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GPU-accelerated dynamic programming for join-order
optimization

Andreas Meister®*, Gunter Saake®*

@ Otto-von-Guericke University, Universitdtsplatz 2, 39104 Magdeburg, Sazony-Anhalt,
Germany

Abstract

Relational databases need to select efficient join orders, as inefficient join orders
can increase the query execution time by several orders of magnitude. To select
efficient join orders, relational databases can apply an exhaustive search using
dynamic programming.

Unfortunately, the applicability of sequential dynamic programming variants
is limited to simple queries due to the exhaustive search, complexity, and time
constraints of the optimization. To extend the applicability, different parallel
CPU-based dynamic programming variants were proposed. As GPUs provide
more computational resources than CPUs, we propose to use GPUs to further
extend the applicability of dynamic programming by reducing the optimization
time.

Specifically, in this paper, we discuss and evaluate different parallel GPU-
based dynamic programming variants, based on DPg,z and DPgys. For our
evaluation, we used four different query topologies with an increasing query
size of up to 20 tables. Our evaluation results indicate that specialized GPU-
based dynamic programming variants can significantly reduce the optimization
time for complex queries (e.g. up to 93% for clique queries with 15 tables).
For larger queries with a lower complexity (linear, cyclic, or star), the evaluated
GPU-based dynamic programming variants can provide equivalent optimization
times, providing the option to outsource the join-order optimization to GPUs.

1. Introduction

Relational database management systems (RDBMSs) apply different opti-
mization steps during the query processing to transform declarative queries into
efficient query execution plans (QEPs). As query execution times of equivalent
QEPs can vary by several orders of magnitude based on the join order [8], the
selection of efficient join orders is essential to guarantee an efficient query pro-
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cessing. RDBMSs can apply an exhaustive search using dynamic programming

to select efficient join orders.

In the past, different sequential dynamic programming variants for join-
order optimization were proposed [6, 11, 14]. Unfortunately, the applicability of
sequential dynamic programming variants is limited to simple queries due to the
exhaustive search, complexity [7], and time constraints of the optimization. To
extend the applicability, different parallel dynamic programming variants using
central processing units (CPUs) were proposed [2, 3, 15]. Graphical processing
units (GPUs) provide more computational resources compared to CPUs due
to a highly parallel architecture. Hence, we propose using GPUs to further
extend the applicability of dynamic programming for join-order optimization
by reducing the optimization time.

Specifically, we make the following contributions:

e We propose different GPU-based dynamic programming variants, based on
DPgpzr [11] and DPgyyg [14].

e We evaluate all proposed GPU-based dynamic programming variants consid-
ering four different query topologies with an increasing query size of up to 20
tables.

Our evaluation results indicate that specialized GPU-based dynamic program-

ming variants can significantly reduce the optimization time for complex queries

(e.g. up to 93% for clique queries with 15 tables). For larger queries with a lower

complexity (linear, cyclic, star), GPU-based dynamic programming variants can

provide equivalent optimization times, providing the option to outsource the
join-order optimization to GPUs.

The remainder of this paper is structured as follows: In Section 2, we provide
relevant background information. In Section 3, we describe the general execution
schema, before introducing and evaluating the following dynamic programming
variants using GPUs: A heterogeneous DPg, (see Section 4), a GPU-based
DPy,5; (see Section 5), and different GPU-based DPgyp; variants (see Section 6).
In Section 7, we evaluate the influence of the cost-function runtime on the
GPU-based dynamic programming variants. In Section 8, we summarize our
evaluation before discussing possible threats to validity in Section 9. In the last
section, we conclude our work.

2. Background

In this section, we provide relevant information for join-order optimization
(see Section 2.1), dynamic programming (see Section 2.2), and GPUs (see Sec-
tion 2.3).

2.1. Join-Order Optimization
Similar to the relational algebra, most RDBMSs implement join operators
as binary operators. Hence, for joining more than two tables, RDBMSs need to
perform a join-order optimization to ensure an efficient query processing [8].
The runtime of join-order optimization mainly depends on the following three
aspects: optimization complexity, optimization approach, and cost estimation.
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Figure 2: Tree types of query execution plans.

2.1.1. Optimization Complexity

The complexity of join-order optimization is mainly based on the following
three aspects: the query size, query topology, and join tree type.

We define the query size as the number of tables joined within a query.
An increased query size leads to a higher complexity due to a higher number of
possible join orders.

The query topology defines how the available tables are linked. Based on
related work [2, 3, 6], we consider four main query topologies: linear, cyclic, star,
and cligue queries (see Figure 1). In linear and cyclic queries, representing
transactional workloads, one table is at most joinable with two other tables.
In star queries, representing analytical workloads, one (fact) table is joinable
with all other (dimension) tables. In clique queries, representing the previous
query types considering cross-joins, each table is joinable with all other tables.
Considering the four different topologies, the complexity is increasing from linear
to clique queries due to a higher number of possible join orders [9].

Considering binary join operators, RDBMSs need to transform declarative
queries into binary join trees during join-order optimization. The join tree
type defines the form of these join trees. In related work [12], two main types
of join trees are considered: deep and bushy trees (see Figure 2). In deep trees,
joins must have at least one table as input. In bushy trees, tables or joins are
both allowed as inputs of joins. The complexity is increasing from deep to bushy
trees due to a higher number of possible join orders [12].
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Figure 3: Execution schema of dynamic programming (Colors indicating the
specific QS size).

2.1.2. Optimization Approaches

The discussed complexity factors define potential join orders. However, what
and how potential join orders are to be evaluated is determined by optimization
approaches. We roughly categorize existing approaches into two categories [12]:
deterministic and randomized approaches.

Deterministic approaches always provide the same output for the same
input. The most important deterministic approaches are based on an exhaustive
search (e.g., dynamic programming [11]). Though an exhaustive search provides
an optimal join order, the runtime of the search explodes with an increasing
complexity. Hence, the applicability of an exhaustive search is limited to simple
queries.

For selecting efficient join orders also for complex queries, randomized ap-
proaches (e.g., genetic algorithms [1]) were proposed. Randomized approaches
could provide different outputs for the same input and, hence, cannot guarantee
optimal join orders. Nevertheless, randomized approaches provide practicable
efficiency.

