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Welcome to DOL!

Lectures:
Day 1: Motivation and Introduction
Day 2: Basic Structuring with DOL
Day 3: Structured OMS and Their Semantics
Day 4: Using Multiple Logical Systems
Day 5: Advanced Concepts and Applications
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Welcome to DOL!

Daily practical sessions:
We will learn the basics of how to use DOL in practice
employing the Ontohub.org platform and the HETS.eu proof
management and reasoning system.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 3
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Background:

DOL is for:
1 Ontology engineering (e.g. working with OWL or FOL)
2 Model-driven engineering (e.g. working with UML, ORM)
3 Formal (algebraic) specification (e.g. working with FOL, CASL,

VDM, Z)

DOL is a metalanguage providing formal syntax & semantics for all
of them!
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Motivation from ontology engeneering:

We begin with the question:
What kind of ontology engineering problems does DOL
address?

Note:
The issues/problems disscussed in the following apply equally to
model-driven engineering and formal specification, and to
other uses of logical theories.

Examples throughout the course will be taken from the ontology
world (understood as logical theories), using propositional,
description, and first-order logic, but also from algebra,
mereotopology, and software specification.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 5



Motivation & Introduction OMG Standard DOL Tools & Ressources Three Logics Summary

Where we are in the ontology landscape

Formal ontology
Ontology based on linguistic observations
Ontology based on scientific evidence
Ontology as information system

Ontology languages
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A basic problem in ontology engineering:

How can we make it easier to build better ontologies?

Claim:
Distributed Ontology, Model and Specification Language (DOL)
solves many basic (and advanced) ontology engineering problems
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Assume you need to build an ontology
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Three challenges for aspiring ontologist

1 Reuse of ontologies
2 Diversity of languages
3 Evaluate against requirements
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Reuse of ontologies I

First idea:
Reuse existing resources
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Reuse of ontologies II

Reuse is hard
Terminology is “wrong”
Ontology is too wide
Different ontologies pieces
don’t fit to each other

Modifying local copies of ontolo-
gies leads to maintenance issues

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 11
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Diversity of OMS Languages

Languages that have been used for ontological modelling:
First-order logic
Higher-order logic
OWL (Lite, EL, QL, RL, DL, Full), other DLs
UML (e.g. class diagrams)
Entity Relationship Diagrams
Other languages: SWRL, RIF, ORM, BPMN, . . .

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 13
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Which language should I use?

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 14
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Example 1: DTV: Can you use these tools
together?

The OMG Date-Time Vocabulary (DTV) is a heterogenous∗

ontology:
SBVR: very expressive, readable for business users
UML: graphical representation
OWL DL: formal semantics, decidable
Common Logic: formal semantics, very expressive

Benefit: DTV utilizes advantages of different languages

∗ heterogenous = components are written in different languages
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Example 2: Relation between OWL and FOL
ontologies

Common practice: annotate OWL ontologies with informal FOL:
Keet’s mereotopological ontology [1],
Dolce Lite and its relation to full Dolce [2],
BFO-OWL and its relation to full BFO.

OWL gives better tool support, FOL greater expressiveness.

But: informal FOL axioms are not available for machine processing!

[1] C.M. Keet, F.C. Fernández-Reyes, and A. Morales-González. Representing mereotopological
relations in OWL ontologies with ontoparts. In Proc. of the ESWC’12, vol. 7295 LNCS, 2012.

[2] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Descriptve ontology for

linguistic and cognitive engineering. http://www.loa.istc.cnr.it/DOLCE.html.
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Challenge for combined ontologies I:
Where is the glue?

The different modules need
to be fitted together.
Challenge: Languages may
differ widely with respect to
syntactic categories!

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 17
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Challenge for combined ontologies II: Consistency

Different people work
independently on different
parts.
How do we ensure
consistency across the
whole ontology?
Automatic theorem provers
are specialized in one
language.

∀x∼((Contractor x) ∧ (Employee x))
(bob : Contractor), (bob : Engineer)

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 18
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Diversity of Language: Conclusion

Use of different languages
theoretically good idea
leads to interoperability
problems
obstacle to reuse of
ontologies
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Three challenges for aspiring ontologist

1 Reuse of ontologies
2 Diversity of languages
3 Evaluate against requirements
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Frequently asked question by students
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Competency Questions – Simplified Summary

Let O be an ontology
Capture requirements for O as pairs of scenarios and
competency questions
For each scenario competency question pair S ,Q:

Formalize S , resulting in theory Γ
Formalize Q, resulting in formula ϕ
Check with theorem prover whether O ∪ Γ ` ϕ

When all proofs are successful, your ontology meets the
requirements.
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Competency Questions Revisited

CQ most successful idea for ontology evaluation
Technically, CQ = proof obligations
Language for expressing proof obligations?
Ad hoc handling of CQs

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 23
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Competency Questions Challenge

How do we keep track of scenarios and competency questions in
a systematic way?

DOL provides a systematic solution to this: ⇒ Lecture 2

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 24
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What does “Modifying / Reusing” mean?

Translations between ontology languages
Renaming of symbols
Unions of ontologies
Removing of axioms
Module extraction
...

None of these features are directly supported by widely used
languages such as OWL or FOL.

DOL covers all these operations: ⇒ Lecture 2–4
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Example Modifying / Reusing
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Declaration of Relations: Example Bridge Axiom
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Specification of Intended Relations: Example BFO
(Basic Formal Ontology)
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DOL: change in perspective
Modular design vs
ontology blobs
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Ontologies are often big monolithic blobs

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 30
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Engineers like it modular

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 31
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Obvious benefits of modular design

Modularity allows for better
Maintainability
Reusability
Quality control
Adaptability

Why not in ontology engineering?

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 32
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The OMG standard DOL:
Basic Ideas
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DOL – An OMG standard

DOL = Distributed
Ontology, Model, and
Specification Language
OMG Specification, Beta 1
released
Has been approved by OMG
Now in finalization process

O B J E C T  M A N A G E M E N T  G R O U PO B J E C T  M A N A G E M E N T  G R O U P

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 34
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History of DOL

First Initiative: Ontology Integration and Interoperability
(OntoIOp)
started in 2011 as ISO 17347 within ISO/TC 37/SC 3
now continued as OMG standard

OMG has more experience with formal semantics
OMG documents will be freely available
focus extended from ontologies only to formal models and
specifications (i.e. logical theories)
vote for DOL becoming a standard taken in Spring 2016
now finalization task force until end of 2016

50 experts participate, ∼ 15 have actively contributed
DOL is open for your ideas, so join us!

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 35
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The Big Picture of Interoperability

Modeling Specification Ontology engineering
Objects/data Software Concepts/data
Models Specifications Ontologies
Modeling Language Specification language Ontology language

Diversity and the need for interoperability occur at all these levels!

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 36
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What have ontologies, models and specifications in
common?

OMS . . .
are formalised in some logical system
have a signature with non-logical symbols (domain vocabulary)
have axioms expressing the domain-specific facts
semantics: class of structures (models) interpreting signature
symbols in some semantic domain
we are interested in those structures (models) satisfying the
axioms
rich set of annotations and comments

In DOL, ontologies, models and specifications are called “OMS”!

