

Proposition 0.16 The category SignHNK has all small (co)limits.

Proof:

For any set S, since Set has all small limits and colimits, the category B(S) = Cat(
−→
S ,Set) (where

−→
S

is regarded as a discrete category) has small limits and colimits too.

Each function f : S→ S′ determines a functor B( f ) : Cat(
−→
S′ ,Set)→ Cat(

−→
S ,Set) by composition to

the left with
−→
f (i.e. for any function F :

−→
S′ → Set, B( f )(F) =

−→
f ;F and similarly for arrows).

This functor has a left adjoint mapping each F to F ′ such that F ′→s′ =
U
{F→s|

−→
f (s) = s′} and a right

adjoint mapping each F to F ′′ such that F ′′→s′ = Π{F→s|
−→
f (s) = s′}.

Since all right adjoints preserve limits, we can apply the known result of existence of small lim-

its/colimis in a Grothendieck category for the indexed category B : Setop→ Cat. It follows that SignHNK ,

which is exactly the Grothendieck category over B, has small limits and colimits.

To emphasize the construction of limits/colimits in the concrete cases, we describe the way the pushouts

of HNK signatures are built.

Let ϕ1 : (S,F)→ (S1,F1) and ϕ1 : (S,F)→ (S1,F1) be two HNK signature morphisms. We define a

signature (S′,F ′) and two signature morphisms θi : (Si,Fi)→ (S′,F ′) that will close the span forming a

pushout.

We obtain the sort S′ with the following pushout in Set:

S
ϕsort

1 //

ϕsort
2

��

S1

θsort
1

��
S2

θsort
2 // S′

The set S′ is therefore defined as S1
U

S2/(ϕ1(s),ϕ2(s))s∈S .

By considering the extensions of the signature morphisms to types, we obtain a commutative square

that is not a pushout (because
−→
S′ contains types like s1→ s2, with si ∈ Si).

−→
S

ϕ
type
1 //

ϕ
type
2

��

−→
S1

θ
type
1

��−→
S2

θ
type
2 // −→S′

Let us denote S′′ the pushout of
−→
S1

ϕ
type
1← −→S

ϕ
type
2→ −→S2 in Set and notice that it is a subset of

−→
S′ .

We only have to define F ′. For any type s′ ∈
−→
S′ , if s′ is not in S′′ then F ′s′ = /0, otherwise there exists

s1 ∈
−→
S1 or s2 ∈

−→
S2 or the both of them such that θi(si) = s′. If only one of them exists, F ′s′ = (Fi)si ; if both

of them exist, F ′s′ = (F1)s1

U
(F2)s2/

U
s∈−→S ,ϕtype(s)=s′ (ϕ

op
1 (σ),ϕop

2 (σ))σ∈Fs
.

Routine calculation show that we obtained indeed a signature pushout.
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0.6.2 Model amalgamation

Definition 9 In any institution, a commuting square of signatures

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

is an amalgamation square if and only if for each Σ1-model M1 and each Σ2-model M2 such that

M1 �ϕ1= M2 �ϕ2 , there exists a unique Σ′-model M′, called the amalgamation of M1 and M2 such that

M′ �θi= Mi. If M′ is not unique, we say the square has the weak amalgamation property.

Definition 10 An institution has the model amalgamation property if every pushout of signatures is an

amalgamation square.

Counterexample 2 HNK does not have the strong amalgamation property.

Let us consider the following signature pushout:

({s}, /0) � � //
� _

��

({s,s1}, /0)� _

��
({s,s2}, /0) � � // ({s,s1,s2}, /0)

Let A1 be the following Σ1 = ({s,s1}, /0)-model:

• (A1)s and (A1)s1 are interpreted as arbitrary non-empty sets;

• all the types are interpreted as the empty set.

and let A2 be the following Σ2 = ({s,s2}, /0)-model:

• (A2)s and (A2)s2 are interpreted as sets, such that (A1)s = (A2)s;

• all the types are interpreted as the empty set.

The condition that the models interpret s as the same set and all types built with s as the empty set

implies that the models are the same when reduced to the signature ({s}, /0).

We consider two ({s,s1,s2}, /0)-models, M1 and M2:

• (M1)s = (M2)s = (A1)s = (A2)s;

• (M1)s1 = (M2)s1 = (A1)s1;

• (M1)s2 = (M2)s2 = (A2)s2;

• (M1)s1→s2 = /0;
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• (M2)s1→s2 = [(M2)s1 → (M2)s2 ];

• the other types are interpreted as the empty set.

Notice that Mi �Σi= Ai, for i ∈ {1,2} so the amalgamation of A1 and A2 is not unique.

Proposition 0.17 HNK has the weak amalgamation property.

Proof:

Let us consider the following signature pushout:

(S,F)
ϕ1 //

ϕ2

��

(S1,F1)

θ1
��

(S2,F2)
θ2 // (S′,F ′)

and let M1 be a (S1,F1)-model, M2 a (S2,F2)-model such that M1 �ϕ1= M2 �ϕ2 . We show that there

exists a (S′,F ′)-model M′ such that M′ �θi= Mi.

The model M′ interprets:

• the sorts: for each sort s′ ∈ S′, if there exists a sort s1 ∈ S1 such that θ1(s1) = s′, the set M′s′ will be

defined as (M1)s1 , otherwise it will be defined as (M2)s2 . If the sort s′ is the image of sort s ∈ S, it

makes no difference if we define it as (M1)ϕ1(s) or (M2)ϕ2(s) because the sets are equal.

• the types: for each type s′ ∈
−→
S′ , if s′ is not in the set S′′ defined in the construction of the signature

pushout, M′s′ may be interpreted in any way and we choose to define it as the empty set. Otherwise,

the definition of M′s′ is similar to the one for sorts.

• the constant symbols: for each constant symbol σ′ ∈ F ′, if there exists an constant symbol σ1 ∈ F1

such that θ1(σ1) = σ′, we define M′
σ′ = (M1)σ1 , otherwise it will be defined as (M2)σ2 . The definition

is consistent because of the way we constructed the signature pushout.

It follows easily from the definition of M′ that M′ �θi= Mi.

0.6.3 Initial model for signatures

Counterexample 3 Not all HNK-signatures have an initial model.

Let S = {s} and Fs→s = { f ,g}.
We build the following model, denoted 0:

• 0s = /0;

• 0s→s = {1 /0};

• 0 f = 0g = 1 /0.
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It is obvious that 0 is not the initial model of (S,F) - we cannot define a function from 0 to a model M

with M f 6= Mg such that the morphism condition holds.

Assume that a model M is the initial model of (S,F). Then there exists h : M → 0. Because the

codomain of hs is empty, the set Ms must be empty too. It follows that M f = Mg = 1 /0, which cannot be true

for the initial model of (S,F).

Proposition 0.18 If a signature (S,F) has at least a constant operation symbol of each type, then ModHNK(S,F)

has an initial model.

Proof:

We show that ModFOEQL(φ(S,F)) has an initial model.

Let 0 be the following model:

• 0s is the set of terms of type s, for each type s ∈ −→S ;

• 0σ = σ, for each constant symbol σ ∈ Fs, with s ∈ S;

• 0σ(t) = σ(t), for each constant symbol σ ∈ Fs→s′ and each term t of type s;

• 0applys→s′ (t, t
′) = applys→s′(t, t ′).