2.1.8. Cost Estimation

For selecting efficient join orders, optimization approaches need to compare
the considered join orders using cost estimations provided by cost functions.
As the cost function needs to be executed for each considered join order, the
runtime of the cost function can significantly influence the performance of join-
order optimization [5].

2.2. Dynamic Programming

In this work, we focus on the exhaustive search approach, dynamic program-
ming. Dynamic programming uses the property that an optimal solution
only contains optimal sub-solutions to determine optimal join orders. Solutions
can be represented as quantifier sets (QSs), whereas the included quantifier
represents available tables. For the optimization, dynamic programming first
determines optimal solutions with a single quantifier, before combining exist-
ing solutions to iteratively create new solutions with an increasing QS size (see
Figure 3).

As for each solution multiple equivalent QEPs exist, equivalent QEPs must
be pruned to determine the optimal QEP for a solution. Optimal QEPs are



stored in a data structure (often called memo table) to avoid multiple recalcu-
lations.

2.2.1. Sequential dynamic programming

In the past, three different sequential dynamic programming variants for
join-order optimization were proposed: DPg,y; [11], DPgy; [14], and DPc¢p [6].

DPg,zx applies a partition-based evaluation [11]. Each partition is a group
of relevant solutions with a specific QS size. This enables an easy determina-
tion of needed join pairs. Hereby, each join pair consists of two QS (left and
right), which should be joined to create new solutions. The optimal join-order
is determined iteratively by combining two partitions to create solutions with
an increasing QS size. For partition pairs, all solutions of one partition are eval-
uated against all solutions of the other partition. Hereby, two challenges arise:
invalid and unconnected join pairs.

Invalid join pairs are join pairs with overlapping QSs. As invalid join pairs
do not provide new solutions, all invalid join pairs can safely be skipped.

During the optimization of non-clique queries, also unconnected join pairs
occur. Unconnected join pairs are join pairs without a link between the QSs.
Similar to invalid join pairs, unconnected join pairs can safely be skipped.

DPgye [14] avoids invalid join pairs by enumerating valid join pairs based
on QSs. Unfortunately, this enumeration considers all possible QSs leading to
the consideration of unconnected join pairs for non-clique queries.

DPccp [6] avoids both invalid and unconnected join pairs by enumerating
join pairs based on the queries. Hence, DPccp only evaluates necessary join
pairs.

2.2.2. Parallel dynamic programming

Although sequential dynamic programming variants optimize join orders effi-
ciently, the applicability of sequential dynamic programming variants is limited
due to the exhaustive search, complexity, and time constraints of the opti-
mization. To extend the applicability, different parallel variants were proposed:
PDPyg,, [2], DPEgyy [3], search state dependency graph (SSDG) [15], and a dis-
tributed optimization [13].

PDPyg,,, parallelizes DPg,; by allocating join pairs explicitly to available
workers. Workers evaluate and prune allocated join pairs in parallel. After-
wards, a final sequential pruning step is performed to determine the optisolu-
tions are pruned to prepare the following iterations.

DPEggn parallelizes enumeration schemata (e.g., DPsyp or DPccp) for dy-
namic programming using the producer-consumer model. A single producer
enumerates relevant join pairs and pushes enumerated join pairs in a synchro-
nized buffer. Available consumers pull prepared join pairs from the buffer and
evaluate join pairs in parallel. Based on the preparation using partial orders and
equivalence classes [3], the synchronization between consumers is minimized.

Considering SSDG, for each task, a specific status is assigned determining
whether a task is runnable. Runnable tasks are executed in parallel by available
workers.



All the previous parallel dynamic programming variants are executed on a
single node. Trummer et al. extended dynamic programming to a distributed
optimization [13]. In contrast to the other parallelization strategies, workers
are not assigned join pairs but join orders to reduce the communication over-
head. Workers evaluate assigned join orders independently and return the best
join order to a master, selecting and returning the optimal join order.

2.8. Graphical processing units

Existing CPU-based parallelization strategies showed that dynamic pro-
gramming benefits from parallelization. Compared to CPUs, GPUs provide
more computational resources through a specialized architecture with thousands
of cores.

Utilizing these resources requires the consideration of the requirements of
the specialized architecture. Specifically, we need to consider the following as-
pects [4]: Implementation, properties of GPU cores, and properties of GPU
memory.

For GPU implementations, we need to use supported application program-
ming interfaces (APIs) (e.g., the open computing language (OpenCL)). Hereby,
we need to differentiate between two code types: host and device code.

The host code (executed on CPUs) controls the execution of the device code
(including memory allocation, scheduling, and synchronization). The device
code implemented using supported APIs defines the execution on GPU.

For an efficient implementation of device code, we need to consider the prop-
erties of GPU cores. Specifically, GPU cores usually operate at a lower clock
speed and have smaller caches compared to CPU cores. Furthermore, GPU
cores are organized in groups, where a single group executes a single instruc-
tion in a given time. If different instructions need to be executed (e.g., due to
branching), the execution needs to be serialized. The serialized execution of
different instructions reduces the performance of GPUs, as only parts of GPU
core groups can be active.

Besides the properties of GPU cores, we also need to consider the specific
properties of GPU memory regarding: data transfer, memory size, and
memory types.

GPUs usually cannot access the main memory but rely on their own device
memory for information processing. Hence, before GPUs can process informa-
tion, the information must be transferred to the device memory, and vice versa.
As data transfers between device memory and host memory is slower than
the memory access, the data transfer can pose a significant overhead. Hence,
data transfers between device and host memory need to be reduced or avoided.

Besides data transfers, we also need to consider the memory size of the
device memory. The device memory of GPUs is usually much smaller than the
main memory. Hence, executions requiring a larger memory might need to be
partitioned, so that each partition fits into the device memory.

Furthermore, we need to consider the different types of memory (global,
constant, local, and private) of GPUs. An efficient usage of GPU requires the



Algorithm 1: Generalized execution schema of evaluated dynamic pro-
gramming variants

Input : Join query with n quantifiers Q = {q;,...,q,}
Output: An optimal bushy join tree
1 Initialize optimization;
2 fori=1ton—1do
3 Initialize iteration;
Determine intermediate solutions;
Prepare pruning;
Prune intermediate solutions;
Finalize iteration;
8 Finalize optimization;
9 Return optimal bushy join tree;

N0 s

consideration of the specific properties of the different memory types (e.g., size,
access speed, or write-support).