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 37
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DOL metalanguage capabilities

DOL enables reusability and interoperability.
DOL is a meta-language:

Literally reuse existing OMS
Operations for modifying/reusing OMS
Declaration of relations between OMS
Declaration of intended relationships between OMS

Support for heterogenous OMS

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 38
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Diversity of Operations on and Relations among
OMS
Various operations and relations on OMS are in use:

structuring: import, union, translation, hiding, . . .
alignment

of many OMS covering one domain
module extraction

get relevant information out of large OMS
approximation

model in an expressive language, reason fast in a lightweight
one

distributed OMS
bridges between different modellings

refinement / interpretation
Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 39
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From Babylonian Confusion to Toolkit

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 40



Motivation & Introduction OMG Standard DOL Tools & Ressources Three Logics Summary

There is a Need for a Unifying Meta Language

Not yet another OMS language, but a meta language covering
diversity of OMS languages
translations between these
diversity of operations on and relations among OMS

Current standards like the OWL API or the aligment API only cover
parts of this

The DOL standard addresses this

The DOL language requires abstract
semantics covering a diversity of OMSs.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 41
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Overview of DOL: Toolkit in Summary
1 OMS

basic OMS (flattenable)
references to named OMS
extensions, unions, translations (flattenable)
reductions, minimization, maximization (elusive)
approximations, module extractions, filterings (flattenable)
combinations of networks (flattenable)

(flattenable = can be flattened to a basic OMS)
2 OMS mappings (between OMS)

interpretations, refinements, alignments, . . .
3 OMS networks (based on OMS and mappings)
4 OMS libraries (based on OMS, mappings, networks)

OMS definitions (giving a name to an OMS)
definitions of interpretations, refinements, alignments
definitions of networks, entailments, equivalences, . . .

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 42
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DOL Semantic Foundations: Institutions

Signatures : Σ σ // Σ′

Sentences : Sen(Σ)
Sen(σ) // Sen(Σ′)

Satisfaction : |=Σ |=Σ′

Models : Mod(Σ) Mod(Σ′)
Mod(σ)oo

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 43



Motivation & Introduction OMG Standard DOL Tools & Ressources Three Logics Summary

DOL Semantic Foundations: Logic Translations

CL

HOL

Prop

SROIQ
(OWL 2 DL)

FOL=

FOLms=

OBOOWL

EL++
(OWL 2 EL)

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

DDLOWL

ECoOWL

ECoFOL

F-logic

bRDF

RDF

RDFS

OWL-Full

EER

subinstitute

theoroidal subinstitute

simultaneously exact and 
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic 

OBO 1.4

CASL

UML-CD

CL-

Schema.org

SKOS

SKOS
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Tools & Ressources

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 45
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Tool support: Heterogeneous Tool Set (Hets)

available at http://hets.eu
speaks DOL, propositional logic, OWL, CASL, Common Logic,
QBF, modal logic, MOF, QVT, and other languages
analysis
computation of colimits (⇒ lecture 5)
management of proof obligations
interfaces to theorem provers, model checkers, model finders

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 46
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Tool support: Ontohub web portal and repository

Ontohub is a web-based repository engine for distributed
heterogeneous (multi-language) OMS
web-based prototype available at ontohub.org
multi-logic speaks the same languages as Hets
multiple repositories ontologies can be organized in multiple

repositories, each with its own management of editing
and ownership rights,

Git interface version control of ontologies is supported via interfacing
the Git version control system,

linked-data compliant one and the same URL is used for referencing
an ontology, downloading it (for use with tools), and for
user-friendly presentation in the browser.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 47
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DOL Resources

http://dol-omg.org Central page for DOL
http://hets.eu Analysis and Proof Tool Hets, speaking DOL
http://ontohub.org Ontohub web platform, speaking DOL
http://ontohub.org/dol-examples DOL examples
http://ontoiop.org Initial standardization initiative

In particular for this course:

https://ontohub.org/esslli-2016
ESSLLI repository of DOL examples

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 48
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Prop | FOL | OWL

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 49
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Three Logics as Institutions

Following the framework of institution theory, we introduce the three
logics, propositional, DL, and first-order, by outlining their

1 signatures
2 sentences
3 models
4 satisfaction relation

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 50
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Propositional Logic in DOL: Signatures

The non-logical symbols are collected in a signature. In propositional
logic, these are just propositional letters:

Definition (Propositional Signatures)
A propositional signature Σ is a set (of propositional letters, or
propositional symbols, or propositional variables).

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 51
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Propositional Logic in DOL: Sentences

A signature provides us with the basic material to form logical
expressions, called formulas or sentences.

Definition (Propositional Sentences)
Given a propositional signature Σ, a propositional sentence over Σ is
one produced by the following grammar

φ ::= p | ⊥ | > | (¬φ) | (φ ∧ φ) | (φ ∨ φ) | (φ→ φ) | (φ↔ φ)

with p ∈ Σ. Sen(Σ) is the set of all Σ-sentences. We can omit the
outermost brackets of a sentence.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 52
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Propositional Logic in DOL: Models I

Models (or Truth valuations) provide an interpretation of
propositional sentences. Each propositional letter is interpreted as a
truth value:

Definition (Model)
Given a propositional signature Σ, a Σ-model (or Σ-valuation) is a
function Σ→ {T ,F}. Mod(Σ) is the set of all Σ-models.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 53
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Propositional Logic in DOL: Models II
Models interpret not only the propositional letters, but all sentences.
A Σ-model M can be extended using truth tables to

M# : Sen(Σ)→ {T ,F}

M#(p) = M(p)
M#(>) = T
M#(⊥) = F
(a) base cases

M#(φ) M#(¬φ)

T F
F T

(b) not

M#(φ) M#(ψ) M#(φ ∧ ψ) M#(φ ∨ ψ) M#(φ→ ψ) M#(φ↔ ψ)

T T T T T T
T F F T F F
F T F T T F
F F F F T T

(c) and, or, implication, biimplication

Figure : Truth tablesKutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 54
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Propositional Logic in DOL: Satisfaction

We now can define what it means for a sentence to be satisfied in a
model:

Definition
φ holds in M (or M satisfies φ), written M |=Σ φ iff

M#(φ) = T

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 55
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Prop: Example

A common formalisation of some natural language constructs is as
follows:

natural language formalisation
A and B A ∧ B
A but B A ∧ B
A or B A ∨ B
either A or B (A ∨ B) ∧ ¬(A ∧ B)
if A then B A→ B
A only if B A→ B
A iff B A↔ B

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 56
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Theories

Common to all logics is the notion of a theory commonly introduced
as follows. In a given logic with fixed notions of signatures,
sentences, models, and satisfaction:

Definition (Theories)
A theory is a pair T = (Σ, Γ) where Σ is a signature and
Γ ⊆ Sen(Σ). A model of a theory T = (Σ, Γ) is a Σ-model M with
M |= Γ. In this case T is called satisfiable.

Therefore, a propositional theory is a pair T = (Σ, Γ) consisting of a
set Σ of propositional variables and a set Γ of propositional formulae
expressed in Σ.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 57



Motivation & Introduction OMG Standard DOL Tools & Ressources Three Logics Summary

Prop: Example

A scenario involving John and Maria’s weekend entertainment may be
written as follows in DOL (to be continued in Lecture 2):
logic Propositional
spec JohnMary =
props sunny, weekend, john_tennis,

mary_shopping, saturday
%% declaration of signature

. sunny /\ weekend => john_tennis %(when_tennis)%

. john_tennis => mary_shopping %(when_shopping)%

. saturday %(it_is_saturday)%

. sunny %(it_is_sunny)%
end

Note: %% for comments and %label% for axiom labels.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-15 58
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First-order Logic in DOL: Signatures

We describe a many-sorted variant of first-order logic:

Definition
A Signature Σ = (S ,F ,P) of many-sorted-FOL consists of:

a set S of sorts, where S∗ is the set of words over S
for each w ∈ S∗,and each s ∈ S a set Fw ,s of function symbols
(here w are the argument sorts and s are the result sorts)
for each w ∈ S∗ a set Pw of predicate symbols
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First-order Logic in DOL: Terms

Definition
Given a Signature Σ = (S ,F ,P) the set of ground Σ-terms is
inductively defined by:

fw ,s(t1, . . . , tn) is a term of sort s, if each ti is a term of sort si
(i = 1 . . . n,w = s1 . . . sn) and f ∈ Fw ,s .

