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Abstract In relational databases, the execution time of queries can vary by
several orders of magnitude depending on the join order. Therefore, efficient
join orders need to be selected. A commonly used technique to select efficient
join orders is dynamic programming. Since dynamic programming performs
an exhaustive search, especially sequential variants of dynamic programming
are limited to simple optimization problems based on the complexity and time
limit of the optimization. To extend the applicability to complex optimization
problems, Han et al. proposed the parallelization strategy dependency-aware
parallel enumeration DPEggy.

In this paper, we provide an overview and evaluation of different design
options for DPEqy considering four different query topologies. On the one
hand, we reevaluate existing design options, regarding: the partial order, the
buffer size, and threading across dependencies. On the other hand, we evaluate
new design options, regarding: the enumeration processing, the memo-table
type, and buffer type. Based on our results, we recommend to use a sequential
dynamic programming variant for the optimization of small queries or linear
and cyclic queries. For large star and clique queries, we recommend to use an
array-based memo-table with a mapped, initialized array-based buffer using
the partial order ’size of larger quantifier set’ with a minimal buffer size of
8,000 in combination with a complete enumeration and without ’threading
across dependencies’.
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Fig. 1: Optimization time (ratio) comparing the best and worst DPE variants
for different query topologies.

1 Introduction

In order to provide a better usability, relational database management systems
(RDBMSs) use declarative query languages, such as the structured query lan-
guage (SQL). A declarative query only defines the requested result, but not a
specific way to execute the query. Based on different degrees of freedom, for
each declarative query, several equivalent query execution plans (QEPs) exist,
specifying a way to execute the query. Although equivalent QEPs provide the
same result, the execution time can vary by several orders of magnitude [10].
Thus, RDBMSs must ensure the selection of efficient QEPs to ensure an effi-
cient query execution. One important requirement of an efficient QEPs is an
efficient join order.

Dynamic programming ensures optimal and, hence, efficient join orders
based on an exhaustive search. Unfortunately, finding an optimal join order
is NP-hard [9]. Based on the complexity and time limit of the optimization,
especially sequential dynamic programming variants are limited to simple opti-
mization problems. To extend the applicability to more complex optimization
problems, parallel variants of dynamic programming were proposed [4, 5, 16,
18]. For an efficient parallel evaluation of different query topologies, Han et al.
proposed dependency-aware parallel enumeration (DPEggy) [4]. DPEgpy uses
an enumeration scheme in combination with the producer-consumer model to
efficiently parallelize dynamic programming.
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In this paper, we will extend the evaluation of DPE gy by identifying and
evaluating relevant design options. Specifically, we make the following two
contributions:

e In-depth evaluation: We empirically evaluate different existing and new
design options of DPEgy. Overall, we evaluate 224 variants of DPEqgy us-
ing different design options regarding the partial order, buffer size, threading
across dependencies, enumeration processing, memo-table type, and buffer
type. For our evaluation, we use four different query topologies and a query
size of up to 20 tables. Although we cannot report all results, we noticed a
significant difference in the optimization time of the different DPE variants
between 2-250X depending on the query topology for larger query sizes (see
Figure 1).

¢ Recommendation: Based on our evaluation results, we provide a recom-

mendation regarding efficient design options for DPEqgy in different use
cases.
We recommend to use a sequential dynamic programming variant for the
optimization of small queries or linear and cyclic queries. For large star
and clique queries, we recommend to use an array-based memo-table with a
mapped, initialized array-based buffer using the partial order ’size of larger
quantifier set’ with a minimal buffer size of 8,000 in combination with a
complete enumeration and without 'threading across dependencies’.

An efficient parallel dynamic programming variant for join-order optimiza-
tion is especially useful for an adaptive query processing. Considering adaptive
query processing, a query can be optimized several times to fix incorrect as-
sumptions or estimations [6].

The remainder of the the paper is structured as follows: In Section 2, we
introduce join-order optimization and discuss sequential and parallel state-of-
the-art variants for dynamic programming to optimize join orders. In Section 3,
we present the basic DPEgy algorithm. In Section 4, we discuss and evaluate
different design options of DPEggy by using a baseline proposed in previous
work. In Section 5, we provide an extended evaluation for the discussed design
options. In the last section, we conclude our work.

2 Join-Order Optimization

According to the relational algebra, most RDBMSs implement join operators
as binary operators. Hence, one join operator can only have two inputs, either
tables or intermediate results. When more than two tables need to be joined,
RDBMSs need to determine the sequence in which joins are performed, called
join order.

The runtime of the join-order optimization mainly depends on three as-
pects: the complexity (see Section 2.1), the used optimization approaches (see
Section 2.2), and the used cost-function (see Section 2.3).
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Fig. 2: Different query topologies.

2.1 Complexity

The specific number of possible join orders and, thus, the complexity is de-
pendent on three aspects: the query size, the query topology, and the tree type
of QEPs.

We define the query size as the number of tables, joined within a query.
As the query size increases also the possible number of join orders increases
exponentially.

Besides the query size, the number of possible join orders also depends
on the query topology. The query topology defines the structure of the
query graph. Based on related work [5, 8], we consider four different query
topologies: linear, cyclic, star, and clique queries (see Figure 2). In linear and
cyclic queries, one table is joinable with at most two other tables. Therefore,
only a limited number of join orders exists. In contrast, star queries provide
a higher number of join orders, since one table is joinable with all other tables.
If cross-joins are allowed, the discussed query topologies become clique queries.
In clique queries, each table is joinable with each other. As the number of
possible join orders is increasing from linear to clique queries [12], also the
complexity and, hence, optimization time is increasing

Furthermore, the number of possible join orders also depends on the sup-
ported tree types of QEPs. The most important tree types of QEPs are deep
and bushy trees. In deep trees, one join partner is always a relation. Hence,
the number of possible join orders is equivalent to the number of permutations.
For bushy trees, all join partners are either a relation or a join. Hence, more
possible join orders exist.

Although in some cases an optimal join order can be determined in poly-
nomial time, such as the optimization of acyclic queries using specific types of
cost functions [11, 15], in general, join-order optimization is NP-hard [9].

2.2 Optimization approaches
Different optimization approaches were proposed to determine efficient join

orders. We categorize existing approaches into two groups [14]: deterministic
and randomized approaches.
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Deterministic approaches provide always the same result given a spe-
cific input. The most important deterministic approaches, Dynamic Program-
ming [13] and Top-Down Enumeration [3], apply an exhaustive search to deter-
mine optimal join orders with respect to the used cost function. Unfortunately,
the optimization time of exhaustive-search approaches significantly increases,
when the complexity of the query increases. Consequently, exhaustive-search
approaches have a limited applicability.