Based on the discussed aspects of GPUs, specialized GPU-based dynamic
programming variants are required to use GPUs efficiently for join-order opti-
mization.

3. Execution schema using GPUs

We need to adapt the join-order optimization to the requirements of GPUs to
provide an efficient GPU-based join-order optimization. However, the execution
schema of our dynamic programming variants is still based on the QS size (see
Algorithm 1) similar to DPgzr, PDPgya, or DPEqgy with the partial order
"SRQS” [3].

For each optimization, we need to initialize the optimization (e.g., by al-
locating and initialization the memo-table) (see Line 1), before determining
intermediate solutions with an increasing QS size iteratively (see Line 2-7). At
the beginning of each iteration, we initialize the iteration (e.g, by allocating
and initialization memory for the intermediate solutions) (see Line 3). After-
wards, we determine intermediate solutions by evaluating considered join pairs
(see Line 4). Next, we prepare the pruning step (e.g., by allocating memory or
filtering intermediate solutions) (see Line 5). Then, we prune the intermediate
solutions (see Line 6). At the end of the iteration, we finalize the iteration
(e.g., by updating the memo-table) (see Line 7). After all iterations finished,
we finalize the optimization (e.g., by transferring the optimal join order from
the device to the main memory) (see Line 8) before returning an optimal join
tree (see Line 9).

4. Heterogeneous DPg,x

In this section, we will present a heterogeneous DPg;, variant. The hetero-
geneous DPg,, variant follows the idea to outsource only the compute intensive
evaluation of join pairs to the GPU, while other steps (e.g., the pruning) are
still performed on the CPU.



We first present the details regarding execution (see Section 4.1) and enu-
meration (see Section 4.2). Afterwards, we will present the evaluation setup
(see Section 4.3), results (see Section 4.4), and discussion (see Section 4.5).

4.1. Ezecution details

The execution of the heterogeneous DPg;, variant follows the general ex-
ecution schema on GPUs (see Algorithm 1, Section 3). Considering the ini-
tialization of the optimization (see Line 1), we allocate and initialize relevant
data structures (e.g., memo-table and storage for partition sizes and partition
offsets) both on CPU and GPU. For the initialization (see Line 3), we allocate
memory for intermediate solutions both on CPU and GPU. For the determi-
nation of intermediate solutions (see Line 4), we apply an enumeration schema
based on DPg,r to map GPU threads to solutions. For preparing the pruning
(see Line 5), we transfer the intermediate solutions from the GPU to the CPU.
Additionally, we can apply an optional filtering step (for filtering invalid and
unconnected join pairs) before the transfer to reduce the data size. The pruning
of intermediate solutions (see Line 6) is performed sequentially on the CPU. For
finalizing the iteration, the pruned intermediate solutions are appended to the
memo-table of both CPU and GPU (including the transfer from CPU to GPU).
Furthermore, the details of evaluated partition (size and offset) is transfered to
the GPU. As all information are available both on CPU and GPU, we do not
need to perform any steps to finalize the optimization (see Line 8) but can just
return the optimized join tree (see Line 9).

4.2. Enumeration schema

Considering the centralized CPU-based parallelization of dynamic program-
ming, join pairs are either directly (PDPgy,) or indirectly (DPEggy and SSDG)
allocated to threads. However, for the GPU-based evaluation, we do not allo-
cate join pairs to threads, but threads determine themselves, which join pairs
they need to evaluate (similar to the distributed variant) using an enumeration
schema. In contrast to the distributed optimization (evaluating complete join
orders), we only evaluate join pairs in parallel similar to the other parallelization
strategies for CPUs.

For our enumeration (see Algorithm 2), we use the calculation id (cid) and
the information regarding partition sizes (ps) and offsets (po) to identify the
entry ids of the memo-table (lid, rid) for join pairs. For the implementation,
we use the thread id provided by the used API as calculation id. For the
enumeration, we first need to identify the corresponding partitions (see Line 1-
8). We start with a specific partition pair (see Line 1-2) and iterate over all
possible partition pairs (see Line 3-8) until we found the matching partition pair
for the calculation id (see Line 4). Afterwards, we identify the local entry ids
within the partition using the partition sizes (see Line 9-10), before determining
the global entry id by adding the partition offsets (see Line 11-12).



Algorithm 2: Enumeration of the heterogeneous DPg;,; variant

Input : Iteration-ID iid; Calculation-ID cid;
Partition-Sizes ps; Partition-Offsets po

Output: IDs of join pair (1id,rid)

// Determine ids of left (1lp) and right partition (rp)

1 Ip=0;

2 rp=iid —1;

s o= ps[lp] * ps[rpl;

4 while cid >= o do

5 cid = cid — o;

6 lp=Ip+1;

7 rp=rp—1;

8 o = ps(lp] * ps[rpl;

// Determine local ids (1, r)
o | = cid / ps[rp];
10 r = cid % ps[rp];
// Determine global ids (1lid, rid)
11 lid = po[lp] + ;
12 rid = po[rp] + r;
13 return (1lid, rid);

4.3. FEvaluation setup

In our evaluation, we consider four different query topologies: linear, cyclic,
star, and clique queries. To achieve a reasonable optimization time, we evaluate
linear, cyclic, and star queries containing up to 20 tables and clique queries
containing up to 15 tables. For each topology, we evaluate 30 queries and ag-
gregate the measures using the average. For a given query topology and size,
we randomly generate queries using a random number generator to determine
joinable tables, join selectivities, and table sizes. As we only evaluate differ-
ent dynamic programming variants, which provide the same results, we do not
evaluate the result quality. For similar reasons, we neither generate nor execute
the query. During our optimization, we only consider commutative joins with a
single objective and without parameterization. Furthermore, we do not consider
interesting orders [11]. We use a simple cost-function using solution cardinal-
ity with an additional overhead to simulate complex cost functions applied in
practice.

For our evaluation, we use C/C++14 and GNU compiler (Version: 5.4)
with the optimization flag ”03” on a machine having 256 GB RAM and Ubuntu
Linux 16.04 (Kernel-Version: 4.4.0-127) as operating system. For the evaluation
of the CPU-based variants, we use two Intel Xeon E5-2609 v2s-2013 CPUs each
containing 4 cores with 2.5 GHz clock speed and a cache of 20 MB. Since the
available hardware supports the parallel execution of 8 physical threads, we use
8 threads for the parallel CPU-based variants. For the evaluation of our GPU-
based variants, we use a Tesla K20m having 2496 cores with 706 MHz clock
speed.