Notice that for any f ,g ∈ 0s→s′ , 0 |= (∀x)applys→s′( f ,x) = applys→s′(g,x) because the equality

0applys→s′ ( f ,x)= 0applys→s′ (g,x) is equivalent to the syntactical equality between applys→s′( f ,x) and applys→s′(g,x),

which is false and a term that can be substituted for x always exists.

Let M be a (S,F)-model. We define h : 0→M, hs(t) = Mt for any type s ∈−→S and any term t of type s.

We check that h is a FOEQL-model homomorphism, by structural induction on terms. For the basic

case, let σ∈Fs. Then hs(σ) = Mσ. For the induction step, hs→s′(0applys→s′ (t, t
′)) = hs→s′(applys→s′(t, t ′)) =

Mapplys→s′ (t,t ′) = Mapplys→s′ (Mt ,M′t) = Mapplys→s′ (h(t),h(t ′)).

We check the uniqueness of the morphism h. Assume there exists another morphism h′ : 0→M. We

show that h′(x) = h(x) for any term x by structural induction on terms. If σ ∈ Fs, h′(σ) = (morphism con-

dition for h’)Mσ = h(σ). For the induction step, h′(0applys→s′ (t, t
′)) = Mapplys→s′ (h

′(t),h′(t ′)) =(inductive

hypothesis)Mapplys→s′ (h(t),h(t ′)) = h(0applys→s′ (t, t
′)).

0.6.4 Representable and quasi-representable signature morphisms

The institutional notion of representable signature morphisms is an abstract concept meant to capture the

phenomena of quantification over (sets of) first-order variables. The notion starts from the fact that seman-

tics of quantification in first-order-like logics can be given in terms of signature extensions: M |=(S,F,P)

(∀X)e (M |=(S,F,P) (∃X)e) iff M′ |=(S,F]X ,P) e for each (for some) (S,F ]X ,P)-expansion M′ of M. Thus,

in order to reach first-order quantification institutionally, one needs to define somehow what ”injective

signature morphism that only adds constant symbols” (such as ι : (S,F,P)→ (S,F ]X ,P)) means.
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Definition 11 In an institution I, a signature morphism ϕ : I→ I′ is:

1. quasi-representable[8] if for any Σ′-model A′ the canonical functor determined by the reduct is an

isomorphism of categories between A′/Mod(Σ′) and A′ �ϕ /Mod(Σ). This means that each model

homomorphism h : A′ �ϕ→ B admits a unique expansion h′ : A′→ B′.

2. representable[8] if there exists a Σ-model Mϕ, called the representation of ϕ and an isomorphism

of categories iϕ : Mod(Σ′)→Mϕ/Mod(Σ), such that iϕ; forgetful = Mod(ϕ), where forgetful is the

usual functor mapping each arrow to its codomain.

Fact 0.19 [8] In FOL, each signature extension with constants is representable.

The two concepts are related by the following result:

Fact 0.20 [8] A signature morphism ϕ : Σ→ Σ′ it is representable if and only if is quasi-representable and

Mod(Σ′) has an initial model.

Proposition 0.21 All HNK-signature extensions with constants symbols are quasi-representable.

Proof:

Let ϕ : (S,F)→ (S,F
U

F ′) be a HNK-signature inclusion and let A′ be a (S,F
U

F ′)-model. We denote

A = A′ �ϕ.

We must define an isomorphism of categories between A′/Mod(S,F
U

F ′) and A/Mod(S,F).

Let iA′,(S,F) : A′/Mod(S,F
U

F ′)→ A/Mod(S,F) be the following functor:

• for any object h′ : A′→ B′ of A′/Mod(S,F
U

F ′), we define iA′,(S,F)(h′) = h′ �ϕ,which is an object in

A/Mod(S,F);

• for any arrow g′ : (h1 : A′→ B1)→ (h2 : A′→ B2), we define iA′,(S,F)(g′) = g′ �ϕ, which is an arrow

in the comma category A/Mod(S,F).

Let i′A′,(S,F) : A/Mod(S,F)→ A′/Mod(S,F
U

F ′) be the functor defined as follows:

• for any (S,F)-model homomorphism h : A→ B, we define a (S,F
U

F ′)-model B′ as follows:

– B′ �ϕ= B;

– B′σ = hs(A′σ), for each σ ∈ F ′s .

We denote h′ = i−1
A′,(S,F)(h) : A′ → B′ which is defined by h′s(a) = hs(a), for each a ∈ A′s and each

s ∈ −→S . Notice that h′ is a model homomorphism between A′ and B′ by using that h is a model

homomorphism and the definition of the model B′ on the constant symbols in F’.
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• for any arrow g : (h1 : A→ B1)→ (h2 : A→ B2), we define g′ : (h′1 : A′ → B′1)→ (h′2 : A′ → B′2)

by g′s(b) = gs(b), for any b ∈ (B′1)s. It suffices to prove the homomorphism condition for constant

symbols in F ′: g′((B′1)σ) = g′(h′1(A
′
σ)) = g(h1(A′σ)) = h2(A′σ) = h′2(A

′
σ) = (B′2)σ, for any σ ∈ F ′→s.

We show that g′ is indeed an arrow in the comma category: (h′1;g′)s(a)= g′s((h
′
1)s(a))= g′s((h1)s(a))=

gs((h1)s(a)) = (h2)s(a) = (h′2)s(a), for any a ∈ A′s.

It is easy to check that iA′,(S,F) is an isomorphism of categories.

Remark 6 If (S,F
U

F ′) has an initial model, then ϕ : (S,F)→ (S,F
U

F ′) is representable.

0.6.5 Substitutions

Given a FOL signature (S,F,P) and two sets of new constants, called first order variables X and Y , a

first order (S,F,P)-substitution from X to Y consists of a mapping ψ : X → TF(Y ) of the variables X with

F-terms over Y .

On the semantics side, each (S,F,P)-substitution ψ : X → TF(Y ) determines a functor

Mod(ψ) : Mod(S,F ]Y,P)→Mod(S,F ]X ,P)

defined by

- Mod(ψ)(M)x = Mx for each sort s ∈ S, or operation symbol x ∈ F , or relation symbol x ∈ P, and

- Mod(ψ)(M)x = Mψ(x), i.e. the evaluation of the term ψ(x) in M, for each x ∈ X .

On the syntax side, ψ determines a sentence translation function

Sen(ψ) : Sen(S,F ]X ,P)→ Sen(S,F ]Y,P)

which in essence replaces all symbols from X with the corresponding (F ]Y )-terms according to ψ. This

can be formally defined as follows:

- Sen(ψ)(t = t ′) is defined as ψ(t) = ψ(t ′) for each (S,F ]X ,P)-equation t = t ′, where ψ : TF(X)→
TF(Y ) is the unique extension of ψ to an F-morphism (ψ is replacing variables x ∈ X with ψ(x) in each

F ∪X-term t).

- Sen(ψ)(π(t1, . . . , tn)) is defined as π(ψ(t1), . . . ,ψ(tn)) for each (S,F]X ,P)-relational atom π(t1, . . . , tn).