In particular (for n = 0) this means that w = λ (the empty word),
and for c ∈ Fλ,s , cs is a constant term of sort s.

Note: In this version of FOL, variables are not needed as terms.
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First-order Logic in DOL: Sentences I

Definition
Given a signature Σ = (S ,F ,P) the set of Σ-sentences is inductively
defined by:

t1 = t2 for t1, t2 of the same sort
pw (t1, . . . , tn) for ti Σ-term of sort si ,
(1 ≤ i ≤ n,w = s1, . . . , sn, p ∈ Pw )

φ1 ∧ φ2 for φ1, φ2 Σ-formulae
φ1 ∨ φ2 for φ1, φ2 Σ-formulae
φ1 → φ2 for φ1, φ2 Σ-formulae
φ1 ↔ φ2 for φ1, φ2 Σ-formulae
¬φ1 for φ1 Σ-formula
>, ⊥
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First-order Logic in DOL: Sentences II

Definition (continued)
Given a signature Σ = (S ,F ,P) the set of Σ-sentences is inductively
defined by:

...
∀x : s . φ if s ∈ S , φ is a Σ] {x : s}-sentence where Σ] {x : s}
is Σ enriched with a new constant x of sort s
∃x : s . φ likewise

Note: We have no ‘open formulae’ in this version of FOL.
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First-order Logic in DOL: Models

Definition
Given a signature Σ = (S ,F ,P) a Σ-model M consists of

a carrier set Ms 6= ∅ for each sort s ∈ S
a function f m

w ,s : Ms1 × . . .×Msn → Ms for each f ∈ Fw ,s ,
w = s1, . . . , sn.
In particular, for a constant, this is just an element of Ms

a relation pM
w ⊆ Ms1 × . . .×Msn for each p ∈ Pw ,w = s1 . . . sn
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First-order Logic in DOL: Evaluating Terms

Definition
A Σ-term t is evaluated in a Σ-model M as follows:

M(fw ,s(t1, . . . tn)) = f M
w ,s(M(t1), . . .M(tn))
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First-order Logic in DOL: Satisfaction

Definition
Let Σ′ = Σ ] {x : s}. A Σ′-model M ′ is called a Σ′-expansion of a
Σ-model M if M ′ and M interpret every symbol except x in the same
way.

Definition (Satisfaction of sentences)

M |= t1 = t2 iff M(t1) = M(t2)

M |= pw (t1 . . . tn) iff (M(t1), . . .M(tn)) ∈ pM
w

M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2 etc.
M |= ∀x : s.φ iff for all Σ′-expansions M ′ of M, M ′ |= φ

where Σ′ = Σ ] {x : s}
M |= ∃x : s.φ iff there is a Σ′-expansion M ′ of M such that M ′ |= φ
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FOL: Example

A specification of a total order in many-sorted first-order logic, using
CASL syntax:
logic CASL.FOL=

spec TotalOrder =
sort Elem
pred __leq__ : Elem * Elem
. forall x : Elem . x leq x %(refl)%
. forall x,y : Elem . x leq y /\ y leq x => x = y %(antisym)%
. forall x,y,z : Elem . x leq y /\ y leq z => x leq z %(trans)%
. forall x,y : Elem . x leq y \/ y leq x %(dichotomy)%

end

Full specification at
https://ontohub.org/esslli-2016/FOL/OrderTheory.dol
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OWL: Description Logic in DOL

DOL supports the logic SROIQ underlying OWL 2 DL
We focus here on the basic DL ALC
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Description Logic in DOL: Signatures

Definition
A DL-signature Σ = (C,R, I) consists of

a set C of concept names,
a set R of role names,
a set I of individual names,
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Description Logic in DOL: Concepts

Definition
For a signature Σ = (C,R, I) the set of ALC-conceptsa over Σ is
defined by the following grammar:

Manchester syntax
C ,D ::= A for A ∈ C concept name

| > Thing
| ⊥ Nothing
| ¬C not C
| C u D C and D
| C t D C or D
| ∃R .C for R ∈ R R some C
| ∀R .C for R ∈ R R only C

aALC stands for “attributive language with complement”
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Description Logic in DOL: Sentences

Definition
The set of ALC-Sentences over Σ (Sen(Σ)) is defined as

C v D, where C and D are ALC-concepts over Σ.
Class : C SubclassOf: D

a : C , where a ∈ I and C is a ALC-concept over Σ.
Individual : a Types: C

R(a1, a2), where R ∈ R and a1, a2 ∈ I.
Individual : a1 Facts : R a2
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Description Logic in DOL: Models I

Definition
Given Σ = (C,R, I), a Σ-model I = (∆I , ·I), where

∆I is a non-empty set
AI ⊆ ∆I for each A ∈ C
RI ⊆ ∆I ×∆I for each R ∈ R
aI ∈ ∆I for each a ∈ I
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Description Logic in DOL: Models II

Definition
We can extend ·I to all concepts as follows:
>I = ∆I

⊥I = ∅
(¬C )I = ∆I \ C I

(C u D)I = C I ∩ DI

(C t D)I = C I ∪ DI

(∃R .C )I = {x ∈ ∆I |∃y ∈ ∆I .(x , y) ∈ RI , y ∈ C I}
(∀R .C )I = {x ∈ ∆I |∀y ∈ ∆I .(x , y) ∈ RI ⇒ y ∈ C I}
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Description Logic in DOL: Satisfaction

Definition (Satisfaction of sentences in a model)
I |= C v D iff C I ⊆ DI .
I |= a : C iff aI ∈ C I .
I |= R(a1, a2) iff (aI1 , a

I
2 ) ∈ RI .
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OWL: Example

logic OWL

ontology FamilyBase =
Class: Person
Class: Female
Class: Woman EquivalentTo: Person and Female
Class: Man EquivalentTo: Person and not Woman

ObjectProperty: hasParent
ObjectProperty: hasChild InverseOf: hasParent
ObjectProperty: hasHusband

Class: Mother EquivalentTo: Woman and hasChild some Person
Class: Parent EquivalentTo: Father or Mother
Class: Wife EquivalentTo: Woman and hasHusband some Man
...
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OWL: Example (continued)

...
Class: Married
Class: MarriedMother EquivalentTo: Mother and Married

SubClassOf: Female and Person
Individual: john Types: Father
Individual: mary Types: Mother
Facts: hasChild john

end

Full specification at
https://ontohub.org/esslli-2016/OWL/Family.dol
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Summary

DOL is not a ‘Lingua Franca’

DOL is a metalanguage reusing, modifying, connecting
ontologies, models, and specifications (called OMS)
DOL enables a modular/structured approach to knowledge
engineering
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Detailed Course Overview

Day 1: We just learned what DOL is about and what kind of
problems it can help solve.
Remainder of today: Get started with Ontohub.org and
HETS.