4-4. Bvaluation

In Figure 4, we show our evaluation results for the heterogeneous DPg;,y
variant with (H-GPU) and without (H+F-GPU) a filtering of invalid and uncon-
nected join pairs on the GPU against the parallel CPU-based variants PDPgy,
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Figure 4: Relative runtime of the heterogeneous DPg,,5 variants (H-GPU and
H+F-GPU).

with (SVA-CPU) and without skip vector arrays (SVAs) (PDP-CPU) and DPEq gy
(DPE-CPU) (see Section 2.2.2).

For linear and cyclic queries, H-GPU and H+F-GPU significantly increase
the optimization time by up to 5.8X (cyclic; query size: 4; H-GPU) - 16.3X
(linear; query size: 12; H4+F-GPU). However, as the overhead is decreasing
with an increasing query size, H-GPU and H+F-GPU achieve an equivalent
optimization time compared to the CPU-based variants for linear and cyclic
queries containing 20 tables.

For star queries, H-GPU and H4F-GPU significantly increase the optimiza-
tion time by up to 396.4X (H+F-GPU) - 1563.0X (H-GPU) for 20 tables.

For small clique queries, H-GPU and H+F-GPU significantly increase the
optimization time by up to 8.0X (H-GPU) - 13.9X (H+F-GPU) for 4 tables.
As the query size increases to 9 - 10 tables, H-GPU and H+F-GPU achieve
an equivalent optimization time compared to the CPU-based variants. How-
ever, as the query size increases further, H-GPU and H+F-GPU increase the
optimization time by up to 1.6X (H4+F-GPU) - 5.1X (H-GPU) for 15 tables.

4.5. Discussion

We see that H-GPU and H4+F-GPU increase the optimization time in most
of the cases. We analyzed H-GPU and H+F-GPU according to the execution
details (see Section 4.1). In Figure 5, we see the different steps regarding eval-
uation (Join), pruning preparation (Pre-Pruning), and pruning of intermediate

10
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Figure 5: Relative runtime of different steps of the heterogeneous DPg,y
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Figure 6: Relative execution time of OpenCL of the heterogeneous DPg,x
variants with the maximal query size (non-clique: 20, clique: 15).

solutions (Pruning), the iteration finalization (Finalize) and the remaining steps
(Rest).

For star and clique queries, the main bottleneck is the pruning preparation
(Pre-Pruning) but for different reasons. We see the different reasons when we
look at the execution times of API calls regarding transfer times to (Transfer-To)
and from (Transfer-From) GPU as well as the kernel execution time (Kernel) on
GPU (see Figure 6). Regarding H-GPU, the transfer from GPU (Transfer-From)
provides the main bottleneck due to the transfer of invalid solutions. Regarding
H+F-GPU, the filtering of invalid solutions on the GPU provides (Kernel) the
main bottleneck.

For linear and cyclic queries, we see that not only the processing of solutions
(Join, Pre-Pruning, Pruning, and Finalize) but also the remaining steps (Rest)
(e.g., the initialization and finalization of the optimization) provide a major
bottleneck for H-GPU and H+F-GPU (see Figure 6). Hereby, already the APIs-
independent steps (Rest) (e.g. parsing of input and output) as well as the
transfer of inputs to the device provide a major bottleneck (see Figure 6), which
cannot be compensated considering the limited parallelism of linear and cyclic
queries.

11
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5. GPU-based DPg;,

In this section, we present a GPU-based DPy,,; variant, executing all opti-
mization steps on the GPU.

We first present the details regarding execution (see Section 5.1) and enu-
meration (see Section 5.2). Afterwards, we will present the evaluation setup
(see Section 5.3), results (see Section 5.4), and discussion (see Section 5.5).

5.1. Ezecution details

Following the execution schema (see Algorithm 1, Section 3), the execution
of the GPU-based DPg, variant is similar to the heterogeneous DPg,; vari-
ant (see Section 4). However, as the complete optimization is executed on the
GPU, we do not need to allocate or initialize memory on the CPU for neither the
memo-table (Line 1) nor the intermediate solutions (Line 3). For the pruning of
intermediate solutions (Line 6), we apply a parallel aggregation on the GPUs.
As, in general, there is more than one solution evaluated in one iteration, we ap-
ply a parallel grouped (or segmented) aggregation using sorting. The sorting of
intermediate solutions is performed as preparation of the pruning (Line 5). The
sorting is required because the execution of DPg,; uses the position of elements,
not the QS for the enumeration. Hence, equivalent intermediate solutions can
be scattered, preventing an efficient parallel aggregation. For implementing the
sorting, we used radix sort [10]. After the pruning, the pruned solutions are

12



copied into the memo-table on the device (Line 7). After all join pairs are eval-
uated, we can copy the optimal join order from the GPU to the CPU (Line 8)
to finalize the optimization.

5.2. Enumeration schema

The enumeration schema of the GPU-based DPg;,, variant is identical to
the heterogeneous DPg,p; variant (see Section 4.2).

5.3. Fvaluation setup

We used the same evaluation setup as in the previous evaluation (see Sec-
tion 4.3).

5.4. FEvaluation

In Figure 8, we present our evaluation results of the GPU-based DPgy
variants with (S+F-GPU) and without (S-GPU) a filtering of invalid and un-
connected join pairs on the GPU against the heterogeneous DPg, variants
(H-GPU and H+F-GPU) (see Section 4) and the parallel CPU-based variant
DPE¢ey (DPE-CPU) (see Section 2.2.2).

For linear and cyclic queries, S-GPU and S+F-GPU increase the optimiza-
tion time by up to 94.2X for 20 tables.

For star queries, S-GPU and S+F-GPU significantly increase the optimiza-
tion time by up to 210.1X (S-GPU) - 394.7X (S+F-GPU) for 20 tables.

For smaller clique queries, S-GPU and S+F-GPU significantly increase the
optimization time by up to 12.8X (S-GPU) - 13.7X (S+F-GPU) for 5 tables.
As the query size increases to 11 tables, S-GPU and S+F-GPU achieve an
equivalent optimization time compared to DPE-CPU. However, as the query
size increases further, again S-GPU and S+F-GPU increase the optimization
time by up to 1.6X (S+F-GPU) - 3.4X (S-GPU) for 15 tables.