- Sen(ψ)(ρ1∧ρ2) is defined as Sen(ψ)(ρ1)∧Sen(ψ)(ρ2) for each conjunction ρ1∧ρ2 of (S,F]X ,P)-

sentences, and similarly for the case of any other logical connectives.

- Sen(ψ)((∀Z)ρ) is defined as (∀Z)Sen(ψZ)(ρ) for each (S,F ]X ]Z,P)-sentence ρ, where ψZ is the

trivial extension of ψ to an (S,F ]Z,P)-substitution.

Note that we have extended the notations used for the models functor Mod and for the sentence func-

tor Sen from the signatures to the first order substitutions. This notational extension is justified by the

satisfaction condition given by the Proposition 0.22 below.

Proposition 0.22 [10] For each FOL-signature (S,F,P) and each (S,F,P)-substitution ψ : X → TF(Y ),

Mod(ψ)(M) |= ρ if and only if M |= Sen(ψ)(ρ)
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for each (S,F ]Y,P)-model M and each (S,F ]X ,P)-sentence ρ.

The satisfaction condition property expressed in Proposition 0.22 permits the definition of a general

concept of substitution by abstracting

• FOL signatures (S,F,P) to signatures S in arbitrary institutions, and

• sets of first order variables X for (S,F,P) to signature morphisms Σ→ Σ1.

Definition 12 In an institution I, given a signature Σ and two signature morphisms χ1 : Σ → Σ1 and

χ2 : Σ→ Σ2, a general Σ-substitution [10] ψ : χ1 → χ2 is a pair (Mod(ψ),Sen(ψ)), where Mod(ψ) :

Mod(Σ2)→ Mod(Σ1) is a functor and Sen(ψ) : Sen(Σ1)→ Sen(Σ2) is a function, both preserving Σ i.e.

the following diagrams commute:

Sen(Σ1)
Sen(ψ) // Sen(Σ2)

Sen(Σ)
Sen(χ1)

eeJJJJJJJJJ Sen(χ2)

99ttttttttt

Mod(Σ1)

Mod(χ1) %%LLLLLLLLLL
Mod(Σ2)

Mod(ψ)oo

Mod(χ2)yyrrrrrrrrrr

Mod(Σ)

and the following satisfaction condition for substitutions holds:

Mod(ψ)(M) |= e ⇐⇒ M |= Sen(ψ)(e)

for each Σ2-model M and each Σ1-sentence e.

Proposition 0.23 Let ϕ1 : (S,F)→ (S∪ S1,F ∪F1) and ϕ2 : (S,F)→ (S∪ S2,F ∪F2) be two signature

inclusions in HNK. A mapping ψst : S1→
−−−→
S∪S2 and a family of functions {ψop

s : (F1)s→ (TF∪F2)ψtype(s)|s∈
−−−→
S∪S1} determines a substitution ψ : ϕ1→ ϕ2.

Proof:

We can extend the domain of ψst to S∪ S1 by defining ψst(s) = s, for any s ∈ S and similarly, the

domain of ψ
op
s to F ∪F1 by defining ψ

op
s (σ) = σ, for any constant symbol σ ∈ Fs.

1. The function Sen

Let us define a function ψ : TF∪F1 → TF∪F2 , by induction on the structure of terms:

• ψ(σ) = ψop(σ), for any constant symbol σ ∈ F ∪F1;

• ψ(t(t ′)) = ψ(t)(ψ(t ′)).
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By extending this function to sentences we obtain a function Sen(ψ) : Sen(Σ1)→ Sen(Σ2). Notice

that Sen(ψ)((∀X)e) = (∀Xψ)ψ(e), where any variable from X of sort s becomes a variable in Xψ of

sort ψ(s).

Lemma 0.24 Sen(ψ) preserves (S,F).

Proof of lemma:

Obvious, because Sen(ϕ2)(e) = e = Sen(ψ)(Sen(ϕ1)(e)), for any (S,F)-sentence e.

2. The functor Mod

Let M′ be an (S∪S2,F ∪F2)-model. We denote Mod(ψ)(M′) = M, where we define:

• Ms = M′
ψtype(s), for any type s ∈ −−−→S∪S1 - notice that this implies Ms = M′s for any type s ∈ −→S

and also that Ms→s′ = M′
ψ(s)→ψ(s′) ⊆ [M′

ψ(s)→M′
ψ(s′)] = [Ms→M′s′ ], so M interprets the types

correctly ;

• Mσ = M′
ψ

op
s (σ), for any constant symbol σ∈ (F∪F1)s - the definition is correct because M′

ψ
op
s (σ)

is an element of M′
ψ(s) = Ms.

Let h′ : M′→ N′ be a (S∪S2,F ∪F2)-model homomorphism. We denote Mod(ψ)(h′) = h : M→ N,

where hs(x) = h′
ψ(s)(x).

Let us check that h is indeed a model homomorphism.

Let σ ∈ (F ∪F1)s. Then hs(Mσ) = h′
ψ(s)(M

′
ψ(σ)) =(because h′ is a (S∪S2,F ∪F2)-model homomor-

phism) N′
ψ(σ) = Nσ.

For any type s→ s′ ∈−−−→S∪S1, any f ∈Ms→s′ and any x∈Ms, hs→s′( f )(hs(x))= h′
ψ(s)→ψ(s′)( f )(h′

ψ(s)(x))=

h′
ψ(s′)( f (x)) = hs′( f (x)).

Lemma 0.25 Mod(ψ) preserves (S,F).

Proof of lemma:

Let M′ be a (S∪S2,F ∪F2)-model. We check that M �ϕ1= M′ �ϕ2 .

For any type s ∈ −→S , (M �ϕ1)s = Ms = M′
ψ(s) =(because s ∈ S) M′s = (M′ �ϕ2)s.

For any constant symbol σ ∈ Fs, (M �ϕ1)σ = Mσ = M′
ψ(σ) =(because σ ∈ F) M′σ = (M′ �ϕ2)σ.

Let h′ : M′→ N′ be a (S∪S2,F ∪F2)-model homomorphism. We check that h �ϕ1= h′ �ϕ2 . The first

part of the proof ensures us that they have the same domain and same codomain.

For any type s ∈ −→S and any x ∈Ms, (h �ϕ1)s(x) = hs(x) = h′s(x) = (h′ �ϕ2)s(x).

26



3. The satisfaction condition for substitutions

Proposition 0.26 We prove that for any model M′ ∈ |Mod(S∪ S2,F ∪F2)| and any sentence e ∈
Sen(S∪S1,F ∪F1), M′ |= Sen(ψ)(e) ⇐⇒ Mod(ψ)(M′) |= e.

Proof:

We begin with the following statement, that can be easily proved by induction on the structure of

terms: for any (S∪S1,F ∪F1)-term t and any (S∪S2,F ∪F2)-model M′, (Mod(ψ)(M′))t = M′
ψ(t).

The proof for the satisfaction condition is then made by induction on the structure of sentence e. We

denote (Mod(ψ)(M′)) = M.

For the basic case, let e = (t = t ′). Then M |= t = t ′ ⇐⇒ Mt = Mt ′ ⇐⇒ M′
ψ(t) = M′

ψ(t ′) ⇐⇒ M′ |=
ψ(t) = ψ(t ′).