Day 2: Basic structuring concepts for logical theories and
examples in DOL
Day 3: General institution-theoretic semantics for DOL:
logic-independence
Day 4: Working with multiple logics: heterogeneity
Day 5: Advanced applications: alignments, networks, blending
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Exercise for tomorrow

clone the ESSLLI repository on ontohub.org:
git clone git://ontohub.org/esslli-2016.git

Look at the following theories expressed in Prop / OWL
(1) Propositional/Penguin.dol
(2) OWL/Family.dol
Determine whether they are satisfiable or not
If they are, make them unsatisfiable, if they are not, make them
satisfiable
Upload your results in your private Ontohub.org repository
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Summary of Day 1

On Day 1 we have:

Explored the motivation behind DOL looking at several
use-cases from ontology engineering
Introduced the basic ideas and features of DOL
Introduced some logics we will use during the week
Introduced the tools to be used: Ontohub and HETS

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-16 2



Intended Consequences Extensions Signature Morphisms Interpretations

Today

We will focus today on discussing in parallel use cases for all three
logics and giving DOL syntax and semantics for:

intended consequences (competency questions)
model finding and refutation of lemmas
extensions and conservative extensions
signature morphisms and the satisfaction condition
refinements / theory interpretations
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Intended Consequences
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Logical Consequence in Prop, FOL and OWL

Logic deals with what follows from what.
J.A. Robinson: Logic, Form and Function.

Logical consequence = Satisfaction in a model is preserved:

ϕ1, . . . , ϕn |= ψ

All models of the premises ϕ1, . . . , ϕn

are models of the conclusion ψ.
Formally: M |= ϕ1 and . . . and M |= ϕn together imply M |= ψ.

More general form:

Φ |= ψ (Φ may be infinite)

M |= ϕ for all ϕ ∈ Φ implies M |= ψ.
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Countermodels in Prop, FOL and OWL

Given a question about logical consequence over Σ-sentences,

Φ
?

|= ψ

a countermodel is a Σ-model M with

M |= Φ and M 6|= ψ

A countermodel shows that Φ |= ψ does not hold.
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Intended Consequences in Propositional Logic

logic Propositional
spec JohnMary =
props sunny, weekend, john_tennis, mary_shopping,

saturday %% declaration of signature
. sunny /\ weekend => john_tennis %(when_tennis)%
. john_tennis => mary_shopping %(when_shopping)%
. saturday %(it_is_saturday)%
. sunny %(it_is_sunny)%
. mary_shopping %(mary_goes_shopping)% %implied
end
xxx

Full specification at
https://ontohub.org/esslli-2016/Propositional/
leisure_structured.dol
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A Countermodel

logic Propositional
spec Countermodel =
props sunny, weekend, john_tennis, mary_shopping,

saturday %% declaration of signature
. sunny
. not weekend
. not john_tennis
. not mary_shopping
. saturday
end
xxx

This specification has exactly one model, and hence can be seen as a
syntactic description of this model.
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Repaired Specification

logic Propositional
spec JohnMary =
props sunny, weekend, john_tennis, mary_shopping,

saturday %% declaration of signature
. sunny /\ weekend => john_tennis %(when_tennis)%
. john_tennis => mary_shopping %(when_shopping)%
. saturday %(it_is_saturday)%
. sunny %(it_is_sunny)%
. saturday => weekend %(sat_weekend)%
. mary_shopping %(mary_goes_shopping)% %implied
end
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Intended Consequences in FOL
logic CASL.FOL=
spec BooleanAlgebra =
sort Elem
ops 0,1 : Elem;

__ cap __ : Elem * Elem -> Elem, assoc, comm, unit 1;
__ cup __ : Elem * Elem -> Elem, assoc, comm, unit 0;

forall x,y,z:Elem
. x cap (x cup y) = x %(absorption_def1)%
. x cup (x cap y) = x %(absorption_def2)%
. x cap 0 = 0 %(zeroAndCap)%
. x cup 1 = 1 %(oneAndCup)%
. x cap (y cup z) = (x cap y) cup (x cap z)

%(distr1_BooleanAlgebra)%
. x cup (y cap z) = (x cup y) cap (x cup z)

%(distr2_BooleanAlgebra)%
. exists x’ : Elem . x cup x’ = 1 /\ x cap x’ = 0

%(inverse_BooleanAlgebra)%
. x cup x = x %(idem_cup)% %implied
. x cap x = x %(idem_cap)% %implied

end

https://ontohub.org/esslli-2016/FOL/OrderTheory_structured.dol
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Intended Consequences in OWL

logic OWL
ontology Family1 =
Class: Person
Class: Woman SubClassOf: Person
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Woman and hasChild some Person
Individual: mary Types: Woman Facts: hasChild john
Individual: john
Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean
Mother

end

https://ontohub.org/esslli-2016/OWL/Family_structured.dol
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A Countermodel

mary john

person

woman

mother

hasParent
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Repaired Ontology

logic OWL
ontology Family2 =
Class: Person
Class: Woman SubClassOf: Person
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Woman and hasChild some Person
Individual: mary Types: Woman Facts: hasChild john
Individual: john Types: Person
Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean
Mother

end
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Extensions
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Structuring Using Extensions

logic Propositional
spec JohnMary_TBox = %% general rules
props sunny, weekend, john_tennis, mary_shopping,

saturday %% declaration of signature
. sunny /\ weekend => john_tennis %(when_tennis)%
. john_tennis => mary_shopping %(when_shopping)%
. saturday => weekend %(sat_weekend)%

end
spec JohnMary_ABox = %% specific facts
JohnMary_TBox then
. saturday %(it_is_saturday)%
. sunny %(it_is_sunny)%
. mary_shopping %(mary_goes_shopping)% %implied

end
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Implied Extensions in Prop

logic Propositional
spec JohnMary_variant =
props sunny, weekend, john_tennis, mary_shopping,

saturday %% declaration of signature
. sunny /\ weekend => john_tennis %(when_tennis)%
. john_tennis => mary_shopping %(when_shopping)%
. saturday => weekend %(sat_weekend)%

then
. saturday %(it_is_saturday)%
. sunny %(it_is_sunny)%

then %implies
. mary_shopping %(mary_goes_shopping)%

end
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Implied Extensions in OWL

ontology Family1 =
Class: Person
Class: Woman SubClassOf: Person
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Woman and hasChild some Person
Individual: john Types: Person
Individual: mary Types: Woman Facts: hasChild john

then %implies
Individual: mary Types: Mother

end
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Conservative Extensions in Prop

logic Propositional
spec Animals =
props bird, penguin, living
. penguin => bird
. bird => living

then %cons
prop animal
. bird => animal
. animal => living

end

In the extension, no “new” facts about the “old” signature follow.
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A Non-Conservative Extension

spec Animals =
props bird, penguin, living
. penguin => bird

then %% not a conservative extension
prop animal
. bird => animal
. animal => living

end

In the extension, “new” facts about the “old” signature follow, namely

. bird => living
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A Conservative Extension in FOL
logic CASL.FOL=
spec PartialOrder =
sort Elem
pred __leq__ : Elem * Elem
. forall x:Elem. x leq x %(refl)%
. forall x,y:Elem. x leq y /\ y leq x => x = y %(antisym)%
. forall x,y,z:Elem. x leq y /\ y leq z => x leq z

%(trans)%
end
spec TotalOrder = PartialOrder then
. forall x,y:Elem. x leq y \/ y leq x %(dichotomy)%

then %cons
pred __ < __ : Elem * Elem
. forall x,y:Elem. x < y <=> (x leq y /\ not x = y)

%(<-def)%
end
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A Conservative Extension in OWL

logic OWL
ontology Animals1 =
Class: LivingBeing
Class: Bird SubClassOf: LivingBeing
Class: Penguin SubClassOf: Bird

then %cons
Class: Animal SubClassOf: LivingBeing
Class: Bird SubClassOf: Animal

end
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A Nonconservative Extension in OWL

logic OWL
ontology Animals2 =
Class: LivingBeing
Class: Bird
Class: Penguin SubClassOf: Bird

then %% not a conservative extension
Class: Animal SubClassOf: LivingBeing
Class: Bird SubClassOf: Animal

end
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Signature Morphisms and
the Satisfaction Condition
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Signature morphisms in propositional logic

Definition
Given two propositional signatures Σ1,Σ2 a signature morphism is a
function σ : Σ1 → Σ2. (Note that signatures are sets.)