5.5. Discussion

We see that S-GPU and S+F-GPU increase the optimization time for lin-
ear and cyclic queries compared to H-GPU and H4+F-GPU. Only for star and
clique queries, S-GPU and S+F-GPU provide equivalent results. We analyzed
S-GPU and S+F-GPU according to the execution details (see Section 5.1). In
Figure 8, we see the different steps regarding evaluation (Join), pruning prepa-
ration including filtering (Filter) and sorting (Sort), and pruning of intermediate
solutions (Pruning), and the remaining steps (Rest).

For linear, cyclic, and clique queries, the sorting (Sort) and pruning (Prun-
ing) of intermediate solutions consumes a significant part of the optimization
time.

For star queries, the main bottleneck switches to the pruning of intermedi-
ate solutions (Pruning) (S-GPU) or Filter (S+F-GPU). The reason for this is
based on implementation and execution details. Considering larger star queries,
we cannot allocate enough memory to store all intermediate solutions of one
iteration. Hence, one iteration (see Algorithm 1, Line 2) is further splitted into

13
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sub-iterations evaluating a specific number of join pairs according to the allo-
cable memory. For star queries, a large number of these sub-iterations do not
evaluate any valid join pair. Hence, S+F-GPU can just continue to the next
iteration after performing the filtering. Although we implemented no filtering
for S-GPU, we checked the number of valid solutions using a prefix sum and
assigned this step to the reduction step. If no valid solution is available, S-GPU
skips the pruning similar to S+F-GPU. If this additional check is not performed,
we assume that also the sorting is the main bottleneck. We made a similar ob-
servation for clique queries. However, as we only evaluated clique queries up to
15 tables, the effect was not as significant.

Similar to H-GPU and H+F-GPU, we see that we need to avoid the evalua-
tion of invalid join pairs. Furthermore, we see that we should use an enumeration
providing join pairs in order to avoid a costly sorting.

6. GPU-based DPgy5

In the last section, we saw that DPg, variants using GPUs rarely provides
a benefit compared the parallel CPU variants. Hence, in this section, we will
present different GPU-based DPgyy variants with and without pruning.

We consider DPgyp for two reasons. First, invalid join pairs are avoided.
Second, intermediate solutions are created in a sorted manner. These two rea-
sons reduce or completely avoid the two main bottlenecks of the heterogeneous
(see Section 4) (invalid join pairs) and GPU-based (see Section 5) (invalid join
pairs and sorting) DPg;,r variants.

We first present the details regarding execution (see Section 6.1) and enu-
meration (see Section 6.2). Afterwards, we will present the evaluation setup
(see Section 6.3), results (see Section 6.4), and discussion (see Section 6.5).

6.1. Execution details

Following the execution schema (see Algorithm 1, Section 3), we see two
options for executing DPgyp on GPUs: with and without pruning.

The execution of a GPU-based DPgy variant with pruning will be similar
to the execution of the GPU-based DPg,p (see Section 5). The only difference
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Algorithm 3: Binomial enumeration of QSs.

Input : Quantifier set size gss; Solution-ID sid;
Size of query sq
Output: Solution quantifier set s
// Initialize s and current table id (t)
1 s=0;
2 t=0;
// Evaluate each table
3 while s¢g >=0 && gss >= 0 do
// Possible solutions (o) containing t
4 o= (qssqsill);
5 if sid < o then
// Add table (t) to s
s|l=1<<t;
gss =qgss — 1;

8 else
// Ignore table (t)
‘ sid = sid — o;
// Consider next table (t)
10 t=t+1;
11 sq =sq—1;
12 return s;

is that we can avoid the preparation for the pruning (Line 5) based on the
enumeration of DPsys on GPUs.

For executing a GPU-based DPgyy variant without pruning, we cannot
only remove the preparation for the pruning but also the pruning itself (see
Line 5-6).

6.2. Enumeration schema

Considering the enumeration, we use the concept of DPgyy representing the
different QSs using a numeric representation. Within the numeric representa-
tion, each bit position represents the id of a specific quantifier. If the specific
quantifier is available, the corresponding bit will be set to one and zero other-
wise. Depending on the execution (with or without pruning), we need to apply
different enumeration schemata.

For a GPU-based DPgyy variant without pruning, we apply the concept
of equivalence classes (ECs) of DPEqgy [3]. The idea of ECs is that all join
pairs of a solution are evaluated by a single thread. Hence, threads do not need
to determine corresponding single join pairs but complete solutions. For this,
we use combinatorics (see Algorithm 3).

We use binomial coefficients to determine the possible numbers of QSs con-
taining a specific table (see Line 4), and based on the id (see Line 5) we either
consider (see Line 6-7) or ignore (see Line 9) the table. As the calculation of
binomial coefficients is costly, we precalculated the binomial coefficients and
store them in constant memory. Hence, the calculation reduces to an efficient
lookup.

Afterwards, threads use the enumeration of DPgyy [14] to evaluate all join
pairs for the determined QS (see Algorithm 4). For calculating the least signif-
icant bit (see Line 1), we use an evaluation using a DeBruijn sequence.
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Algorithm 4: Enumeration of DPgyp [14]

Input : Solution qualifier set s
// Determine first join pair (1,r) of solution qualifier set s
I =1 <<getLSB(s);
r=s—1I
while [ | = s do
Evaluate and prune solution;
// Determine next join pair (1,r) of s
5 l=s& (Il —s);

6 r=s—1;

[ VI

Algorithm 5: Enumeration of join pairs using the enumeration schema of
DPgys [14]

Input : Solution quantifier set s; Calculation-ID cid
Output: Quantifier sets of a join pair (1,r)
// Determine left quantifier set 1
1 =1 << getLSB(s);
while cid > 0 do
1=s& (1-s);
cid = cid — 1;
// Determine right element r
r=s—1;
6 return (1,r);

[ VI

o

For GPU-based DPgyp variants with pruning, each thread needs to enu-
merate not only a specific QS but a specific join pair. For this enumeration of
join pairs, we see three options: an extended combinatorial enumeration, the
enumeration of DPgys, and a position-based enumeration.