If exhaustive search approaches would exceed the time limit of the opti-
mization, RDBMSs can use randomized approaches, such as Genetic Al-
gorithms [1]. Through the randomized evaluation of join orders, randomized
approaches make a trade-off between runtime and efficiency. Although ran-
domized approaches guarantee neither an optimal nor an efficient order, in
practice, randomized approaches provide reasonable efficiency.

2.3 Cost-function

To determine efficient join orders, RDBMSs need to compare different equiv-
alent join orders. Equivalent join orders are compared using cost estimations
provided by a cost function. Cost functions use cardinality estimations to es-
timate the usage of different system resources. Considered system resources of
cost functions can include disk accesses, network traffic, and CPU or memory
usage. As the cost function needs to be executed at least once for each con-
sidered join order, the runtime of cost-functions can significantly influence the
performance of join-order optimization [7].

2.4 State-of-the-Art: Dynamic Programming

We will focus on the deterministic exhaustive search approach, dynamic pro-
gramming. Dynamic programming relies on the property that an optimal result
only contains optimal intermediate results. Using this property, an optimal re-
sult is constructed iteratively by first splitting the optimization problem into
subproblems. Optimal intermediate results of subproblems are combined to
provide solutions for the splitted problem. Considering this evaluation, we
need to highlight two aspects: dependencies and caching.

As splitted problems rely on their corresponding intermediate results, de-
pendencies exists between the splitted problem and the corresponding inter-
mediate results. Due to this dependencies, we can only use results of a splitted
problem for further evaluations after we determined the optimal result.

Regarding intermediate results, we need to consider that a single interme-
diate result is in general not only used once, but multiple times throughout
the optimization. Hence, intermediate results are cached in a data-structure
(called memo-table) to avoid the evaluation of the same intermediate results
several times.
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(Intermediate) results can be represented as quantifier sets (QSs). QSs pro-
vide the information regarding the available tables within specific (intermedi-
ate) results. For each QSs, we need to determine the optimal split (/result)
providing the least cost. Hence, we do not only need to evaluate one but all
possible splits. According the property of joins (binary operator), a split sep-
arates the tables of QSs into two subsets following the query topology (see
Section2.1). We call these two subsets (/intermediate results) join pairs.

For join-order optimization, first, dynamic programming determines results
for QSs with single elements (table accesses). Afterwards, existing results are
combined to create results with an increasing number of tables, until the fi-
nal result is determined (see Figure 3). Although the applicability of dynamic
programming is limited based on the complexity and time, dynamic program-
ming determines optimal results efficiently. Hence, several RDBMSs (such as
Postgres and IBM DB2 [2]) use dynamic programming.

2.4.1 Sequential dynamic programming

Three different sequential variants exist: DPg;,5, DPgygs, and DPqcp.

In 1979, Selinger et al. proposed the first variant of dynamic programming
for join-order optimization DPg,p; [13]. DPgzx completely follows the execu-
tion strategy described in the previous section. Hereby, results are grouped
into partitions based on the number of tables contained in the results. To cre-
ate new results, entries of two partitions are joined. The partitions are selected
based on the number of tables contained in partition entries and the result.
While combining two partitions, each entry of one partition is joined with each
entry of the other partition. Hence, also invalid join pairs (e.g., join pairs with
an overlapping QS (QS1, QS1,2)) are evaluated.

To avoid the evaluation of join pairs with an overlapping QS, Vance et al.
proposed DPgyp especially for clique queries [17]. DPgyp enumerates inter-
mediate results based on the set of contained tables. Each set specifies which
tables are available in a specific intermediate result. Join pairs are enumerated
by splitting the sets into disjunct subsets. Based on the enumeration, DPgyy
avoids the evaluation of invalid join pairs. Unfortunately, DPyyp enumerates
all possible subsets of tables, but only for cliques every subset is connected
and needed. For non-clique topologies also unconnected and, hence, unneeded
subsets are evaluated.
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In order to also efficiently enumerate non-clique queries, Moerkotte et al.
proposed DP¢cp [8]. DPcop enumerates join pairs based on the query graph
and, hence, only evaluates needed join pairs.

2.4.2 Parallel dynamic programming

Based on the complexity and time limit of join-order optimization, especially
sequential variants of dynamic programming are limited to simple optimiza-
tion problems. To extend the applicability, the following parallel variants were
proposed: PDPgy,, DPE:y, a parallelization through search state dependency
graphs (SSDGs), and a distributed optimization.

In 2008, Han et al. proposed PDPgsy, [5]. PDPgy, parallelizes DPgpyp.
Based on available threads and allocation schema, PDPgy, assigns join pairs
to threads implicitly. Each thread gets a start and end id and the step size to
iterate over all join pairs. After all join pairs of one iteration are evaluated,
the results of all threads are merged. To reduce the overhead of invalid join
pairs introduced by DPg,, Han et al. introduced skip vector arrays (SVAs).
Using SVAs, each thread skips invalid join pairs to the next valid join pair.

Although PDPy,, reduces the overhead of the evaluation of invalid join
pairs by using SVAs, SVAs cannot completely remove this overhead. In order
to get rid of the overhead of an evaluation of invalid and unneeded join pairs,
Han et al. proposed DPEqpy [4]. DPEggN uses existing enumeration schemes
(such as DP¢cp) to enumerate only valid join pairs. The enumerated join pairs
will be evaluated in parallel following a producer-consumer model. We will
discuss the details of DPE,y in the next sections.

Furthermore, Waas et al. proposed a parallelization strategy using SS-
DGs [18]. Considering SSDGs, for each join pair a state is assigned. The
state defines, whether a join pair is executable or not. Executable join pairs
are evaluated in parallel on available threads.

The mentioned parallel variants have in common that they run on single
machines. Trummer et al. extend dynamic programming for join-order op-
timization to a distributed optimization [16], based on the master-slave
concept. The master implicitly assigns complete join orders to workers using
an id. Based on the assigned id, workers determine the relevant join orders.
Workers evaluate the assigned join orders and provide them to the master.
The master merges evaluated join orders of workers and selects the optimal
join order.

3 Dependence-Aware Parallel Enumeration: Basic Concept

To parallelize the dynamic programming approach for join-order optimiza-
tion based on a given enumeration scheme, Han et al. proposed Dependence-
Aware Parallel Enumeration (DPEqgy) [4]. DPEggy can parallelize different
enumeration schemes (such as DPgyp or DPccp). DPEggy only requires that
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Algorithm 1: DPEq.y [4]

Input : Join query @ with n tables T'= {T%,...,Tn}

Output: An optimal bushy join tree

Buffer size COUNT

Concurrent buffer B, Bp;

Hash-Table Memo;

partial_order = buildPartialOrder(Q);

available_pairs = parseJoinPairs(partial_order, Memo, B,, COUNT);

while available_pairs # NO_MORE_PAIR do
switchBuffers() // Be = Bp; Bp = B
fori=0to MAX THREAD_ID — 1 do

| threadPool.submitJob(createQEPs(B.,Memo));

available_pairs = parseJoinPairs(partial_order, Memo, B,, COUNT);
createQEPs(B:,Memo));

12 threadPool.sync();

13 return Memo(T) ;

© W N o AW N -

R
[}

enumeration schemes consider the dependencies between problems correctly by
enumerating problems after their corresponding subproblems (see Section 2.4).