For the general case, the only non-trivial subcase is for universal quantification, for which we notice

that the iX -expansions of M are in bijective correspondence with the iXψ-expansions of M′ .

(S∪S1,F ∪F1)
ψ //

� _

iX
��

(S∪S2,F ∪F2)� _

iXψ

��
(S∪S1,F ∪F1∪X)

ψX // (S∪S2,F ∪F2∪Xψ)

This completes the proof of Proposition 0.23.

0.6.6 Filtered products

Filtered products in institutions.

Definition 13 A filter F over a set I is a set F ⊆ P (I ) such that

• I ∈ F;

• X ∩Y ∈ F if X and Y are in F;

• Y ∈ F if X ⊆ Y and X ∈ F.

A filter F is called ultrafilter when X ∈ F ⇐⇒ I \X ∈ F , for any X ∈ P (I ).

Definition 14 Let F be a filter over I and let {Ai}i∈I be a family of objects in a category C with small

products. Let AF : F → C be the functor mapping each set J ∈ F to Πi∈JAi and each inclusion J ⊆ J′ to

the canonical projection pJ′J : Πi∈J′Ai→ Πi∈JAi. A filtered product of {Ai}i∈I modulo F [8] is a colimit

µ : AF →ΠFAi of the functor AF .
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If F is an ultrafilter, a filtered product modulo F is called ultrafilter.

Proposition 0.27 For any HNK-signature (S,F), ModHNK(S,F) has direct products.

Proof:

Let {Ai}i∈I be a family of (S,F)-models and let us consider the institution comorphism (φ,α,β) :

HNK→ FOEQLp defined in section 0.4. We check that the product P of the family {Ãi}i∈I in the category

ModFOEQL(
−→
S ,
−→
F ) satisfies the axioms in Γ(S,F). If so, then Πi∈IAi = P.

Let f ,g ∈ Ps→s′ such that (∀x ∈ Ps)Papplys→s′ ( f ,x) = Papplys→s′ (g,x). If Ps = /0, then Ps→s′ has only

one element and therefore f = g. If Ps 6= /0, (∀x ∈ Ps)Papplys→s′ ( f ,x) = Papplys→s′ (g,x) ⇐⇒ (∀i ∈ I)(∀x ∈
(Ãi)s)(Ãi)applys→s′ ( fi,x) = (Ãi)applys→s′ (gi,x) ⇐⇒ (∀i ∈ I) fi = gi ⇐⇒ f = g.

Proposition 0.28 For any HNK-signature (S,F), any family of (S,F)-models (Ai)i∈I and any ultrafilter

U over I, the ultraproduct ΠU Ai always exists.

Proof:

Let AU : U →ModHNK(S,F), AU(J) = ΠJAi and AU(J ⊂ J′) = pJ′J : ΠJ′Ai→ΠJAi. We want to show

that the functor AU has colimits.

Let us consider the institution comorphism (φ,α,β) : HNK → FOEQLp defined in section 0.4. We

know that the family Bi = Ãii∈I has an ultraproduct B in the category Mod(
−→
S ,
−→
F ). Moreover, since all the

sentences in Γ(S,F) are preserved by ultraproducts (because FOEQL is a Łoś institution), B is a φ(S,F)-

model. It follows that AU has a colimit A = B, since the direct products ΠJAi are equal to ΠJBi, the functor

BU has colimits and β(S,F) is an equivalence of categories.

Directed colimits of HNK models

Let (S,F) be a HNK signature, (I,≤) a directed set and A : (I,≤)→ ModHNK(S,F) be a functor. Let

({µi}i∈I,B) be the directed colimit of A; β̃(S,F);U where U is the forgetful functor from FOEQL presen-

tations to signatures. When B |= Γ(S,F), because β(S,F) is an equivalence of categories, the colimit of A is

({µi}i∈I,B).

Let us denote hi, j = (A; β̃(S,F))(i≤ j) and Bi = (A; β̃(S,F))(i). We recall the way the directed colimit B

is defined in ModFOEQL(
−→
S ,
−→
F ):

• for each s ∈ −→S , the set Bs =
U

i∈I(Bi
s)/≡s , where for any i, j ∈ I, any a ∈ Bi

s, b ∈ B j
s , a ≡s b if and

only if there exists k ∈ I such that i, j≤ k and hi,k(a) = h j,k(b). We denote a/≡ the equivalence class

of an element a.

• for any constant symbol σ ∈ Fs, Bσ = Bi
σ/≡
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• for any types s,s′ ∈−→S , Bapplys→s′ ( f /≡,x/≡) = (Bk
applys→s′

(hi,k( f ),h j,k(x))/≡ if f ∈ Bi
s→s′ , x ∈ B j

s and

i, j ≤ k.

Counterexample 4 Directed colimits of HNK-models do not always exist.

Proof:

Let (S,F) be a HNK-signature where S = {s} and F→x = { f ,g} for all x∈−→S , and let I = (N,≤) which

is a directed set.

For any i ∈ N, we define Ai as the following model:

• Ai
s = {n ∈ N|n≥ i};

• Ai
s→s = { f i,gi}, where f i(x) = x for any x ∈ Ai

s and

gi(x) =

{
x−1 if x > i

i if x = i

• Ai
f = f i, Ai

g = gi.

For any i ∈ N, we define ai,i+1 : Ai→ Ai+1:

•

ai,i+1
s (x) =

{
x if x > i

i+1 if x = i

• ai,i+1
s→s ( f i) = f i+1 and ai,i+1

s→s (gi) = gi+1.

We check that ai,i+1 is a model homomorphism.

For any x ∈ Ai
s, ai,i+1( f i)ai,i+1(x) = f i+1(ai,i+1(x)) = ai,i+1(x) = ai,i+1( f i(x)), so the homomorphism

condition holds for f i.

We check that ai,i+1(gi)ai,i+1(i) = ai,i+1(gi(i)). On one hand, ai,i+1(gi)ai,i+1(i) = gi+1(i + 1) = i + 1

and on the other hand ai,i+1(gi(i)) = ai,i+1(i) = i+1.

We check that ai,i+1(gi)ai,i+1(i+1) = ai,i+1(gi(i+1)). On one hand, ai,i+1(gi)ai,i+1(i+1) = gi+1(i+

1) = i+1 and on the other hand ai,i+1(gi(i+1)) = ai,i+1(i) = i+1.

We check that ai,i+1(gi)ai,i+1(x)= ai,i+1(gi(x)) for any x > i+1. On one hand, ai,i+1(gi)ai,i+1(x)=(because

x > i)gi+1(x)=(because x > i)x−1 and on the other hand ai,i+1(gi(x))=(because x > i)ai,i+1(x−1)=(because

x > i+1 and therefore x−1 > i)x−1.

It follows that ai,i+1 is indeed a model homomorphism.