For the extended combinatorial enumeration, we can extend the enu-
meration of solutions using combinatorics to the level of join pairs (see Ap-
pendix Appendix B, Algorithms 8). Since the enumeration of join pairs follows
the same concept, we skip a discussion here.

The enumeration of DPgyp (see Algorithm 5) follows the same pattern as
described for the GPU-based DPgy;; variants without pruning (see Algorithm 4).

Algorithm 6: Position-based enumeration for join pairs

Input : Solution quantifier set s; Calculation-ID cid; Quantifier set size gss
Output: Join pair (1,r)
// Determine left quantifier set (1)
1 1=0;
2 cid = cid + 1;
3 while cid > 0do
// Determine maximal table id (mtid)

4 mtid = log, (cid);
// Determine next table id (ntid)

5 ntid = 64 — getKSetBit(s, gss — mtid);
// Add table (ntid) to 1

6 1|=1 << ntid;

7 cid = cid — 2™t ;

// Determine right quantifier set r
8 r=s—1;
9 return (1,r);
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The difference is that threads only iterate over the determined join pairs but do
not evaluate them.

The position-based enumeration uses the id and the position of the quan-
tifier in the QS to determine the join pair (see Algorithm 6). Specifically, we
construct the left element of the join pair by determining the position (see
Line 4), selecting (see Line 5) and adding the quantifier to the left element (see
Line 6). Hereby, getKSetBit is a series of bit-operation to determine the k-th set
bit within the numeric representation of a QS. Due to the way, the different bits
are enumerated, we needed to reverse this enumeration to make it compatible
with the iteration of DPgyy.

For the enumeration of DPgy and the position-based enumeration, we only
use the enumeration to determine the first join pair of a solution. If threads
need to evaluate multiple join pairs (e.g., # join pairs ># threads), we do not
enumerate the next equivalent join pair again but just iterate to the next join
pair following the iteration of DPgyp (see Line 5-6, Algorithm 4).

For the GPU-based DPgyp variants with pruning, we noticed improved op-
timization times, while switching from the described enumeration to the com-
binatorial number system. Hence, we used the combinatorial number system
for implementing the combinatorial enumeration of solutions (see Appendix Ap-
pendix A, Algorithms 7).

6.3. FEvaluation setup

We used the same evaluation setup as in the previous evaluation (see Sec-
tion 4.3).

6.4. FEvaluation

In Figure 9, we show our evaluation results for the GPU-based DPgyy variant
without pruning using the concept of ECs (EC-GPU), the GPU-based DPgyp
variants with pruning using an extended combinatorial enumeration (COMB-
GPU), the enumeration of DPgys (SUB-GPU), a position-based enumeration
(POS-GPU), and the parallel CPU-based variant DPEy (DPE-CPU).

For linear and cyclic queries, we see that all GPU-based DPgyp variants
provide a significant overhead of up to 95.2X (POS-GPU) - 1576.0X (COMB-
GPU) for 20 tables.

For smaller star queries (2-8 tables), we see that all GPU-based DPgyp vari-
ants provide a significant overhead of up to 3.1X (EC-GPU) - 6.6X (POS-GPU)
for 6 tables. As the query size increases, the overhead reduces, and all GPU-
based DPgyp variants can achieve an equivalent runtime (EC-GPU:>9 tables;
COMB-GPU: 12 tables; SUB-GPU: 11-16 tables; POS-GPU: >15 tables). As
the query size increases further, both COMB-GPU and SUB-GPU again provide
a significant overhead of up to 6.1X (SUB-GPU) - 8.4X (COMB-GPU).

For smaller clique queries (2-7 tables), we see that the GPU-based DPgyz
variants provide again an overhead of up to 3.5X (EC-GPU: 6 tables) - 4.6X
(POS-GPU: 4 tables). As the query size increases, the overhead reduces. While

17



—8— DPE-CPU EC-GPU COMB-GPU —e— SUB-GPU —+— POS-GPU

Linear Cyclic

104 T 104
) 3 o)
e e
\?/102 v 102 £
[} (]
£ ‘ £
.,,,,,,,,,,,,,,,,,,,..:::::::::::::::::::
5 10 15 20
Clique
10!
17
Y +~
=100 F
1 g
; T; 107t 5
15

#Tables #Tables

Figure 9: Relative runtime of the GPU-based DPgyp variants.

EC-GPU can only achieve equivalent results for 15 tables, COMB-GPU, SUB-
GPU, and POS-GPU significantly reduce the optimization time by up to 94%
(POS-GPU) - 96% (SUB-GPU) for 15 tables.

6.5. Discussion

For linear and cyclic queries, we see that the GPU-based DPgyyp variants
provided an overhead compared to DPE-CPU. On the one hand, these topologies
provide only a limited number of join pairs and, hence, allow only for a limited
parallelism. Hence, the overhead introduced by GPUs cannot be compensated.
On the other hand, DPgyy still has an overhead with respect to unconnected

join pairs.
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Figure 10: Relative partial runtime of GPU-based DPgyp variants with the
maximal query size (non-clique: 20, clique: 15)
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For star and clique queries, the higher complexity and number of join pairs
can be utilized through a higher parallelism by the GPU to provide equivalent
or improved performance compared to DPE-CPU.

We analyzed the different GPU-based DPgy variants according to the exe-
cution details (see Section 6.1). In Figure 10, we see the different steps regarding
iteration initialization (Init), evaluation (Join) and pruning of intermediate so-
lutions (Pruning), the iteration finalization (Finalize) and the remaining steps
(Rest). We see a different behavior for the variants with (COMB-GPU, SUB-
GPU, and POS-GPU) and without pruning (EC-GPU). Please note that we
only show results for POS-GPU representing the GPU-based DPqy variants
with pruning as the other variants (COMB-GPU and SUB-GPU) provided sim-
ilar results.

For EC-GPU, the evaluation of intermediate solutions (Join) is the main
bottleneck for all topologies as it includes both the evaluation and pruning of
join pairs and no dedicated pruning step exist. For POS-GPU, the iteration
initialization (Init), the pruning of intermediate solutions (Pruning), as well as
the finalization of the iteration (including the copying of the pruned solutions)
(Finalize) take equivalent compute times.