The key concept of DPEggy is the producer-consumer model. Hence, we
need to consider two different roles: producer and consumers.

The tasks of the producer are shown in Algorithm 1. First, the produce
initializes relevant data structures including the buffer and memo table (see
Line 1-3). Afterwards, the producer creates a partial order of join pairs (see
Line 4). The partial order groups relevant join pairs according to their depen-
dencies (see Section 4.2.1). Hereby, join pairs of one group of the partial order
represents independent join pairs. The performed actions can vary from a sim-
ple initialization for the data structures representing the partial order (see
Section 4.2.1) to a complete enumeration of all join pairs (see Section 4.3.1).
Based on the partial order, the producer prepares a specific number of join
pairs for the evaluation (see Line 5) until all join pairs are evaluated (see
Line 6). Similar to the previous step, also the performed actions can vary
depending on the processing of the enumeration scheme (see Section 4.3.1).
For an iterative enumeration, join pairs are enumerated and grouped based
on the partial order. Afterwards, join pairs are inserted into the buffer con-
sidering the partial order. For complete enumerations, the enumeration was
already performed in the previous step. Therefore, we only need to fetch join
pairs from the partial order and add them to the buffer. Afterwards, the pro-
ducer makes the prepared join pairs available for the consumer (see Line 7-9).
Next, the producer prepares join pairs for the next iteration (see Line 10). In
order to use all available resources for the evaluation of prepared join pairs,
the producer also becomes a consumer and evaluates available join pairs (see
Line 11). In order to make sure that all join pairs are evaluated, the producer
synchronizes with the consumers at the end of the iteration (see Line 12). In
the end, the producer returns the final result (see Line 13). In order to reduce
the synchronization overhead, the producer does not provide single join pairs
to the consumer, but will group join pairs into equivalence classes (ECs) (see
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Algorithm 2: createQEPs [4]
Input: EnumerationBuffer B., Hash-Table Memo

1 equivalence_class {(gsl, ¢s2)} = Bc.pop();

2 while equivalence_class != () do

3 QEP solution = 0 ;

4 while equivalence_class != 0 do

5 (gs1, gs2) = equivalence_class.pop();

6 while ! final(gsl) || /final(gs2) do

7 | wait();

8 if ¢s2 =0 then

9 solution = createTableAccessPlan(gsl);
10 else

11 new_solution = createJoinPlan(Memo[gs1], Memo|gs2]);
12 prunePlan(solution, new_solution);

13 prunePlan(Memo[gs1 U gs2], solution);

14 equivalence_class = Bc.pop();

Section 4.2.1). One EC represents different splits of the same QS of one group
of the partial order. Accordingly, the partial order reduces the synchronization
overhead of reads and ECs reduce the synchronization overhead of writes.

The tasks of the consumers are shown in Algorithm 2. To evaluate join
pairs, first, each consumer fetches an EC from the concurrent buffer until all
ECs are processed (see Line 1-2). All join pairs of an EC represent the same
solution (/ QS) (see Section 4.2.1). Hence, a consumer only needs to prepare
one final solution per EC (see Line 3). The consumer will iteratively construct
the result for an EC by evaluating all join pairs contained within the EC (see
Line 4-13). The consumer fetches a join pair of the EC (see Line 5). Afterwards,
the consumer needs to check, whether all relevant intermediate results for the
two elements of the join pair are available (see Line 6). If relevant results for the
join pair are missing, the consumer needs to wait (see Line 7). Considering the
usage of partial orders, this waiting is only needed in case of 'threading across
dependencies’ (see Section 4.2.3). Otherwise, the consumer evaluates the join
pair (see Line 8-12). In a join pair two different result types are encoded: table
accesses and joins. For table accesses, only the first element of a join pair is
available (see Line 8). Therefore, we only need to determine the best table
access (see Line 9). For join pairs, we need to determine a new solution based
on the given QSs (see Line 11). As one EC can contain multiple equivalent
join pairs, the new solution must be pruned against the existing solution (see
Line 12). When all join pairs of an EC are evaluated, the consumer prunes
the local result with the global result stored in the memo table (see Line 13).
Afterwards, the consumer fetches the next EC (see Line 14) until no ECs are
available (see Line 2).
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4 DPEggn: Design Option Evaluation

In the following section, we discuss and evaluate different design options for
DPEggy. First, we provide our evaluation setup (see Section 4.1. Next, we eval-
uate design options discussed by Han et al. [4] (see Section 4.2). Afterwards,
we discuss and evaluate further design options, we identified in our evaluation
(see Section 4.3).

Based on different design options, we evaluated 224 variants of DPE gy.
Unfortunately, we cannot provide all results of our evaluation. Hence, for this
section, we use the DPEqpy variant described by Han et al [4] as baseline.
This DPE¢y variant uses the partial order SLQSS (see Section 4.2.1) [4] with
a buffer size of 80000 (see Section 4.2.2) supporting TAD (see Section 4.2.3).
Furthermore, the baseline uses an iterative enumeration (see Section 4.3.1),
a hash-based memo-table (see Section 4.3.2), and a queue-based buffer
(see Section 4.3.3).

We report all times as ratio to the baseline (ag’;;re?ﬁfs ). Hence, smaller results
are better. The absolute times can be found in the Appendix A.

4.1 Evaluation-Setup

In our evaluation, we consider four different query topologies: linear, cyclic,
star, and clique queries (see Section 2.1). We will consider bushy trees as
tree types of the determined QEPs. Following previous evaluations, we use
a query size of maximal 20 tables for linear, cyclic, and star queries. Since
we observe similar effects as the related work, for clique queries, we use maxi-
mal 15 tables to achieve reasonable runtimes. In our evaluation, we consider
only commutative joins, with neither a parametric nor multi-objective
optimization. Similar to related work, we use a simple cost function consid-
ering the sizes of intermediate results with an additional overhead to simulate
complex cost functions used in commercial systems [7].

For each combination of query size and topology, we perform 30 measurements
and use the average to aggregate the measurements. For each measurement,
we generate a new query using a query generator based on a random number
generator. According to the generated random numbers, we select joinable ta-
bles following the query topology, table cardinality and join selectivities. Since
we are focused only on the optimization and not on the execution, we neither
generate data for the query nor execute the queries.