With the notations above, let B be the directed colimit of A; β̃(S,F);U . Notice that Bs = {∗} because for

any i, j ∈ N there exists k ≥ i, j such that ai,k(i) = k = a j,k( j) and also notice that Bs→s = { fB,gB} where

fB = f i/≡, with i ∈ N and gB = gi/≡, with i ∈ N, because for any i, j ∈ N there exists no k ≥ i, j such that

f k = gk. But Bapplys→s( fB,∗) = ∗= Bapplys→s(gB,∗) which means B is not extensional.
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We prove that there is no other model that is the colimit of this diagram, in two steps: first we show

that B/Γ(S,F) is not the colimit (which implies the colimit cannot interpret the sort s as a singleton) then we

show that the colimit cannot have more than one element in the carrier of sort s.

Let us denote C = B/Γ(S,F) :

• Cs = {∗};

• Cs→s = {1∗}, and Capplys→s(1∗,∗) = ∗;

• C f = Cg = 1∗,

and let us denote for any i ∈ N µi : Bi→C, µi(x) = ∗ and for any x ∈ Bi
s and µi( f i) = µi(gi) = 1∗. It is

easy to see that ({µi}i∈N,C) is a co-cone for A; β̃(S,F).

Let D be the following φ(S,F)-model:

• Ds = {∗,y};

• Ds→s = { fD,gD}, and Dapplys→s( fD,∗)= ∗, Dapplys→s( fD,y)= y, Dapplys→s(gD,∗)= ∗, Dapplys→s(gD,y)=

∗.

• D f = fD, Dg = gD

and let us define for any i ∈ N γi : Bi→ D, γi(x) = ∗, γi( f i) = fD, γi( f i) = gD.

We show that γi is model homomorphism. First notice that γi(Bi
f ) = D f and γi(Bi

g) = Dg.

For any x ∈ Bi
s, γi(Bi

applys→s
( f i,x)) = ∗ and Dapplys→s(γi( f i),γi(x)) = Dapplys→s( fD,∗) = ∗.

For any x ∈ Bi
s, γi(Bi

applys→s
(gi,x)) = ∗ and Dapplys→s(γi(gi),γi(x)) = Dapplys→s(gD,∗) = ∗.

Therefore γi is a model homomorphism.

We show that ({γi}i∈N,D) is a co-cone for A; β̃(S,F).

For any i < j ∈ N and any x ∈ Bi
s, γ j(hi, j(x)) = ∗= γi(x).

We also have that γ j(hi, j( f i)) = fD = γi( f i) and γ j(hi, j(gi)) = gD = γi(gi).

It follows that ({γi}i∈N,D) is a co-cone for A; β̃(S,F).

But then we cannot define a model homomorphism δ : C→D, because D f = δ(C f ) 6= Dg = δ(Cg) and

δ(C f ) = δ(Cg) = δ(1∗).

We show that no model that interprets the sort s as a set with more than one element can be the directed

colimit of A; β̃(S,F).

Assume there exists such a model K such that ({µi}i∈N,K) is the directed colimit of A; β̃(S,F).

Notice that:

• for any i ∈ N and any x,y ∈ Bi
s, µi(x) = µi(y). For proving that, let j > x,y and then µi(x) =

µ j(hi, j(x)) = µ j( j) = µ j(hi, j(y)) = µi(y).

• for any i ≤ j ∈ N, the functions µi and µ j return the same constant value. Let x > i, j and then

µi(x) = µ j(hi, j(x)) = µ j(x).
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This implies that the set K′s = {y ∈Ks|y 6= µi(x)}, where i and x are arbitrarily chosen, is not empty and

independent of choice of i and x.

Let us consider the following model, L:

• Ls = Ks
U
{y|y ∈ K′s};

• Ls→s = { fL,gL};

• for any x ∈ Ks, Lapplys→s( fL,x) = K f (x) and Lapplys→s( fL,x) = K f (x);

• for any x ∈ Ks, Lapplys→s(gL,x) = Kg(x) and Lapplys→s(gL,x) = Kg(x).

and we define for any i ∈N and any x ∈ Bi
s, γi(x) = µi(x), γi( f i) = fL, γi(gi) = gL. It is easy to see that

({γi}i∈N,L) is a co-cone of A; β̃(S,F).

Let us consider δ1,δ2 : K→ L:

• δ1(µi(x)) = µi(x) and δ2(µi(x)) = µi(x);

• for any x ∈ K′s, δ1(x) = x and δ2(x) = x;

• δi( fK) = fL and δi(gK) = gL for i either 1 or 2.

We have defined thus two model homomorphisms from K to L such that µi;δi = γi, which contradicts

the assumption that K is the colimit.

Proposition 0.29 If all hi, j are injective, then B is extensional.

Proof: Let f /≡,g/≡ ∈ Bs→s′ such that Bapplys→s( f /≡,x/≡) = Bapplys→s(g/≡,x/≡) for any x/≡ ∈ Bs.

We want to show that f /≡ = g/≡.

Without loss of generality, we may assume that f and g are from the same algebra Bi. Let y ∈ Bi
s.

We know by hypothesis that Bapplys→s′ ( f /≡,y/≡) = Bapplys→s′ (g/≡,y/≡). By using the definition of the

interpretation of Bapplys→s′ this means that Bi
applys→s′

( f ,y) ≡ Bi
applys→s′

(g,y) which with the definition of

≡ further implies there exists k ∈ |I| such that hi,k(Bi
applys→s′

( f ,y)) = hi,k(Bi
applys→s′

(g,y)). By using the

injectivity of hi,k we get Bi
applys→s′

( f ,y) = Bi
applys→s′

(g,y). Because y is arbitrarily chosen, we may apply

the extensionality axiom for the algebra Bi to conclude that f = g.

Corollary 0.30 HNK models have directed colimits of ”injective” diagrams.

0.6.7 Elementary diagrams

An institution I = (Sign,Sen,Mod, |=) has elementary diagrams [9] if and only if for each signature Σ and

each Σ-model M, there exists a signature morphism ιΣ(M) : Σ→ ΣM (called the elementary extension of

Σ via M), ’functorial’ in Σ and M, and a set EM of ΣM-sentences(called the elementary diagram of the
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model M) such that Mod(ΣM,EM) and the comma category M/Mod(Σ) are naturally isomorphic i.e. the

following diagram commutes by the isomorphism iΣ,M ’natural’ in Σ and M.

Mod(ΣM,EM)

Mod(ιΣ(M)) ))TTTTTTTTTTTTTTTT

iΣ,M // M/Mod(Σ)

f orget f ul
��

Mod(Σ)

Functoriality of ι means that for each signature morphism ϕ : Σ→ Σ′ and each model homomorphism

h : M→M′ �ϕ there exists a presentation morphism iϕ(h) : (ΣM,EM)→ (Σ′M′ ,EM′) such that

Σ
ϕ //

ιΣ(M)
��

Σ′

ι
Σ′ (M

′)
��

ΣM iϕ(h)
// Σ′M′

commutes and ιϕ(h); ιϕ′(h′) = ιϕ;ϕ′(h;h′ �ϕ) and ι1Σ
(M) = 1ΣM .

Naturality of i means that for each signature morphism ϕ : Σ→ Σ′ and each Σ-model homomorphism

h : M→M′ �ϕ the following diagram commutes:

Mod(Σ′M′ ,E
′
M)

i
Σ′,M′ //

Mod(iϕ(h))

��

M′/Mod(Σ′)

h;( )�ϕ

��
Mod(ΣM,EM)

iΣ,M

// M/Mod(Σ)

Let Σ = (S,F) be a HNK signature and let M be an (S,F)-model.