Definition
A signature morphism σ : Σ1 → Σ2 induces a sentence translation
Sen(Σ1)→ Sen(Σ2), by abuse of notation also denoted by σ, defined
inductively by

σ(p) = σ(p) (the two σs are different. . . )
σ(⊥) = ⊥
σ(>) = >
σ(φ1 ∧ φ2) = σ(φ1) ∧ σ(φ2)

etc.
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Model reduction in propositional logic

Definition
A signature morphism σ : Σ1 → Σ2 induces a model reduction
function

_|σ : Mod(Σ2)→ Mod(Σ1).

Given M ∈ Mod(Σ2) i.e. M : Σ2 → {T ,F},
then M|σ ∈ Mod(Σ1) is defined as

M|σ(p) := M(σ(p))

for all p ∈ Σ1, i.e.
M|σ = M ◦ σ

If M ′|σ = M, then M ′ is called a σ-expansion of M.
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Satisfaction condition in propositional logic

Theorem (Satisfaction condition)
Given a signature morphism σ : Σ1 → Σ2, M2 ∈ Mod(Σ2) and
φ1 ∈ Sen(Σ1), then:

M2 |=Σ2 σ(φ1) iff M2|σ |=Σ1 φ1

(“truth is invariant under change of notation.“)

Proof.
By induction on φ1.
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Signature Morphisms in FOL

Definition
Given signatures Σ = (S ,F ,P),Σ′ = (S ′,F ′,P ′) a signature
morphism σ : Σ→ Σ′ consists of

a map σS : S → S ′

a map σF
w ,s : Fw ,s → F ′

σS (w),σS (s) for each w ∈ S∗ and each s ∈ S

a map σP
w : Pw → P ′

σS (w) for each w ∈ S∗
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Model Reduction in FOL

Definition
Given a signature morphism σ : Σ→ Σ′ and a Σ′-model M ′, define
M = M ′|σ as

Ms = M ′
σS (s)

f M
w ,s = σF

w ,s(f )M′

σS (w),σS (s)

pM
w ,s = σP

w (p)M′

σS (w)
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Sentence Translation in FOL

Definition
Given a signature morphism σ : Σ→ Σ′ and φ ∈ Sen(Σ) the
translation σ(φ) is defined inductively by:

σ(fw ,s(t1 . . . tn)) =σF
w ,s(fσ(w),σ(s))(σ(t1) . . . σ(tn))

σ(t1 = t2) =σ(t1) = σ(t2)

σ(pw (t1 . . . tn)) =σP
w (p)σS (w)(σ(t1) . . . σ(tn))

σ(φ1 ∧ φ2) =σ(φ1) ∧ σ(φ2) etc.

σ(∀x : s.φ) =∀x : σS(s).(σ ] x)(φ)

σ(∃x : s.φ) =∃x : σS(s).(σ ] x)(φ)

where (σ ] x) : Σ ] {x : s} → Σ′ ] {x : σ(s)} acts like σ on Σ and
maps x : s to x : σ(s).
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First-order Logic in DOL: Satisfaction Revisited

Definition (Satisfaction of sentences)

M |= t1 = t2 iff M(t1) = M(t2)

M |= pw (t1 . . . tn) iff (M(t1), . . .M(tn)) ∈ pM
w

M |= φ1 ∧ φ2 iff M |= φ1 and M |= φ2

M |= ∀x : s.φ iff for all ι-expansions M ′ of M, M ′ |= φ

where ι : Σ ↪→ Σ ] {x : s} is the inclusion.
M |= ∃x : s.φ iff there is a ι-expansion M ′ of M such that M ′ |= φ
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Satisfaction Condition in FOL

Theorem (satisfaction condition)
For a signature morphism σ : Σ→ Σ′, φ ∈ Sen(Σ),M ′ ∈ Mod(Σ′):

M ′|σ |= φ iff M ′ |= σ(φ)

Proof.
For terms, prove M ′|σ(t) = M ′(σ(t)). Then use induction on φ. For
quantifiers, use a bijective correspondence between ι-expansions M1

of M ′|σ and ι′-expansions M ′1 of M ′.
M ′|σ Σ σ //

� _

ι

��

Σ′� _
ι′

��

M ′

M1 Σ ] {x : s} Σ1
σ]x // Σ′1 Σ′ ] {x : σ(s)} M ′1
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Signature Morphisms in OWL

Definition
Given two DL signatures Σ1 = (C1,R1, I1) and Σ2 = (C2,R2, I2) a
signature morphism σ : Σ1 → Σ2 consists of three functions

σC : C1 → C2,
σR : R1 → R2,
σI : I1 → I2.
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Sentence Translation in OWL

Definition
Given a signature morphism σ : Σ1 → Σ2 and a Σ1-sentence φ, the
translation σ(φ) is defined by inductively replacing the symbols in φ
along σ.
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Model Reduction in OWL

Definition
Given a signature morphism σ : Σ1 → Σ2 and a Σ2-model I2, the
σ-reduct of I2 along σ is the Σ1-model I1 = I2|σ defined by

∆I1 = ∆I2

AI1 = σC (A)I2 , for A ∈ C1

RI1 = σR(R)I2 , for R ∈ R1

aI1 = σI (a)I2 , for a ∈ I1
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Satisfaction Condition in OWL

Theorem (satisfaction condition)
Given σ : Σ1 → Σ2, φ1 ∈ Sen(Σ1) and I2 ∈ Mod(Σ2),

I2|σ |= φ1 iff I2 |= σ(φ1)

Proof.
Let I1 = I2|σ. Note that I1 and I2 share the universe: ∆I1 = ∆I2 .
First prove by induction over concepts C that

C I1 = σ(C )I2 .

Then the satisfaction condition follows easily.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-16 36



Intended Consequences Extensions Signature Morphisms Interpretations

Theory Morphisms in Prop, FOL, OWL

Definition
A theory morphism σ : (Σ1, Γ1)→ (Σ2, Γ2) is a signature morphism
σ : Σ1 → Σ2 such that

for M ∈ Mod(Σ2, Γ2), we have M|σ ∈ Mod(Σ1, Γ1)

Extensions are theory morphisms:

(Σ, Γ) then (∆Σ,∆Γ)

leads to the theory morphism

(Σ, Γ) ι // (Σ ∪∆Σ, ι(Γ) ∪∆Γ)

Proof: M |= ι(Γ) ∪∆Γ implies M|ι |= Γ by the satisfaction condition.
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Interpretations
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Interpretations (views, refinements)

interpretation name : O1 to O2 = σ
σ is a signature morphism (if omitted, assumed to be identity)
expresses that σ is a theory morphism O1 → O2

logic CASL.FOL=
spec RichBooleanAlgebra =
BooleanAlgebra

then %def
pred __ <= __ : Elem * Elem;
forall x,y:Elem
. x <= y <=> x cap y = x %(leq_def)%

end
interpretation order_in_BA :
PartialOrder to RichBooleanAlgebra

end
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Recall Family Ontology

logic OWL
ontology Family2 =
Class: Person
Class: Woman SubClassOf: Person
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Woman and hasChild some Person
Individual: mary Types: Woman Facts: hasChild john
Individual: john Types: Person
Individual: mary

Types: Annotations: Implied "true"^^xsd:boolean
Mother

end
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Interpretation in OWL

logic OWL
ontology Family_alt =
Class: Human
Class: Female
Class: Woman EquivalentTo: Human and Female
ObjectProperty: hasChild
Class: Mother

EquivalentTo: Female and hasChild some Human
end

interpretation i : Family_alt to Family2 =
Human |-> Person, Female |-> Woman

end
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Criterion for Theory Morphisms in Prop, FOL,
OWL

Theorem
A signature morphism σ : Σ1 → Σ2 is a theory morphism
σ : (Σ1, Γ1)→ (Σ2, Γ2) iff

Γ2 |=Σ2 σ(Γ1)

Proof.
By the satisfaction condition.
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Implied extensions (in Prop, FOL, OWL)

The extension must not introduce new signature symbols:

(Σ, Γ) then (∅,∆Γ)

This leads to the theory morphism

(Σ, Γ) ι // (Σ, Γ ∪∆Γ)

The implied extension is well-formed if

Γ |=Σ ∆Γ

That is, implied extensions are about logical consequence.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-16 43



Intended Consequences Extensions Signature Morphisms Interpretations

Conservative Extensions (in Prop, FOL, OWL)

Definition
A theory morphism σ : T1 → T2 is consequence-theoretically
conservative (ccons), if for each φ1 ∈ Sen(Σ1)

T2 |= σ(φ1) implies T1 |= φ1.