We use C/C++14 and GNU compiler (Version: 5.4) with the optimization
flag 703" for our implementation.

We use a machine having 256 GB RAM and Ubuntu Linux 16.04 (Kernel-
Version:4.4.0-98) as operating system. The machine provides two Intel Xeon
E5-2609 v2s- 2013 CPUs each containing 4 cores with 2,5 GHz clock speed and
a cache of 20 MB. Since the available hardware supports the parallel execution
of 8 threads, we use 8 threads for DPE¢gy.
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Fig. 4: Different partial orders [4]

4.2 Existing Design Options

In the following sections, we will discuss and evaluate the design options dis-
cussed by Han et al. [4], regarding: partial order (see Section 4.2.1), buffer size
(see Section 4.2.2), and TAD (see Section 4.2.3).

Partial Order describes the grouping of join pairs.

Buffer size describes the number of prepared join pairs.

TAD describes whether in one iteration only a single or multiple groups of a
given partial order are evaluated.

4.2.1 Partial Order

In DPEggy, consumers evaluate join pairs in parallel. During the evaluation
of join pairs, consumers need to read existing (intermediate) results from the
memo table and need to write new or updated (intermediate) results into the
memo table. Based on the dependencies between (intermediate) results (see
Section 2.4), both read and write operations require synchronization. To reduce
synchronization, DPE,py uses two concepts: partial orders and equivalence
classes (ECs).

Before consumers are allowed to read entries of the memo table to create
new (intermediate) results, all possible join pairs for these entries must be
already evaluated. To guarantee the availability of the final optimal (interme-
diate) result, DPEggy uses a partial order, which groups join pairs based on
their dependencies. Join pairs of one group do not depend on each other and,
hence, are evaluable in parallel without synchronization. Han et al. propose
three different partial orders: RQS, SRQS, and SLQS [4] (see Figure 4).

RQS groups join pairs based on the tables contained in the results. SRQS
groups join pairs based on the number of tables contained in the results. SLQS
groups join pairs based on the number of tables contained in the larger QS. For
SLQS, Han et al. proposed to split each group into further sub-groups based
on the number of tables contained in the smaller QS of the join pair. We
call this further splitting SLQSS. Hereby, SLQS and SLQSS support an early
termination. An early termination means that a non-optimal result for the
query is already available before the last iteration. As we see in Figure 4, the
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Fig. 5: Optimization time (ratio) of different partial orders for different query
topologies.

first results for the final solution will be provided, when SQLS; o) is processed
in the group SQLSs.

Although join pairs of a group of the partial order do not depend on each
other, they can represent equivalent solutions. Hence, we still need to synchro-
nize writes of the memo table. To avoid synchronizing the writes, DPEqpy
further divides the join pairs of one specific group of the partial order into
ECs based on the resulting QS. One EC will only be evaluated by one con-
sumer. Hence, within a group of the partial order, a single entry of the memo
table will be written only by single consumers. Therefore, consumers do not
need to synchronize the writes of the memo table, except when using 'threading
across dependencies’ (see Section 4.2.3).

Evaluation Results In Figure 5, we show our results considering different par-
tial orders. For each partial order, we select a buffer size of 80,000 based on
our evaluation results (see Section 4.2.2).

For linear and cyclic queries, we do not see stable results. Based on the
high deviation (see Figure 13 in Appendix A) no conclusive observations can
be made.

For star and clique queries, we see that RQS significantly increases the
optimization time by up to 42% (star) to 45% (clique) compared to the best
variant. Nevertheless, considering clique queries, the overhead of RQS vanishes
as the query size increases. For star queries, the partial orders SRQS, SLQS,
and SLQSS provide similar results within a range of 10%. For smaller clique
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queries, we see that also SRQS provides an overhead of up to 19% compared
to the best variant. Similar to RQS, SRQS provides better results as the query
size increases.

Discussion For RQS, we saw an overhead compared to other partial orders
especially for star and clique queries. This overhead is based on the two chal-
lenges: dependency management and resource utilization. Considering RQS,
each solution has its own sub-group (see Figure 4). Therefore, based on the
high-number of (intermediate) results, especially for star and clique queries,
the dependency management between the join pairs already introduces an
overhead. To reduce the costly-maintenance of RQS [4], we use a sorted-data
structure (std::map) in combination with the numeric representation used by
DPgy5. The dependencies between different groups of RQS are considered by
the sorting of entries. In order to correctly evaluate all prepared join pairs, we
just need to iterate over the sorted data structure.

We used a similar method not only for RQS, but for all partial orders.
Although this method provides the advantages that dependencies are managed
efficiently, an issue is that the groups are not sorted based on the number of
open dependencies, but on the numeric representation. Considering TAD (see
Section 4.2.3), we might achieve better results, when groups are organized not
by the numeric representation, but by the number of open dependencies, since
the probability that consumers need to wait for dependent results would be
reduced and the efficiency would be increased.

Furthermore, the fact that each (intermediate) result (QS) has its own sub-
group in RQS also provides a challenge regarding the resource utilization.
All join pairs of a sub-group of the partial order representing the same result
are grouped into one EC to avoid synchronization. Hence, all join pairs of
one group are only evaluated by a single thread and multiple groups need to
be evaluated at the same time to provide a parallel optimization considering
RQS. Based on the dependencies between groups of the partial order, this can
also lead to further delays and reduce the efficiency of the optimization.

For larger clique queries, the cost function becomes the main bottleneck
of the optimization. Hence, the differences between the different partial orders
vanishes.

The resource utilization also causes the overhead for small clique queries
for the partial order SRQS. Although the challenge of the resource utilization is
reduced considering SRQS as we can provide more independent EC per group
compared to RQS, the last group cannot be evaluated in parallel as all join
pairs represent the same result (see Figure 4) and, hence, will be grouped in
one EC.

Nevertheless, especially for larger queries, SRQS, SLQS, and SLQSS be-
have very similar. Although SLQS and SLQSS further improve the resource
utilization by splitting also the last result into different groups (see Figure 4),
both partial orders do not dominate the other variants in our evaluation. The
reason for this is that not only the partial order is relevant, but also the used
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Fig. 6: Optimization time (ratio) of different buffer sizes for different query
topologies.

enumeration scheme. The used enumeration scheme DP .. does not enumer-
ate the join pairs according to partial order, but can enumerate join pairs of
different groups in the same iteration. Hence, for the partial orders SRQS,
SLQS, and SLQSS join pairs for the same result can be distributed over dif-
ferent iterations, limiting the possible resource utilization. As all three partial
orders suffer in the same way, similar results are achieved.