However, for linear and cyclic queries, the overhead of GPUs and uncon-
nected join pairs due to DPgyg still cannot be compensated due to the limited
number of join pairs. For star queries, we still see that the overhead of DPgyp
cannot fully be compensated. In clique queries, DPyy provides an efficient op-
timization. Hence, the GPU-based DPgyy variants except for EC-GPU can sig-
nificantly improve the optimization time. Considering EC-GPU, the advantage
of EC-GPU (combination of evaluation and pruning) becomes also a disadvan-
tage. The main issue of EC-GPU is that especially at the beginning and at the
end only a reduced number of solutions is available limiting the potential par-
allelism. The reduced parallelism significantly reduces the overall performance,
especially considering the lower clock speed of GPU cores.

Due to our results, we suggest to investigate a GPU-based DP cp variant
for future work. A GPU-based DP.cp variant might also provide an improved
optimization time for non-clique queries.

7. Cost-function influence

In a previous evaluation, we noticed that the complexity of the cost function
influences the parallelism and, hence, the scalability of parallel optimization
algorithms for join-order optimization [5].

Hence, in this section, we evaluate the impact of different runtimes of the
used cost-function on the performance of a GPU-based DPgyp variants.

We will present the evaluation setup (see Section 7.1), results (see Sec-
tion 7.2), and discussion (see Section 7.3).

7.1. Evaluation setup

We used the same evaluation setup as in the previous evaluation (see Sec-
tion 4.3).
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7.2. FEvaluation

In our evaluation, we consider three different runtimes of cost functions:
LOW, MIDDLE, and HIGH.

LOW represents a simple cost function based only on the sizes of interme-
diate results. MIDDLE represents cost functions of commercial systems by
adding an additional overhead to LOW. HIGH represents a more complex cost
function (e.g., including more accurate selectivity estimations) by doubling the
overhead of MID.

In Figure 11, we show our evaluation results with respect to different run-
times of the cost function for the GPU-based DPgyp variant POS-GPU (see
Section 6) compared to the parallel CPU-based variant DPEqgy (DPE-CPU)
(see Section 2.2.2).

For linear queries, GPU-LOW adds a significant overhead of 726.5X (20 ta-
bles) - 2590.6X (14 tables). GPU-MIDDLE and GPU-HIGH provide a smaller
overhead for two tables of 3.2X (GPU-MIDDLE) - 3.6X (GPU-HIGH). As the
query size increases also the overhead of GPU-MIDDLE and GPU-HIGH in-
creases up to 156.9X (GPU-HIGH) - 166.1X (GPU-MIDDLE).

For cyclic queries, the overhead of all variants are increasing with an increas-
ing query size up to 615.5X (GPU-LOW) for 19 tables.

For smaller star queries (2-8 tables), GPU-LOW provide a significant over-
head of up to 3100.1X for 7 tables. Similar, GPU-MIDDLE and GPU-HIGH pro-
vide a significant overhead of up to 4.6X (GPU-MIDDLE) - 6.5X (GPU-HIGH)
for 6 tables. As the query size increases, the overhead reduces. For 20 tables,
the overhead of GPU-LOW reduces to 6.1X, while both GPU-MIDDLE and

20



GPU-HIGH can reduce the optimization time by up to 33% (GPU-MIDDLE) -
48% (GPU-HIGH).

For smaller cliqgue queries (2-6 tables), GPU-LOW, GPU-MIDDLE, and
GPU-HIGH provide a significant overhead of up to 4.3X (GPU-MIDDLE) -
5.5X (GPU-HIGH) for 4 tables. As the query size increase, the overhead re-
duces until all variants (GPU-LOW, GPU-MIDDLE and GPU-HIGH) provide
a significant reduction of the optimization time. For 20 tables, GPU-LOW,
GPU-MIDDLE, and GPU-HIGH reduce the optimization time by up to 90%
(GPU-LOW) - 93% (GPU-HIGH).

7.8. Discussion

We see that POS-GPU benefits from an increased runtime of the cost-
function.

However, for linear and cyclic queries, we also see that that POS-GPU still
provides worse results compared to DPE-CPU. Considering linear and cyclic
queries, the number of cost-function calls is reduced due to the lower number
of join pairs. As only the evaluation of join pairs is influenced by an increased
runtime of cost function but not the other aspects (e.g., reduction), the overhead
of GPUs and DPgyp cannot be compensated.

For star queries, the overhead of GPUs and DPgy can be compensated due
to the increased number of cost-function calls due to the higher number of join
pairs.

For clique queries, all evaluated join pairs are needed. Hence, only the
overhead of GPUs needs to be compensated. Hence, all variants improve the
optimization time.

8. Summary

In Figure 12, we provide a summary of our evaluation including the se-
quential (DP¢cp: CCP-CPU) (see Section 2.2.1), parallel CPU-based (DPE¢gy:
DPE-CPU) (see Section 2.2.2), and parallel dynamic programming variants us-
ing GPUs (H-GPU and POS-GPU) (see Section 4 and Section 6).

Our evaluation indicates that dynamic programming variants tailored to the
specific requirements of GPUs can significantly reduce the optimization time
of dynamic programming variants. However, similar to the parallel CPU-based
dynamic programming variants, dynamic programming variants using GPUs
also need (larger) complex queries to compensate for the introduced overhead.

9. Threats to validity

Considering our evaluations, we need to consider several aspects affecting
the evaluation results. We would like to highlight that we took great care to
optimize the CPU-based variants. For the GPU-based variants, optimization
potentials still exists to improve the performance. We used OpenCL for our
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Figure 12: Runtime of different approaches.

implementations, for having the option to execute our implementations on ar-
bitrary devices. Furthermore, we implemented our kernels to support arbitrary
input sizes and number of threads. Both decisions increase the flexibility and
applicability of our implementation. However, an implementation specialized
for a specific GPU-architecture using a specialized API (e.g., compute unified
device architecture (CUDA)) can provide even better results.

For both GPU and CPU variants, different hardware could affect the perfor-
mance. Newer hardware with more computational resources will provide better
performance. However, this applies to both CPU and GPU.

Considering the partial runtimes, we needed to implement our own time
measurement. For this, we needed to serialize the different steps to measure the
wall clock time. This serialization affects the execution.

In our evaluation, we considered the worst case, where all required informa-
tion for the optimization is transfered to the GPU during the optimization. In
practice, the overhead can be further reduced as statistics can be cached on the
GPU.