(no “new” facts over the “old” signature)

Definition
A theory morphism σ : T1 → T2 is model-theoretically conservative
(mcons), if for each M1 ∈ Mod(T1), there is a σ-expansion

M2 ∈ Mod(T2) with (M2)|σ = M1

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-16 44



Intended Consequences Extensions Signature Morphisms Interpretations

A General Theorem

Theorem
In propositional logic, FOL and OWL, if σ : T1 → T2 is mcons, then
it is also ccons.

Proof.
Assume that σ : T1 → T2 is mcons.
Let φ1 be a formula, such that T2 |=Σ2 σ(φ1).
Let M1 be a model M1 ∈ Mod(T1). By assumption there is a model
M2 ∈ Mod(T2) with M2|σ = M1. Since T2 |=Σ2 σ(φ1), we have
M2 |= σ(φ1). By the satisfaction condition M2|σ |=Σ1 φ1. Hence
M1 |= φ1. Altogether T1 |=Σ1 φ1.
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Some prerequisites

Theorem (Compactness theorem for propositional logic)
If Γ |=Σ φ, then Γ′ |=Σ φ for some finite Γ′ ⊆ Γ

Proof.
Logical consequence |=Σ can be captured by provability `Σ. Proofs
are finite.

Definition
Given a model M ∈ Mod(Σ), its theory Th(M) is defined by

Th(M) = {ϕ ∈ Sen(Σ) | M |=Σ ϕ}
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In Prop, the converse holds

Theorem
In propositional logic, if σ : T1 → T2 is ccons, then it is also mcons.

Proof.
Assume that σ : T1 → T2 is ccons. Let M1 be a model
M1 ∈ Mod(T1). Assume that M1 has no σ-expansion to a T2-model.
This means that T2 ∪ σ(Th(M1)) |= ⊥. Hence by compactness we
have T2 ∪ σ(Γ) |= ⊥ for a finite Γ ⊆ Th(M1). Let Γ = {φ1, . . . , φn}.
Thus T2 ∪ σ({φ1, . . . , φn}) |= ⊥ and hence
T2 |= σ(φ1) ∧ . . . ∧ σ(φn)→ ⊥. This means
T2 |= σ(φ1 ∧ . . . ∧ φn → ⊥). By assumption
T1 |= φ1 ∧ . . . ∧ φn → ⊥. Since M1 ∈ Mod(T1) and
M1 |= φi (1 ≤ i ≤ n), also M1 |= ⊥. Contradiction!
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A Counterexample in ALC (ccons, not mcons)

logic OWL.ALC
ontology Service =
ObjectProperty: provider
ObjectProperty: input
ObjectProperty: output
Class: Webservice SubClassOf: provider some Thing

and input some Thing and output some Thing
then %ccons
Class: Array
Class: Integer DisjointWith: Array
Class: Webservice SubClassOf: input some Integer

and input some Array
end

In OWL.SROIQ, this is not even ccons!
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A Counterexample in FOL (ccons, not mcons)
logic CASL.FOL=
spec Weak_Nat =
sort Nat ops 0:Nat succ: Nat -> Nat pred __<__ : Nat*Nat
forall x,y,z : Nat
. x = 0 \/ exists u:Nat . succ(u) = x
. x < succ(y) <=> (x<y \/ x = y)
. not (x < 0)
. x < y => not (y < x)
. (x < y /\ y < z) => (x < z)
. x < y \/ x = y \/ y < x

then %ccons
op __ + __ : Nat * Nat -> Nat
forall x,y : Nat
. 0 + y = y
. succ(x) + y = succ(x + y) %(+succ)%
. y < succ(x) + y %(succ_great)% end
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Definitional Extensions (in Prop, FOL, OWL)

Definition
A theory morphism σ : T1 → T2 is definitional, if for each
M1 ∈ Mod(T1), there is a unique σ-expansion

M2 ∈ Mod(T2) with (M2)|σ = M1

logic Propositional
spec Person =
props person, male, female

then %def
props man, woman
. man <=> person /\ male
. woman <=> person /\ female

end
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Definitional Extensions: Example in OWL

logic OWL
ontology Person =
Class: Person
Class: Female

then %def
Class: Woman EquivalentTo: Person and Female

end
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Summary of DOL Syntax for Extensions

O1 then %mcons O2, O1 then %mcons O2:
model-conservative extension

each O1-model has an expansion to O1 then O2

O1 then %ccons O2: consequence-conservative extension
O1 then O2 |= ϕ implies O1 |= ϕ, for ϕ in the language of O1

O1 then %def O2: definitional extension
each O1-model has a unique expansion to O1 then O2

O1 then %implies O2: implied extension
like %mcons, but O2 must not extend the signature
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Scaling it to the Web

OMS can be referenced directly by their URL (or IRI)

<http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/
pizza.owl>

Prefixing may be used for abbreviation
%prefix( co-ode:

<http://owl.cs.manchester.ac.uk/co-ode-files/ontologies/>
)%

co-ode:pizza.owl
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Exercise for tomorrow

if you not have done so already, clone the ESSLLI repository on
ontohub.org:
git clone git://ontohub.org/esslli-2016.git

Look at the theories
(Dis)prove theorems (both with Hets and on Ontohub.org)
Write some theory on your own, add intended consequences and
prove them
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Summary of Day 2

On Day 2 we have looked at:

intended consequences (competency questions)
model finding and refutation of lemmas
extensions and conservative extensions
refinements / theory interpretations

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-17 2



Assembling OMS from Pieces Making large OMS smaller Non-monotonicity

Today

We will focus today on structured OMS:
Assembling OMS from pieces:
Basic OMS, union, translation
Making a large OMS smaller:
module extraction, approximation, reduction, filtering
Non-monotonic reasoning through employing
a closed-world assumption:
minimization, maximization, freeness, cofreeness
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Assembling OMS from
Pieces
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Unions
O1 and O2: union of two stand-alone OMS

Signatures (and axioms) are united
model classes are intersected
difference to extensions: there, O2 needs to be basic

logic CASL.FOL=
spec Magma =
sort Elem; ops 0:Elem; __+__:Elem*Elem->Elem end

spec CommutativeMagma = Magma then
forall x,y:Elem . x+y=y+x end

spec Monoid = Magma then
forall x,y,z:Elem . x+0=x

. x+(y+z) = (x+y)+z end
spec CommutativeMonoid =
CommutativeMagma and Monoid end
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Competency Questions
Revisited
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Competency Questions – Simplified Summary

Let O be an ontology
Capture requirements for O as pairs of scenarios and
competency questions
For each scenario competency question pair S ,Q:

Formalize S , resulting in theory Γ
Formalize Q, resulting in formula ϕ
Check with theorem prover whether O ∪ Γ |= ϕ

When all proofs are successful, your ontology meets the
requirements.
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Competency Questions Revisited

CQ most successful idea for ontology evaluation
Technically, CQ = proof obligations
Language for expressing proof obligations?
Ad hoc handling of CQs

We asked:
How do we keep track of scenarios and competency questions in
a systematic way?