4.2.2 Buffer Size

Based on the used partial order, in each iteration the producer prepares join
pairs. Hereby, the maximum number of prepared join pairs depends on the
buffer size. Unfortunately, the buffer size has two contradicting requirements.
On the one hand, the buffer size should be small enough to reduce the waiting
time for consumers, especially at the beginning. On the other hand, the buffer
size should be large enough to provide enough ECs for all consumers.

Evaluation Results In Figure 6, we show our results for a varying buffer size.
Since we are using 8 threads, we are evaluating a buffer size of 800, 8000,
80000, and 800000.

Similar to the previous evaluation, for linear and cyclic queries, we
cannot make a conclusive observations regarding the buffer size based on the
high deviation of the aggregated measures (see Figure 14, Appendix).
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For star queries, not a single best buffer size exists. For smaller star queries
up to 12, all different buffer sizes provide a similar behavior within a range of
11%. For larger star queries (12-20 tables), a buffer size of 8,000 provides the
best results reducing the execution time by up to 25% compared to the worst
buffer size. Again, the differences vanish as the query size increases. For 20
tables, the differences between the different buffer sizes are within a range of
9%.

For clique queries, we see a clear trend. For smaller clique queries (3-9
tables), the different buffer sizes behave again similar within a range of 13%.
For larger clique queries (10-11 tables), the buffer size of 8,000 provides the
best result reducing the optimization time by up to 28% compared to the worst
buffer size. For even larger clique queries (12-15), the next bigger buffer size
of 80,000 provides the best results reducing the optimization time by up to
almost 40% compared to the worst buffer size. Based on the trend, we assume
that if the query size increases further the biggest buffer (800,000) will provide
the best results.

Discussion In our evaluation, we saw that the buffer size should be adapted
to the complexity of the optimization. Smaller buffers provide an advantage
for simpler optimizations. As the optimization complexity increases also the
buffer size should be increased.

Smaller buffers have the advantage that the producer can provide join pairs
in a fast way, reducing especially the initial delay. Unfortunately, especially
for more complex optimization problems, a smaller buffer size has the problem
that depending on the enumeration scheme and partial order, only few ECs or
few join pairs per EC are provided, reducing the parallelism. As countermea-
sure, we can increase the buffer size and, hence, the number of prepared join
pairs. Nevertheless, even if we increase the buffer size, we cannot guarantee
that enough independent join pairs are available.

Furthermore, please note that we only showed the results for our baseline
(see Section 4). Especially, considering different buffer types (see Section 4.3.3),
the impact of the buffer sizes differs significantly.

4.2.83 Threading Across Dependencies

Based on its generic nature, DPE gy supports different enumeration schemes.
In our evaluation, we use the enumeration of DP¢cp [8] similar to previous
evaluations. Unfortunately, this enumeration scheme does not guarantee that
all join pairs of one group of the partial order are fully enumerated before
join pairs of the next groups are enumerated. Prepared join pairs might be
scattered over the complete partial order. As a consequence, the producer
might only provide few ECs within one group of the partial order or few join
pairs per EC. If only a single group of the partial order is evaluated, not enough
computations might be available to fully utilize all consumers.

To increase the number of ECs, Han et al. introduced ’'threading across
dependencies’ [4]. Using TAD, consumers are allowed to process ECs of more
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Fig. 7: Optimization time (ratio) with and without TAD for different query
topologies.

than one group of the partial order in one iteration, if the preceding groups
were already processed. The independence of join pairs is only guaranteed
within a group but not between different groups. Hence, if multiple groups
of the partial order are evaluated simultaneously, we need to synchronize the
evaluation again (see Line 6-7, Algorithm 2). In order to avoid synchroniza-
tion, we can only process one group at a time (NO-TAD) and can use a
complete enumeration to ensure that enough join pairs and ECs are available
(see Section 4.3.1).

Evaluation Results In Figure 7, we show our results with respect to the opti-
mization with and without TAD.

For linear and cyclic queries, we see that the evaluation without TAD
poses a significant overhead considering the partial order SLQSS. The op-
timization time is increased by 70% (cylic) to 120% (linear). Nevertheless,
again the differences between the variants vanish as the query size increases.
For the largest query sizes, both variants achieve equivalent results. Based
on the trend, we expect that an evaluation without TAD will achieve better
results for even larger linear and cyclic queries.

For smaller star queries (2-7 queries), an evaluation without TAD provides
worse results, increasing the optimization time by up to 74%. For larger star
queries, an evaluation without TAD reduces the optimization time by up to
32%.
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For clique queries, for small query sizes (7-9 tables), an evaluation without
TAD increases the optimization time by up to 83%. For larger queries, an
evaluation without TAD (10-11 tables) reduces the optimization time by up to
22%. As the query size increases further, the evaluation without TAD becomes
worse and only achieves comparable results compared to an evaluation with
TAD.

Discussion For all query topologies, we saw at least two phases.

For smaller query sizes, one group of the partial order cannot provide
enough independent join pairs for a parallel evaluation. Hence, although de-
pendencies exist between the evaluated join pairs, TAD provides better results.

For larger query sizes, one group of the partial order provides enough inde-
pendent join pairs to efficiently parallelize the evaluation. Hence, the evalua-
tion of join pairs without synchronization in NO-TAD provides better results
compared to TAD.

Nevertheless considering large clique queries, both variants achieve similar
results. The problem, especially for large clique queries is that the used com-
plete enumeration poses an overhead (see Section 4.3.1). Even removing the
need for synchronizing memo table accesses cannot compensate this overhead.

Please note that these results are specific to the partial order SLQSS.
Using SLQSS, join pairs are split into smaller groups compared to the other
partial orders. Hence, considering SLQSS, if only a single group is evaluated in
parallel, the parallelization is limited. Partial orders with larger groups (e.g.,
SLQS or SRQS) provide better results regarding an evaluation without TAD
with an complete enumeration, as we will see in Section 5.

4.3 New Design Options

In this section, we will evaluate design options, identified during our evaluation,
regarding: the enumeration processing (see Section 4.3.1), the memo-table type
(see Section 4.3.2), and the buffer type (see Section 4.3.3).

Enumeration Processing describes the way how DPE gy uses an enumer-
ation scheme.

Memo-Table Type describes the data structure of the memo table.

Buffer Type describes the data structure used for the buffer.

4.3.1 Enumeration Processing

Considering the partial orders of DPEqpy, only the grouping of join pairs is
determined. The order in which the different join pairs are inserted in the
partial order is not determined by the partial order but by the enumeration
scheme. DPE gy supports different enumeration schemes. The only require-
ment is that enumeration schemes enumerate join pairs correctly based on the
dependency between different join pairs. The existing enumeration schemes,
such as DPqcp [8] or DPgyp [17], were created for a sequential evaluation.