We define ΣM = (S,FM), where (FM)→s = F→s∪Ms(i.e. the elements of M are added to the signature

as constant symbols). Let ισ(M) : Σ→ ΣM be the signature inclusion.

Let MM be the ΣM-model such that (MM) �ιΣ(M)= M and that interprets all the elements of M as

themselves: (MM)m = m, for any m ∈M. Then we choose EM = {t = t ′|MM |= t = t ′}.

Proposition 0.31 EM is the elementary diagram of the model M.

Proof:

We show that there exists an isomorphism of categories between Mod(ΣM,EM) and M/Mod(Σ). We

denote iΣ,M : Mod(ΣM,EM)→M/Mod(Σ) and i−1(Σ,M) the opposite functor.

The definition of iΣ,M

• on objects:

Let A be a ΣM-model such that A |= EM. We denote iΣ,M(A) = hA : M→ A �Σ, which is defined by

(hA)s(m) = Am, for any m ∈Ms.
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Let us check that hA is indeed a (S,F)-model homomorphism.

Let σ∈ Fs. Notice that MM |= σ = Mσ, because (MM)σ = Mσ = (MM)Mσ
. Because A |= EM, we have

that A |= σ = Mσ, so (A �Σ)σ = Aσ = AMσ
= hA(Mσ).

For any f ∈Ms→s′ and any x∈Ms, we must have that hA( f (x)) = hA( f )(hA(x)). By using the defini-

tion of hA, this is equivalent to A f (x) = A f (Ax), which is true from the definition of the interpretation

of ΣM-terms.

• on arrows:

Let g′ : A→ B be a ΣM-model homomorphism. We denote iΣ,M(g′) = g : (hA : M→ A �Σ)→ (hB :

M→B �σ). g must be a Σ-model homomorphism between A �Σ and B �Σ, so we may choose g = g′ �Σ.

We check that g is an arrow in the comma category, i.e. hA;g = hB.

Let m ∈ Ms. Then g(hA(m)) = g(Am) = g′(Am) = Bm (by using the ΣM-model homomorphism

condition for g′)= hB(m).

The definition of i−1
Σ,M

• on objects:

Let h : M→ A be a (S,F)-model homomorphism. We denote i−1
Σ,M(h) = Ah, which is the following

(S,FM)-model:

– (Ah) �Σ= A;

– (Ah)m = hs(m), for any m ∈Ms.

We check that Ah |= EM.

We show that (Ah)t = h((MM)t), for any term t, by structural induction on terms. If t = σ with σ∈Fs,

(Ah)σ = Aσ = h(Mσ) = h((MM)σ). If t = m with m∈Ms, (Ah)m = h(m) = h((MM)m). If t = t1(t2) and

the induction hypothesis holds for t1 and t2, (Ah)t1(t2) = (Ah)t1((Ah)t2) = h((MM)t1)(h((MM)t2)) =

h((MM)t1((MM)t2)) = h((MM)t1(t2)).

Therefore, if MM |= t = t ′, we have that (MM)t = (MM)t ′ , so h((MM)t) = h((MM)t ′) which means

(Ah)t = (Ah)t ′ , so Ah |= t = t ′.

• on arrows:

Let g : (h1 : M→ A)→ (h2 : M→ B). We denote i−1(g) = g′ : Ah1 → Bh2 the function defined by

g′s(a) = gs(a) for any a ∈ (Ah1)s.

We check that g′ is a ΣM-model homomorphism.

By using that g is a Σ-model homomorphism, we only have to show that g′((Ah1)m) = (Bh2)m, for

any m ∈M. But g′((Ah1)m) = g′(h1(m)) = h2(m) = (Bh2)m.
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It is easy to see that iΣ,M is an isomorphism of categories.

”Functoriality” of ι

Let ϕ : (S,F)→ (S′,F ′) be a signature morphism. Let M′ be a (S′,F ′)-model and f : M → M′ �ϕ a

(S,F)-model homomorphism.

We define iϕ( f ) : ((S,FM),EM)→ ((S′,F ′M”,EM′)) such that the following diagram commutes

(S,F)
ϕ //

ιΣ(M)
��

(S′,F ′)

ι
Σ′ (M

′)
��

(S,FM)
iϕ( f )

// (S′,F ′M′)

For each type s ∈−→S , let iϕ( f )(s) = ϕ(s). For each constant symbol σ ∈ Fs, we define iϕ( f )(σ) = ϕ(σ)

and for each m ∈Ms, iϕ( f )(m) = f (m). Notice that f (m) ∈ (M′ �ϕ)s = M′ϕ(s), so iϕ( f )(m) is a constant

symbol of type ϕ(s) = iϕ( f )(s) and therefore iϕ( f ) is indeed a HNK-signature morphism.

We only have to check that iϕ( f ) is a presentation morphism. We will prove that MM |= t = t ′ implies

M′M′ |= SenHNK(iϕ( f ))(t = t ′). According to the satisfaction condition for HNK, this is equivalent to

MM |= t = t ′ implies N |= t = t ′, where we denote N = (M′M′) �iϕ( f ). We notice that Nt = f ((MM)t), for any

term t, by structural induction on terms. If σ∈ F→s, Nσ = (M′M′)iϕ( f )(σ) = (M′M′)ϕ(σ) = M′
ϕ(σ) = (M′ �ϕ)σ =

f (Mσ) = f ((MM)σ). If m ∈Ms, Nm = (M′M′)iϕ( f )(m) = (M′M′) f (m) = f (m) = f ((MM)m). If t = t1(t2) and

the inductive hypothesis holds for t1 and t2, Nt(t ′) = Nt(N′t ) = f ((MM)t)( f ((MM)′t)) = f ((MM)t((MM)′t)) =

f ((MM)t(t ′)).

Therefore, if MM |= t = t ′, we have that (MM)t = (MM)t ′ , so f ((MM)t) = f ((MM)t ′) which means

Nt = Nt ′ and then N |= t = t ′.

”Naturality” of i

Let ϕ : (S,F)→ (S′,F ′) be a signature morphism. Let M′ be a (S′,F ′)-model and f : M → M′ �ϕ a

(S,F)-model homomorphism.

We must check that the following diagram commutes:

Mod((S′,F ′M′),E
′
M)

i
Σ′,M′ //

Mod(iϕ( f ))

��

M′/Mod(S′,F ′)

f ;( )�ϕ

��
Mod((S,FM),EM)

iΣ,M

// M/Mod(S,F)

Let A′ be a (ΣM,EM)-model. We have to check that f ;(hA) �Σ= h(A�iϕ( f )).

Notice that f ;(hA) �Σ: M→ (A′ �ι
Σ′ (M′)) �ϕ and h(A�iϕ( f )) : M→ (A′ �iϕ( f )) �ιΣ(M). Because of the func-

toriality condition, we have that the morphisms have the same domain and the same codomain.

Let m ∈Ms. ( f ;(hA) �Σ)(m) = (hA) �Σ ( f (m)) = A f (m). h(A�iϕ( f ))(m) = (A �iϕ( f ))m = Aiϕ( f )(m) = A f (m).