Answer: The DOL constructs of and (union) and %implies
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Competency Questions Workflow

1 The use cases for the ontology are captured in form of scenarios.
Each scenario describes a possible state of the world and raises a
set of competency questions. The answers to these competency
questions should follow logically from the scenario – provided the
knowledge that is supposed to be represented in the ontology.

2 A scenario and its competency questions are formalized or an
existing formalization is refined.

3 The ontology is (further) developed.
4 An automatic theorem prover is used to check whether the

competency questions logically follow from the scenario and the
ontology.

5 Steps (2-4) are repeated until all competency questions can be
proven from the combination of the ontology and their
respective scenarios.
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CQ Example: Family Relations

Ontohub enables the representation and execution of competency
questions with the help of DOL files.

The use case is to enable semantically enhanced searches for a
database, which contains names of people, their gender, and
information about parenthood. Assuming the database contains the
following information:

Amy is female and a parent of Berta and Chris.
Berta is female.
Chris is male and a parent of Dora.
Dora is female.
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CQ Example: Family Relations (continued)

In this case the system should be able to answer the following
questions:

Is Chris a father? (expected: yes)
Is Dora a child of Chris (expected: yes)
Is Chris female? (expected: no)
Is Amy older than Dora? (expected: yes)
Is Berta older than Chris (expected: unknown)
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CQ Example: Input Ontology
The ontology just discussed could be represented as follows.
logic OWL

ontology genealogy =
Class: Male
Class: Female

ObjectProperty: parent_of
Characteristics: Irreflexive, Asymmetric
SubPropertyOf: older_than

Class: Father
EquivalentTo: parent_of some owl:Thing and Male

ObjectProperty: child_of
InverseOf: parent_of

DisjointClasses: Male, Female

ObjectProperty: older_than
Characteristics: Transitive

end
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CQ Example: Scenario Formalisation

ontology scenario =
Class: Male
Class: Female
ObjectProperty: parent_of

Individual: Amy
Types: Female
Facts: parent_of Berta
Facts: parent_of Chris

Individual: Berta
Types: Female

Individual: Chris
Types: Male
Facts: parent_of Dora

Individual: Dora
Types: Female

end
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CQ Example: Competency Questions Formalisation
ontology CCbase = genealogy and scenario
%% Is Chris a father? (expected: yes)
ontology CC1 = CCbase then %implies
{ Individual: Chris
Types: Father }

%% Is Dora a child of Chris (expected: yes)
ontology CC2 = CCbase then %implies
{ Individual: Dora
Facts: child_of Chris }

%% Is Chris female? (expected: no)
%% reformulated: Is Chris not female? (expected: yes)
ontology CC3 = CCbase then %implies
{ Individual: Chris
Types: not Female }

%% Is Amy older than Dora? (expected: yes)
ontology CC4 = CCbase then %implies
{ Individual: Amy
Facts: older_than Dora }

%% Is Berta older than Chris (expected: unknown)
ontology CC5 = CCbase then %satisfiable
{ Individual: Berta
Facts: older_than Chris }
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CQ approach applied to machine diagnosis

Suppose the engine of a car does not perform properly. We want to
decide whether we should

repair the engine,
replace the engine, or
replace auxiliary equipment.
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Some Rules for Machine Diagnosis

The following facts relate symptoms to diagnoses:
(i) If the engine overheats and the ignition is correct, then the

radiator is clogged.
(ii) If the engine emits a pinging sound under load and the ignition

timing is correct, then the cylinders have carbon deposits.
(iii) If power output is low and the ignition timing is correct, then

the piston rings are worn, or the carburetor is defective, or the
air filter is clogged.

(iv) If the exhaust fumes are black, then the carburetor is defective,
or the air filter is clogged.

(v) If the exhaust fumes are blue, then the piston rings are worn, or
the valve seals are worn.

(vi) The compression is low if and only if the piston rings are worn.
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Some Rules for Machine Diagnosis

The following facts relate diagnoses to repair decisions:
(i) If the piston rings are worn, then the engine should be replaced.
(ii) If carbon deposits are present in the cylinders or the carburetor

is defective or valve seals are worn, then the engine should be
repaired.

(iii) If the air filter or radiator is clogged, then that equipment
should be replaced.
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Machine Diagnosis: Input Specification

logic Propositional

%% possible symptoms of an engine that is malfunctioning
spec EngineSymptoms =
props black_exhaust, blue_exhaust, low_power, overheat,

ping, incorrect_timing, low_compression
end

%% diagnosis derived from symptoms
spec EngineDiagnosis = EngineSymptoms then %cons
props carbon_deposits, clogged_filter, clogged_radiator,

defective_carburetor, worn_rings, worn_seals
. overheat /\ not incorrect_timing => clogged_radiator %(diagnosis1)%
. ping /\ not incorrect_timing => carbon_deposits %(diagnosis2)%
. low_power /\ not incorrect_timing =>

worn_rings \/ defective_carburetor \/ clogged_filter
%(diagnosis3)%

. black_exhaust => defective_carburetor \/ clogged_filter %(diagnosis4)%

. blue_exhaust => worn_rings \/ worn_seals %(diagnosis5)%

. low_compression <=> worn_rings %(diagnosis6)%
end
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Machine Diagnosis: Input Specification (cont’d)

%% needed repair, derived from diagnosis
spec EngineRepair = EngineDiagnosis
then %cons
props replace_auxiliary,

repair_engine,
replace_engine
. worn_rings => replace_engine %(rule_replace_engine)%
. carbon_deposits \/ defective_carburetor \/ worn_seals => repair_engine

%(rule_repair_engine)%
. clogged_filter \/ clogged_radiator => replace_auxiliary

%(rule_replace_auxiliary)%
end
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Machine Diagnosis: Scenario Formalisation

Suppose the car owner complains that the engine overheats. Due to
a recent engine check, it is known that the ignition timing is correct.
What should be done to eliminate the problem?

spec MyObservedSymptoms =
EngineSymptoms

then
. overheat %(symptom_overheat)%
. not incorrect_timing %(symptom_not_incorrect_timing)%

end
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Diagnosis Question Formalisation

spec MyRepair =
EngineRepair and MyObservedSymptoms

end

spec Repair =
prop repair
. repair

end

interpretation repair1 : Repair to MyRepair = %cons
repair |-> replace_engine end

interpretation repair2 : Repair to MyRepair = %cons
repair |-> repair_engine end

interpretation repair3 : Repair to MyRepair = %cons
repair |-> replace_auxiliary end

%% only repair3 is a valid interpretation. That is, ’replace_auxiliary’
%% is the required action
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Translations
A translation O with σ renames O along σ

σ is a signature morphism
in practice, σ is a symbol map, from which one can compute a
signature morphism

ontology BankOntology =
Class: Bank Class: Account ... end

ontology RiverOntology =
Class: River Class: Bank ... end

ontology Combined =
BankOntology with Bank |-> FinancialBank
and
RiverOntology with Bank |-> RiverBank
%% necessary disambiguation when uniting OMS

end
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Making large OMS smaller
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Making a large OMS smaller

General problem:
you have an OMS over a large signature Σ and want to
make it smaller. Say, it should be restricted to Σ′ ⊆ Σ.