Currently, we assume that at least the memo-table fits into the device mem-
ory. If the memo-table exceeds the device memory, the execution must further
be partitioned affecting the overall performance.

10. Conclusion
In this work, we adapted the dynamic programming variants DPg,; and

DPgyys to GPUs. We evaluated the GPU-based dynamic programming vari-
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ants using different query topologies against different sequential and parallel
CPU-based dynamic programming variants. Our evaluation indicates that spe-
cialized GPU-based dynamic programming variants can significantly reduce the
optimization time for complex queries (e.g. up to 93% for clique queries with 15
tables). For larger queries with a lower complexity (linear, cyclic, or star), the
evaluated GPU-based dynamic programming variants can provide equivalent
results, which provides the option to outsource the optimization to GPUs.

Based on our evaluation results, we suggest further investigations for GPU-
based join-order optimization. A promising extension would be the evalua-
tion of GPU-based DPccp or DPy;y [8] variants. Furthermore, other types of
approaches for join-order optimization should be investigated. Hereby, espe-
cially randomized approaches (e.g., sampling or genetic algorithms) seem to be
promising. In contrast to the dynamic programming, the goal of GPU-based
randomized approaches is not to reduce optimization time but to increase result
quality.
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Algorithm 7: Binomial enumeration of QSs using combinatorial number
system

Input : Quantifier set size gss; Solution-ID sid
Output: Solution quantifier set s
/* Initialize s */
1 s=0;
/* Determine all included tables */
while ¢gss > 0 do
/* Determine next table id (ntid) */
ntid = qss — 1;
o= 0;
while o <= sid do
ntid = ntid + 1;
o= (")
ntid = ntid — 1;
/* Add table */
9 s |= 1 << ntid;
/* Prepare next iteration */
ntid)
qss

N

3

® N O o khw

10 sid = sid — ( ;

11 gss = gss — 1;
12 return s;

Appendix A. Enumeration using combinatorial number system

In Algorithm 7, we provide the enumeration of QSs using combinatorial
number system. We iteratively construct a specific QS (see Line 3-11) based on
an id (sid). In each iteration, we determine one table included into the QS (see
Line 3-8). For this, we use the binomial coefficients and the id to determine the
relevance of a specific quantifier for the specified solution (see Line 5).

Appendix B. Enumeration of join pairs

In Algorithm 8, we show our extended combinatorial enumeration. Similar
to the enumeration of DPgyg, the idea is to enumerate both the solution and left
quantifier set of a join pair. The right quantifier set of a join pair can afterwards
simply be determined based on the solution and left quantifier set. Before the
enumeration, we determine the number of calculations per solution (cps) based
on binomial coefficients. For the enumeration, we determine the id of solution
(sid) and left (lid) quantifier set (see Line 1-2) based on the provided id (cid).
Based on the lid, we can determine how many tables are included in the left
quantifier set (see Line 3-8). Afterwards, we construct the (partial) solution
and left quantifier set (see Line 11-31). First, we determine the next relevant
quantifier of the solution quantifier set, which need to be included into the left
quantifier set (see Line 12-17). As not all quantifiers must be available within
the quantifier set of the solution, we also need to determine the corresponding
quantifier (see Line 18-28). We use this evaluation to partially construct the
solution quantifier set (see Line 26). After determining the next quantifier of
the left quantifier set, we simply add it to the quantifier set (see Line 29) and
prepare the next iteration (see Line 30-31). After the left quantifier set was
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constructed, we complete the construction of the solution quantifier set (see
Line 32-41) and determine the right quantifier set (see Line 42).
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Algorithm 8: Extended combinatorial enumeration for join pairs

N
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31

32

33
34
35
36

37
38

39
40
41

42
43

Input : Quantifier set size gss; Calculation-ID cid; Calculations-per-Solution cps

Output: Join pair (1,r)

/* Determine the solution-id (sid) and left-element-id (1id)

sid = cid / cps;
lid = cid % cps;

/* Determine left-quantifier-set-size (lgss)

lgss = 1;

o= (l?zssss) 5

while o <= lid do
lid = lid — o;
lgss = lgss + 1;

0= (1ges)3

/* Determine the solution (s) and left (1) quantifier set

s =0
1=0;
while lgss > 0 do

/* Determine maximal-table-id mtid
mtid = 1gss — 1;

o= 0;

while o <= lid do

mtid = mtid + 1;

0= (p);

mtid = mtid — 1;

ntid = 0;
while gss > mtid do

ntid = gqss — 1;

o =0;

while o <= sid do
ntid = ntid + 1;

ntid)

qss

ntid = ntid — 1;

/* Add table to s

s|=1 << ntid;

sid = sid— ("q‘;;d);

gqss =qss — 1;

/* Add table to 1)

l|=1 << ntid;

lid = lid— (T4,

lgss )’

o0 = 5

1lgss = 1gss — 1;
while ¢gss > 0 do

ntid = qss — 1;

o= 0;

while o <= sid do
ntid = ntid + 1 ;
o= (ntid) .

gss ’

ntid = ntid — 1;

/* Add table to s

s |=1 << ntid;

sid = sid— ("thZSd ;

gss =qgss — 1;

/* Determine the right quantifier set (r)

r=s-—1
return (1,r)

/* Determine next-table-id (ntid) of 1

/* Determine next-table-id (ntid) of s

/* Finalize the solution quantifier set (s)

/* Determine next-table-id (ntid) of s

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

*/

28



	Anlage1
	FIN-02-2020
	Introduction
	Background
	Join-Order Optimization
	Optimization Complexity
	Optimization Approaches
	Cost Estimation

	Dynamic Programming
	Sequential dynamic programming
	Parallel dynamic programming

	GPUs

	Execution schema using GPUs
	Heterogeneous DPSIZE
	Execution details
	Enumeration schema
	Evaluation setup
	Evaluation
	Discussion

	GPU-based DPSIZE
	Execution details
	Enumeration schema
	Evaluation setup
	Evaluation
	Discussion

	GPU-based DPSUB
	Execution details
	Enumeration schema
	Evaluation setup
	Evaluation
	Discussion

	Cost-function influence
	Evaluation setup
	Evaluation
	Discussion

	Summary
	Threats to validity
	Conclusion
	Enumeration using combinatorial number system
	Enumeration of join pairs