18 Andreas Meister, Gunter Saake

=8~ Iterative (TAD) Complete (TAD) --@- Complete (NO-TAD) ‘
Linear Cyclic

3 T T T 2
° 0'0:0:0- [ "“n.o.a'n”o.e_ 4 1 15
22 7 a2 %ol 000G g, A
= L& e, 1
E
= 0.5

Star

2 T T
o
1.55%

1 "Wqﬂ‘h‘”
"G 00.4.40 0O
0.5
0 |
5

\ \
2 10 15 202
#Tables #Tables

Time (ratio)

Fig. 8: Optimization time (ratio) of different ways for the enumeration pro-
cessing for different query topologies.

Hence, these enumeration schemes correctly consider the dependencies be-
tween join pairs, but do not guarantee that enumerated join pairs are effi-
ciently evaluable in parallel. Considering the use of enumeration, we see two
options: an iterative or complete enumeration.

An iterative enumeration directly use join pairs as enumerated by the
enumeration scheme.

Using a complete enumeration, we first enumerate all join pairs accord-
ing to the used enumeration scheme, and store them according to the partial
order. Afterwards, the producer prepares the join pairs according to the used
partial order. In this way, we ensure that the maximal number of join pairs
and ECs are provided.

Evaluation Results In Figure 8, we show our results regarding the iterative
and complete enumeration with TAD.

We see that an evaluation of a complete enumeration behaves similar with
and without TAD for all query topologies. However in most cases, a complete
enumeration with TAD provides worse results compared to an evaluation with-
out TAD.

Discussion The main problems of a complete enumeration are that, on the
one hand, the first iteration is delayed until all join pairs are enumerated.
An iterative enumeration can already start the evaluation, while a complete
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enumeration is still enumerating all join pairs. On the other hand, for com-
plex queries, such as star and clique queries, also an iterative approach might
provide enough join pairs and ECs within one group of the partial order for
an efficient parallel evaluation. Furthermore, for simple queries, such as linear
and cyclic queries, in general only a limited number of join pairs and ECs is
available. Hence, even a complete enumeration cannot provide more indepen-
dent join pairs. Furthermore, a problem regarding the partial order SLQSS is
that the evaluated groups are smaller compared to other partial orders. Hence,
other partial orders benefit more from a complete enumeration (see Section 5).
Nevertheless, we see a possible advantage of a complete enumeration indepen-
dent of the performance. A complete enumeration decouples the enumeration
from the evaluation. Based on this decoupling, we get rid of the requirement
that the enumeration scheme must provide the join pairs in correct order, but
can use a broader set of enumeration schemes.

We did not consider an iterative enumeration without TAD. Considering
an iterative enumeration, enumerated join pairs can be scattered over different
groups of the partial order. Hence, evaluating single groups might not provide
enough join pairs to utilize all available consumers similar the partial order
RQS (see Section 4.2.1).

4.3.2 Memo-Table Type

Given join pairs enumerated by the enumeration schema, producer and con-
sumers need the memo table to prepare or evaluate given join pairs.

Han et al. proposed to use a hash-based memo table. A hash-based
memo table provides the advantage that memory is dynamically allocated.
Since only the producer is accessing the memo table directly, also the syn-
chronization is obsolete. Unfortunately, hashing might provide the problem of
collisions depending on the used hashing method. For our implementation, we
used an unordered_map of the STL.

As an alternative, we can use an array-based memo table, using a
fixed size array. Based on the numeric representation of results, we achieve
a collision-free access. As we use the numeric representation of the QSs as
index of the array-based memo-table, we always need to allocate the maximal
number of possible entries (2" — 1). Otherwise, the numeric representation
must be mapped to the entries of memo-table, similar to a hash-based memo
table. Thus, for non-clique queries, we need to accept a storage overhead.

FEvaluation Results In Figure 9, we show our results regarding a hash and
array-based memo table.

For smaller 1inear and cyclic queries (linear:2-8; cyclic: 2-11), both hash
and array-based memo table achieve comparable results within a range of
8%. Afterwards, the array-based memo table provides an overhead up to 23X
(cyclic) to 38X (linear).

For smaller star queries (2-7 tables), an array-based memo increases the
execution time by up to 16%. As the query size increases (8-20 tables), the
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Fig. 9: Optimization time (ratio) of different memo tables for different query
topologies.

array-based memo tables continuously improves. For a star query with 20
tables, an array-based memo table reduces the optimization time by 35%.

For smaller clique queries (2-4 tables), an array-based memo increases the
execution time by up to 24%. Similar to star queries, the array-based memo
table improves as the query size increases up to 11 tables. For clique queries
with 9 tables, an array-based memo table reduces the optimization time by
up to 17%. As the query size increases further (12-15 tables), the differences
between both variants reduces.

Discussion The problem of the array-based memo table (especially for linear
and cyclic queries), is that only few entries of the array are needed. Hence,
a hash-based memo table provides better cache utilization. In contrast, for
star and clique queries, most or all entries are needed, thus, both hash and
array-based memo table have a similar cache utilization. Furthermore, the per-
fect mapping of results to entries within the array-based memo table leads to
improved performance compared to the hash-based memo table. Considering
large clique queries, the evaluation of the join pairs becomes the main bottle-
neck for the different variants. Hence, both variants provide similar results.

4.3.3 Buffer Type

DPE¢gy uses a buffer to provide join pairs to available workers. The producer
prepares and pushes join pairs to the buffer, while workers take and evaluate
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join pairs from the buffer. Han et al. proposed to use a Double Buffer con-
taining two queue-based buffers [4]. The concept regarding a Double Buffer
is to use two different queues, one for the producer and one for the consumers.
As only one producer is accessing the producer queue, pushing entries to the
queue does not require any synchronization. However, as the consumer queue
is accessed by all consumers, pulling entries from the queue must by synchro-
nized. We use locking to synchronize the access of the consumers. Furthermore,
we use a hash table (std::unordered_map) to enable the storing and mapping
of join pairs to ECs based on the numeric representation of (intermediate)
results. In the queue, we only store references to entries of the hash table.

Similar to the memo table (see Section 4.3.2), we use an array-based
buffer, using a fixed-size array. Similar to the queue-based buffer, we need
more than one data structure. One array stores the ECs. To avoid sorting of
stored ECs based on the dependencies, we use another array storing references
to the ECs. For synchronization, we switch from a lock-based to lock-free
synchronization using atomic numbers. To pull ECs, consumers increment the
atomic number by 1. The atomic number synchronizes the increments and
returns the unique, previous value. Consumers use the returned value to access
ECs at the corresponding positions in the array. As ECs have an arbitrary
number of join pairs, we still need a dynamic container (std::queue) to store
all join pairs. Hence, for an array-based buffer, we also have the option to
initialize all ECs at the beginning (Init), or initialize the ECs as needed.