Let g : A→ B be a (ΣM,EM)-model homomorphism.
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On one hand, iΣ,M(g) = g �ι
Σ′ (M′) and f /Mod(ϕ)(g �ι

Σ′ (M′)) = g �ι
Σ′ (M′)�ϕ.

On the other hand, iΣ,M(g �iϕ( f )) = g �iϕ( f )�ιΣ(M).

By using the functoriality condition we obtain that they are the same.

0.6.8 Basic sentences

A set of sentences E ∈ Sen(Σ) is called basic [8] if there exists a Σ-model ME such that, for all Σ-models

M, M |= E iff there exists a homomorphism ME → M. Basic sentences tend to be the starting building

blocks for sentences in concrete institutions and are usually (with a supplementary requirement that the

homomorphism is unique) the best approximation for atomic formulas.

Counterexample 5 In HNK, not all atomic sentences are basic.

Let us consider the following HNK signature:

• S = {s,s′};

• F = { f : s→ s; g,h : (s→ s)→ s′}.

We show that the sentence g( f ) = h( f ) is not basic.

Let us consider the following HNK-model:

• Ms = /0;

• Ms′ = {a};

• Ms→s = {1 /0}

• M(s→s)→s′ = {F}, where F(1 /0) = a;

• M f = 1 /0, Mg = Mh = F.

Notice that M |= g( f ) = h( f ) and also that there exist models N such that N |= g( f ) = h( f ) and no

model homomorphism from M to N can be defined (any models N with Ng 6= Nh).

Assume that g( f ) = h( f ) is basic and let Me be the model for which N |= g( f ) = h( f ) ⇐⇒ there

exists a model homomorphism ϕN : Me→ N.

Because M |= g( f ) = h( f ), there exists a model homomorphism ϕM : Me → M. Since the codomain

of (ϕM)s is empty, (Me)s must be empty too. It follows that (Me)s→s is {1 /0} (it cannot be the empty set

because f has an interpretation in Me).

The first case further implies (Me) f = 1 /0. We know that Me |= e, so (Me)g((Me) f ) = (Me)h((Me) f ). It

follows that (Me)g and (Me)h are equal, since they return the same value when applied to each element in

their domain, and this cannot be true for Me.
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0.6.9 Sentences preserved by ultraproducts. Compactness

Definition 15 Given a class of filters F , a Σ-sentence e is

• preserved by F -filtered factors if ΠFAi |= e =⇒ {i ∈ I|Ai |= e} ∈ F, for any F ∈ F

• preserved by F -filtered products if {i ∈ I|Ai |= e} ∈ F =⇒ ΠFAi |= e, for any F ∈ F

If F is the class of all ultrafilters, we say that the sentence e is preserved by ultrafactors, respectively

ultraproducts.

Definition 16 A sentence is Łoś when it is preserved by all ultrafactors and all ultraproducts.

Definition 17 An institution is Łoś if and only if it has all ultraproducts of models and all its sentences

are Łoś sentences.

Definition 18 [6] An institution comorphism (φ,α,β) : I→ I′ is

• liberal if βΣ has a left adjoint for any I-signature Σ;

• persistently liberal when the adjunctions between categories of models are persistent.

Proposition 0.32 [6] For each persistently liberal comorphism (φ,α,β) : I→ I′, if I′ is a Łoś institution

then I is also a Łoś institution.

Remark 7 FOEQL is a Łoś institution.

Remark 8 FOEQLp is a Łoś institution.

Proof:

First let us notice that Mod(Σ,E) has all ultraproducts which are precisely those in Mod(Σ), because

E contains sentences which are preserved by ultraproducts. All sentences in FOEQLp are therefore Łoś

sentences, because they are Łoś sentences in FOEQL and the satisfaction relation in FOEQLp coincides

with the one in FOEQL.

Remark 9 The institution comorphism (φ,α,β) : HNK→ FOEQLp defined in section 0.4 is persistently

liberal.

Corollary 0.33 HNK is a Łoś institution.

Proposition 0.34 [6]

Each Łoś institution is (m-)compact.

Corollary 0.35 HNK is compact.
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0.6.10 Craig interpolation

Definition 19 In an institution I = (Sign,Sen,Mod, |=) let us consider the following commuting square of

signature morphisms:

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

If for any sets of sentences E1 ⊆ Sen(σ1) and E2 ⊆ Sen(Σ2) such that θ1(E1) |= θ2(E2) there exists an

interpolant E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and ϕ2(E) |= E2, the square is called Craig interpolation

square.

Definition 20 Let I = (Sign,Sen,Mod, |=) be an institution and let us consider two classes L and R
of signature morphisms. We say that the institution has the Craig (L ,R )-interpolation property if each

pushout square of signature morphisms

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

with ϕ1 ∈ L and ϕ2 ∈ R is a Craig interpolation square.

Proposition 0.36 [6]

In any institution with universal R -quantification for a class R of signature morphisms, any weak

amalgamation square

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

for which ϕ2 is in R is a Craig interpolation square.

Corollary 0.37 HNK has Craig (Sign,Ext)-interpolation, where Ext is the class of all signature exten-

sions with constants.

Proof:

We have to establish that HNK admits universal R -quantification.

Let ϕ : (S,F)→ (S,F∪F ′) be a signature morphism in R and let ρ′ be a (S,F∪F ′)-sentence. We have

to prove that (∀ϕ)ρ′ is semantically equivalent to a Σ-sentence, the problem being when ϕ is an extension

of Σ with an infinite number of symbols.
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Because ρ′ is finitary, there exists a sub-signature (S0,F0) of (S,F ∪F ′) such that (S0,F0) has a finite

number of sorts and constant symbols and ρ′ is a (S0,F0)-sentence.

Then the square below

(S,F)∩ (S0,F0)
ϕ0 //

��

(S0,F0)

��
(S,F)

ϕ // (S,F ∪F ′)

is a weak amalgamation square.This is true because (S∪ S0,F ∪F0) is the push-out of the span of

signature extensions (S,F)← (S,F)∩ (S0,F0)→ (S0,F0), the institution has weak model amalgamation

and the signature inclusion (S0,F0)→ (S,F ∪F ′) is conservative. It is then easy to see that (∀ϕ)ρ′ is

semantically equivalent to (∀ϕ0)ρ′.

Borrowing interpolation

Definition 21 [6]

In an institution I = (Sign,Sen,Mod, |=) let us consider the following commuting square of signature

morphisms:

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

If for any sets of sentences E1 ⊆ Sen(σ1) and E2,Γ2 ⊆ Sen(Σ2) such that θ1(E1)∪ θ2(Γ2) |= θ2(E2)

there exists an interpolant E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and Γ2 ∪ϕ2(E) |= E2, the square is called

Craig-Robinson interpolation square.

Proposition 0.38 [6]

In any institution that has implications and is compact, a commuting square of signature morphisms

is a Craig-Robinson Interpolation square if and only if is a Craig Interpolation square.