For the mapping, we see two options: a mapped and an indezed approach.
Similar to the queue-based buffer, we use a hash table (std::unordered_map)
within the mapped approach. The hash table uses the numeric representa-
tion as key to link to the corresponding EC stored in the first array. For the
indexed approach, we use two indexes using the integer representation of re-
sults. One index provides the position of the ECs within the array, the other
index provides the information, whether the position is valid for the current
iteration. The use of the second index allows us to use the index without an
invalidation before each iteration.

Evaluation Results In Figure 10, we show our results with respect to the dif-
ferent buffer variants.

For linear and cyclic queries, we see a similar behavior. For smaller
query sizes up to 10 tables, the initialization of the buffer increases the opti-
mization time by up to 13X. For larger linear and cyclic queries, the bottleneck
switches from the initialization to the index-based evaluation of EC increasing
the optimization time by up to 50X (cyclic) - 66X(linear). The queue-based
and uninitialized, mapped array-based buffer achieves similar runtimes.

Considering smaller star and clique queries, we see that the initialization
still provides a significant overhead for the optimization increasing the opti-
mization time by up to 13X. However, as the query size increases the overhead
of array-based buffers vanishes. In the end, the array-based buffers provide
better results reducing the optimization by up to 10% (clique) to 18% (star)
for 20 tables.
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Fig. 10: Optimization time (ratio) of different buffer types for different query
topologies.

Discussion For linear and cyclic queries only few EC needs to be considered.
Hence, there is no significant difference between an efficient array and queue-
based buffer. As the number of EC increases, especially for star and clique
queries, the reduced synchronization effort of the array-based buffer is advan-
tageous.

Due to the construction overhead, a large buffer size already provides an
overhead if all elements need to be initialized at the beginning for small query
sizes.

Considering an indexed array-based buffer, we see a similar behavior com-
pared to an array-based memo table. For linear and cyclic queries, the use of
an index leads to bad cache utilization as only a small number of entries are
used. In contrast to an array-based memo table, an indexed array-based buffer
provides no noticeable difference compared to the mapped variant. Consider-
ing the array-based buffer, we need not only one but two arrays to manage
the mapping of ECs and to check the validity. This additional check provides
already enough overhead to compensate the benefit of an direct collision-free
determination of ECs.

For the queue-based buffer, we use a lock-based queue. Hence, an evaluation
of a lock-free implementation might achieve better results. Nevertheless, we
already tried to minimize the waiting time by only storing pointers instead
of complete ECs in the buffer. Hence, we do not expect significantly different
results.
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5 DPE :n: Variant Evaluation

Until now, we evaluated only the variant of DPEqgy proposed by Han et al.
and changed single design options. Furthermore, we only evaluated the partial
order SLQSS with a buffer size of 80,000. We noticed that for different variants
different combinations of partial orders and buffer sizes provide better results.
In this section, we compare different variants based on the discussed design
options. HASH vs MEMORY describes the type of the used memo table (see
Section 4.3.2). ARRAY vs QUEUE describes the type of the used buffer (see
Section 4.3.3). In order to reduce the number of shown variants, we will merge
the results for different array-based buffer types based on the query topology.
Based on the use case, we will select the variant providing the best results
(see Section 4.3.3). For linear and cyclic queries, we report the variant using
mapped, un-initialized arrays. For star and clique queries, we report the variant
using indexed, initialized arrays. The last parameter describes either the use of
TAD based on the iterative (ITAD) or complete (CTAD) enumeration of join
pairs, or the evaluation without TAD based on a complete enumeration (see
Section 4.2.3 and Section 4.3.1). For each variant, we select the partial order
and buffer size leading to the best performance considering the maximal table
for each query topology respectively. We will use the setup of the previous
evaluation (see Section 4.1).

Evaluation Results In Figure 11, we show our results comparing the best vari-
ants of DPE¢ggy.

For linear and cyclic queries, we see that the variants using memory-
based memo tables are significantly slower than their hash-based counterparts.
Furthermore, we see that the variants using a hash-based memo table without
TAD provides the best results for a larger query size. The best variant (HASH-
ARRAY) considering 20 tables is using the partial order SLQS with a buffer
size of 80,000 for linear and 800,000 for cyclic queries.

Furthermore, we see that as the complexity of the optimization increases
the differences between the different variants of DPEy are decreasing. For
star queries with 20 tables, the best variant is MEMORY-ARRAY using the
partial order SRQS with a buffer size of 8,000. MEMORY-ARRAY reduces the
optimization by 54% compared to the worst variant (HASH-QUEUE-ITAD).

For clique queries with 20 tables, the best variant is MEMORY-ARRAY-
ITAD using the partial order SRQS with a buffer size of 80,000. Notably, the
variant MEMORY-ARRAY with the partial order SLQS with a buffer size
of 8,000 achieves a similar result. MEMORY-ARRAY-ITAD only reduces the
optimization by 24% compared to the worst variant (HASH-QUEUE-CTAD).

When comparing the different variants of DPEqgy to the sequential vari-
ant DPocp, we see similar to previous evaluations that a parallel evaluation
needs a specific complexity of the optimization to provide a benefit (see Sec-
tion 5.1) [7].
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Fig. 11: Optimization time (ratio) of different DPEggy variants for different
query topologies.

Discussion In our evaluation, we differentiate mainly between two use cases:
simple and complex queries.

In simple queries (such as linear and cyclic queries or queries containing
only few tables) only few join pairs need to be evaluated. The parallel evalua-
tion of these join pairs is further reduced based on the dependencies between
the join pairs (see Section 4.2.1). Hence, although we saw that a parallel eval-
uation still provides a benefit, this benefit is paid by a high price: an inefficient
resource utilization, as we will see in the next section. In contrast for more
complex optimization problems, such as star queries with a larger query size,
we use the increased number of possible join pairs to perform an efficient
parallel optimization.

5.1 Scalability

In the previous sections, we evaluated the runtime of different DPEqgy vari-
ants using 8 threads. In this section, we will evaluate selected DPE\ variants
regarding their scalability. For each topology, we will only provide the results
for these variants which provided the best and worst runtime with 8 threads.
For linear and cyclic queries, we will evaluate the variant HASH-ARRAY with
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Fig. 12: Scalability of selected DPEggy variants for different query topologies
with the maximal query size (non-clique: 20, clique:15).

the partial order SLQS and a buffer size of 800,000 as best variant and the
variant MEMORY-ARRAY-ITAD with the partial order SLQSS with a buffer
size of 800,000 as worst variant. For star queries, we will evaluate MEMORY -
ARRAY with the partial order SRQS and a buffer size of 8,000 as best vari-
ant and HASH-QUEUE-ITAD with the partial order RQS and a buffer size
of 80,000 as worst variant. For clique queries, we will evaluate MEMORY-
ARRAY-ITAD with the partial order SLQS and a buffer size of 8,000 as best
variant and HASH-QUEUE-ITAD with the partial order RQS and a buffer
size of 800 as worst variant.

Evaluation Results In Figure 12, we show our results comparing the scalability
of different variants of DPE gy for the different query topologies.

For linear and cyclic queries, we see similar results. For both query
topologies, we see that the scalability is limited. The variant with the best
runtime, only achieved a scale up of less than 2 with 8 threads. The worst
variant performed even worse compared to an execution with a single thread.

For star queries, we already see a speedup of 6 considering an execution
with 8 threads. For clique queries, we see a speedup of the best variant of 7
with 8 threads.

Notably, during the analysis of the results, we noticed that the variant
MEMORY-ARRAY with the partial order SLQS and the buffer size 8,000
provided the best or comparable scalability independent of the considered

query topology.
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Discussion Based on the reduced number of independent join pairs, a paral-
lel evaluation of linear and cyclic queries or smaller queries is not efficient.
Only for complex optimization problems, such as larger star or clique queries,
the increased number of independent join pairs lead to an efficient parallel
evaluation.

Please note that we reported only the results for the maximal query size of
the respective query topology (non-clique: 20; clique: 15). Hereby, we observed
that the scalability is not only dependent on the query topology, but also on
the query size. As the query size is decreasing also the scalability is decreasing.
For linear and cyclic queries containing only few tables, we even observed that
a parallel evaluation with 8 threads increases the optimization time compared
to an evaluation with a single thread.

5.2 Recommendation

Based on our results, we recommend to use:

e sequential dynamic programming variants for smaller query sizes and linear
and cyclic queries.

¢ MEMORY-ARRAY with an initialized buffer using the partial order SLQS
and a minimal buffer size of 8,000 for larger star and clique queries.

A linear and cyclic queries provide only a limited scalability (see Sec-
tion 5.1), a sequential optimization is still a good choice. Also for smaller
query star and clique queries, the use of a sequential optimization variant is
reasonable. In our evaluation, DPE. sy provides better results for star queries
with more than 6 tables and clique queries with more than 5 tables. How-
ever, these thresholds can vary based on the used system and especially the
complexity (/runtime) of the used cost-function [7].

The recommended variant provides the following advantages:

e Efficient dependency management (SLQS, see Section 4.2.1).

e Efficient interleaved parallelization (8,000, see Section 4.2.2).

e Efficient dependency-free evaluation of join pairs (NO-TAD, see Section 4.2.3
and complete enumeration see Section 4.3.1).

A collision free-access of the memo-table (MEMORY, see Section 4.3.2).
Reduced synchronization between consumers (ARRAY, see Section 4.3.3).

5.3 Threats to Validity

We took great care to reproduce the previously published results [4]. Never-
theless, we could not completely reproduce these results. We did not achieve a
linear speedup. For clique queries with 15 tables, we only achieved a speedup
of 7. For a star query with 20 tables, we only achieved a speedup of 6 using
8 threads. Furthermore, in contrast to the previous results, the variants pro-
viding the best results did not use TAD. A possible reason for the different
results could be a difference regarding the synchronization of producer and
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consumers. In their publication, Han et al. described a busy-waiting approach
based on an atomic integer. In our evaluation, we used a lock-based approach.
The advantage of a lock-based approach is that a consumer sleeps while de-
pendent join pairs are evaluated, and is notified if all dependent join pairs are
evaluated. Hence, compared to the busy waiting approach, no resources are
wasted during the waiting time. Furthermore, we used a lock-based compared
to a lock-free queue as a double buffer. Besides further implementation differ-
ences, other possible reasons could be the use of cost-functions with different
runtimes [7], compiler differences, or hardware-specifics (e.g., NUMA effects).
Unfortunately, we could not gain access to the original implementation to
identify the real reason(s).

Furthermore, we need to consider that the differences between design op-
tions in some use cases are quite low. A difference of only few percentages
could also be based on measurement errors. In addition, we noticed especially
for linear and cyclic queries a high deviation of the measures. Nevertheless,
based on the high number of repetitions, we assume that our observations are
valid.

Furthermore, as shown in Section 5, not all discussed design options are
completely independent. In Section 4, we discussed the different design options
by switching single design options compared to our baseline (see Section 4).
If we switch the baseline, for example, the used partial order, this also will
have an effect on the efficiency of the different design options as we saw in this
section.

6 Conclusion

In this paper, we provided a comprehensive evaluation of different design op-
tions of DPEggy, a parallel optimization approach for join-order optimization.
We evaluated the following known design options: 4 partial orders, 4 buffer
sizes, and 2 options regarding TAD. Furthermore, we evaluated the following
new design options: 2 options regarding the enumeration, 2 memo table types,
5 buffer types. We evaluated each option considering 4 query topologies with
an increasing query size up to 20 tables.

Considering all evaluated variants, depending on the chosen design options
the optimization time is reduced significantly ranging from a reduction of 53%
for clique queries up to 99% for linear queries (see Figure 1). Considering
star and clique queries, especially the switch from a hash-based to a memory-
based memo table and a switch from queue-based to an array-based buffer
reduces the optimization time. Unfortunately, the same options can provide a
significant overhead for linear and cyclic queries.

In the end, based on our results, we recommend to use a sequential dynamic
programming variant for the optimization of small queries or linear and cyclic
queries. For large star and clique queries, we recommend to use an array-
based memo-table with a mapped, initialized array-based buffer using the
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partial order SLQS with a minimal buffer size of 8,000 in combination with a
complete enumeration and without TAD.
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Fig. 13: Optimization time of different partial orders for different query
topologies (see Section 4.2.1).

In each plot, we report the runtimes with error bars (standard deviation) on a loga-
rithmic scale, except for Figure 19. In Figure 19, we omitted the error bars to increase the
readability.

We noticed a high deviation of different measurement especially for linear and cyclic
queries. Considering linear and cyclic queries, the best DPEggn variants only needed few
milliseconds. Hence, even small delays of consumers due to open dependencies of join pairs
can already have a significant impact.
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Fig. 14: Optimization time of different buffer sizes for different query topolo-

gies (see Section 4.2.2).
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Fig. 15: Optimization time with and without TAD for different query topolo-
gies (see Section 4.2.3).
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Fig. 16: Optimization time of different ways for the enumeration processing
for different query topologies (see Section 4.3.1).
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Fig. 18: Optimization time of different buffer types for different query topolo-
gies (see Section 4.3.3).
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Fig. 19: Optimization time (ratio) of different DPEyy variants for different
query topologies (see Section 5).
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