Proposition 0.39 [6]

Let I = (Sign,Sen,Mod, |=) be any institution. For each class S ⊆ Sign of signature morphisms, let

S p be the class of presentation morphisms ϕ : (Σ,E)→ (Σ′,E ′) such that ϕ ∈ S . Then the institution

(Pres,Senp,Modp, |=) of the presentations of I has the Craig-Robinson (L p, R p)-interpolation if I has

the Craig−Robinson (L ,R )-interpolation.

Remark 10 By using that FOEQL has Craig (In j,Sign)-interpolation, where In j is the class of signa-

ture morphisms that are injective on sorts and that both FOEQL and FOEQLp are compact and have

implication we conclude that FOEQLp also has Craig (In j,Sign)-interpolation.
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Interpolation property for comorphisms

For a fixed class S ⊆ Sig of signature morphisms, we say that an institution comorphism (φ,α,β) : I→
I′ :

• has the Craig S -left interpolation property when for each signature morphism ϕ1 : Σ→ Σ1 in S , each

set E1 of Σ1 sentences and each set E2 of φ(Σ1)-sentences such that αΣ1(E1) |=′ φ(ϕ1)(E2), there

exists a set of Σ-sentences E such that E1 |= ϕ1(E) and αΣ(E) |=′ E2,

• has the Craig S -right interpolation property when for each signature morphism ϕ2 : Σ→ Σ2 in S ,

each set E1 of φ(Σ)-sentences and each set E2 of Σ2-sentences such that φ(ϕ2)(E1) |=′ αΣ2(E2), there

exists a set of Σ-sentences E such that E1 |=′ αΣ(E) and φ2(E) |= E2.

Lemma 0.40 Let

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

be a Craig interpolation square and let χ : Σ′→ Σ′′ be a conservative signature morphism. Then the

square

Σ
ϕ1 //

ϕ2

��

Σ1

θ1;χ
��

Σ2
θ2;χ //

Σ′′

is still a Craig interpolation square.

Proof:

Let E1 ⊆ Sen(Σ1) and E2 ⊆ Sen(Σ2) such that (θ1;χ)(E1) |= (θ2;χ)(E2). We show that θ1(E1) |=
θ2(E2) and then we obtain the interpolant E by applying the Craig interpolation property for the square

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

Let M′ ∈ |Mod(Σ′)| such that M′ |= θ1(E1). By using the conservativity of χ we get a χ-expansion

M′′ ∈ |Mod(Σ′′)| of M′ and with the satisfaction condition we obtain M′′ |= (θ1;χ)(E1). It follows that

M′′ |= (θ2;χ)(E2) so by using the satisfaction condition again M′ |= θ2(E2).

Definition 22 Let (φ,α,β) : I → I′ be an institution comorphism. We say that (φ,α,β) conservatively

approximates signature pushouts if any signature pushout in I

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′
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is mapped via φ to a commutative square

φ(Σ)
φ(ϕ1) //

φ(ϕ2)
��

φ(Σ1)

φ(θ1)
��

φ(Σ2)
φ(θ2) // φ(Σ′)

such that the unique signature morphism from the pushout of the span φ(Σ2)
φ(ϕ2)← φ(Σ)

φ(ϕ1)→ φ(Σ1) to

φ(Σ′) is conservative.

Remark 11 Each institution comorphism (φ,α,β) such that φ preserves pushouts conservatively approx-

imates pushouts (because each identity in Sign′ is conservative).

Definition 23 [6]

An institution comorphism (φ,α,β) is conservative when for each signature Σ and each Σ-model M

there exists a φ(Σ)-model M′ such that βΣ(M′) = M.

Theorem 0.41 Let (φ,α,β) : I→ I′ be a conservative institution comorphism that conservatively approxi-

mates signature pushouts and let L , R ⊆ Sig be classes of signature morphisms such that I′ has the Craig

(φ(L),φ(R ))-interpolation property.

If (φ,α,β) has the Craig L-left or R -right interpolation property, then I has Craig (L ,R )-interpolation.

Proof:

Let

Σ
ϕ1 //

ϕ2

��

Σ1

θ1
��

Σ2
θ2 //

Σ′

be a pushout of signature morphisms such that φ1 ∈ L and φ2 ∈R and let E1 ⊆ Sen(Σ1), E2 ⊆ Sen(Σ2)

such that θ1(E1) |= θ2(E2).

The latter relation leads to αΣ′(θ1(E1)) |= αΣ′(θ2(E2)) which by the naturality of α further leads to the

interpolation problem φ(θ1)(αΣ1(E1)) |= φ(θ2)(αΣ2(E2)) for the following commutative square of signa-

ture morphisms in I′

φ(Σ)
φ(ϕ1) //

φ(ϕ2)
��

φ(Σ1)

φ(θ1)
��

φ(Σ2)
φ(θ2) // φ(Σ′)

By using the Craig (φ(L),φ(R ))-interpolation property of I′ and lemma 0.40 we get that the square is

a Craig (φ(L),φ(R ))-interpolation square, so we find E0 ⊆ Sen′(φ(Σ)) such that αΣ1(E1) |= φ(ϕ2)(E0) |=
αΣ2(E2).

Let us assume that the institution comorphism has Craig L-left interpolation property. Then we can

find E ⊆ Sen(Σ) such that E1 |= ϕ1(E) and αΣ(E) |= E0. By applying φ(ϕ2) we get that φ(ϕ2)(αΣ(E)) |=
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φ(ϕ2)(E0). By the naturality of α we get αΣ2(ϕ2(E)) |= φ(ϕ2)(E0) |= αΣ2(E2) and by using the conserva-

tivity of the institution comorphism we get ϕ2(E) |= E2.

The case when the institution comorphism has R -right interpolation is similar.

Borrowing interpolation along the institution comorphism from HNK to FOEQLp.

Remark 12 Let φ : Σ → Σ′ be a HNK-signature morphism such that φsort is injective. Then φtype is

injective too.

Let us denote In j the class of HNK signature morphisms that are injective on sorts.

Lemma 0.42 The institution comorphism (φ,α,β) : HNK→ FOEQLp has Craig (In j,Sig)-interpolation

property.

Proof:

Let ϕ1 : (S,F)→ (S1,F1) be a signature morphism from In j and let E1⊆ Sen(S1,F1), E2⊆ Sen(φ(S,F))

such that α(S1,F1)(E1) |= φ(ϕ)(E2).

Let us consider the following pushout of signature morphisms:

φ(S,F)
φ(ϕ1) //

1φ(S,F)

��

φ(S1,F1)

1(φ(S1,F1))

��
φ(S,F)

φ(ϕ1) // φ(S1,F1)

Because FOEQLp has Craig (In j,Sign)-interpolation, we obtain E0⊆ Sen(φ(S,F)) such that α(S1,F1)(E1) |=
φ(ϕ)(E0) and E0 |= E2. We obtain thus E = α

−1
(S,F)(E0).

Remark 13 Because β(S,F) is an equivalence of categories for any HNK signature (S,F), the institution

comorphism HNK→ FOEQLp is conservative.

Corollary 0.43 HNK has Craig (In j,Sign)-interpolation.
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[7] Răzvan Diaconescu. Grothendieck institutions. Applied Categorical Structures, 10(4):383–402,

2002. Preliminary version appeared as IMAR Preprint 2-2000, ISSN 250-3638, February 2000.
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