DOL provides four options:
Module extraction
Approximation
Reduction
Filtering

We will discuss these options for two examples:
the medical ontology SNOMED
the specification of groups
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Module Extraction applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 1:

SNOMED extract Heart, HeartAttack

extract:
SNOMED module (sub-ontology of SNOMED)
capturing the same facts about hearts and heart attacks as
SNOMED itself (SNOMED is a conservative extension of the
module)
signature of the module may contain more than heart and heart
attack

Dual operation: remove (lists the symbols to remove)
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Approximation applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 2:

SNOMED keep Heart, HeartAttack

keep:
captures all logical consequences involving Heart(Attack)

not necessarily a sub-OMS
may involve new axioms in order to capture the SNOMED facts
about hearts and heart attacks
resulting OMS features exactly the two specified entities, heart
and heart attack
finite axiomatization may be hard to compute, if it exists at all

Dual operation: forget (lists the symbols to remove)
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Reduction applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 3:

SNOMED reveal Heart, HeartAttack

reveal:
essentially keeps the whole of SNOMED
provides some export interface consisting of heart and heart
attack only
while symbols are hidden, the semantic effect of sentences (also
those involving these symbols) is kept
useful when interfacing SNOMED with other ontologies, e.g. in
an interpretation.

Dual operation: hide (lists the symbols to remove)
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Filtering applied to SNOMED

Question: What does SNOMED say about hearts and heart attacks?

Answer 4:

SNOMED select Heart, HeartAttack

select:
simply removes all SNOMED axioms that involve other symbols
then heart and heart attack
can be computed easily
might lead to poor ontology, capturing only a small fraction and
only the basic facts of SNOMED’s knowledge about hearts and
heart attacks.

Dual operation: reject (lists the symbols to remove)
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Module Extraction applied to Groups (1)

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
remove inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0

The module needs to be enlarged to the whole OMS.
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Module Extraction applied to Groups (2)

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0

. exists y:Elem . x+y=0
remove inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. exists y:Elem . x+y=0
Here, adding inv is conservative.
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Approximation applied to Groups

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
forget inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. exists y:Elem . x+y=0

Computing finite interpolants can be hard, even undecidable.
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Reduction applied to Groups

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x . x+(y+z) = (x+y)+z

. x+inv(x)=0
hide inv

Semantics: class of all monoids that can be extended with an
inverse, i.e. class of all groups. The effect is second-order
quantification:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem;
exists inv:Elem->Elem .
forall x,y,z:elem . x+0=x

/\ x+(y+z) = (x+y)+z
/\ x+inv(x)=0
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Filtering applied to Groups

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem; inv:Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z

. x+inv(x) = 0
reject inv

The semantics returns the following theory:

sort Elem
ops 0:Elem; __+__:Elem*Elem->Elem
forall x,y,z:elem . x+0=x

. x+(y+z) = (x+y)+z
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Hide – Extract – Forget – Select
hide/reveal remove/extract forget/keep select/reject

semantic
background

model
reduct

conservative
extension

uniform
interpolation

theory
filtering

relation to
original

interpretable subtheory interpretable subtheory

approach model level theory level theory level theory
level

type of
OMS

elusive flattenable flattenable flattenable

signature
of result

= Σ ≥ Σ = Σ ≥ Σ

change of
logic

possible not possible possible not
possible

application specification ontologies ontologies blending
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Pros and Cons

hide/reveal remove/extract forget/keep select/reject

information
loss

none none minimal large

computability depends good/depends depends easy
signature of
result

= Σ ≥ Σ = Σ = Σ

conceptual
simplicity

simple
(but
unintuitive)

complex farily
simple

simple
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Example for hiding: sorting
Informal specification:
To sort a list means to find a list with the same elements, which is in
ascending order.
Formal requirements specification:
%right_assoc( __::__ )%
logic CASL.FOL=
spec PartialOrder =
sort Elem
pred __leq__ : Elem * Elem
. forall x : Elem . x leq x %(refl)%
. forall x, y : Elem . x leq y /\ y leq x => x = y %(antisym)%
. forall x, y, z : Elem . x leq y /\ y leq z => x leq z %(trans)%

end
spec List = PartialOrder then
free type List ::= [] | __::__(Elem; List)
pred __elem__ : Elem * List
forall x,y:Elem; L,L1,L2:List
. not x elem []
. x elem (y :: L) <=> x=y \/ x elem L

end
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Sorting (cont’d)

spec AbstractSort =
List

then %def
preds is_ordered : List;

permutation : List * List
op sorter : List->List
forall x,y:Elem; L,L1,L2:List
. is_ordered([])
. is_ordered(x::[])
. is_ordered(x::y::L) <=> x leq y /\ is_ordered(y::L)
. permutation(L1,L2) <=>

(forall x:Elem . x elem L1 <=> x elem L2)
. is_ordered(sorter(L))
. permutation(L,sorter(L))

end
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Sorting (cont’d)

We want to show insert sort to enjoy these properties.
Formal design specification:

spec InsertSort = List then
ops insert : Elem*List -> List;

insert_sort : List->List
vars x,y:Elem; L:List
. insert(x,[]) = x::[]
. x leq y => insert(x,y::L) = x::insert(y,L)
. not x leq y => insert(x,y::L) = y::insert(x,L)
. insert_sort([]) = []
. insert_sort(x::L) = insert(x,insert_sort(L))

end
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Correctness

Is insert sort correct w.r.t. the sorting specification?

interpretation correctness :
{ AbstractSort hide is_ordered, permutation }

to { InsertSort hide insert }
end
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Non-monotonicity
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Non-monotonic Reasoning

Non-monotonic reasoning =
more premises may lead to fewer conclusions:
If b is a bird, it can fly.
But if b is a bird and a penguin, it cannot fly.

Non-monotonic reasoning is used in defeasible reasoning, default
reasoning, abductive reasoning, belief revision, reasoning about
subjective probabilities, . . .

BUT: logical consequence Γ |=Σ ϕ is monotonic!

DOL’s way of supporting non-monotonic reasoning:
closed-world assumptions
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Closed-World Assumption

Prop, FOL and OWL employ an open-world semantics
1 predicates may hold for more individuals than specified in the

theory
2 a model may have more individuals than specified in the theory
3 more equations than specified in the theory may hold between

individuals
sometimes, a closed-world semantics is useful

1 predicates only hold for individuals if specified in the theory
2 a model has only those individuals specified in the theory
3 only equations specified in the theory hold between individuals

Minimization (circumscription) addresses 1
Freeness addresses 1-3
Both are non-monotonic operations
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Minimizations (circumscription)

O1 then minimize { O2 }
forces minimal interpretation of non-logical symbols in O2

Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

then minimize {
Class: Abnormal
Individual: B1 Types: Abnormal }

then
Class: Ontable
Class: BlockNotAbnormal EquivalentTo:
Block and not Abnormal SubClassOf: Ontable

then %implied
Individual: B2 Types: Ontable
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Minimizations

O1 then minimize { O2 }
forces minimal interpretation of non-logical symbols in O2

Class: Block
Individual: B1 Types: Block
Individual: B2 Types: Block DifferentFrom: B1

then minimize {
Class: Normal
Individual: B2 Types: Normal }

then
Class: Ontable SubClassOf: Block and Normal

then %implied
Individual: B1 Types: not Ontable
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Freeness

free { O }
O1 then free { O }
forces closed-world conditions 1-3

logic OWL
ontology Family_closed =
free {
Class: Person Class: Male < Person
Individual: john Types: Male
Individual: mary Types: Person
}

There is only one model
(up to isomorphism):

maryjohn

person

male
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Summary of Day 3

On Day 3 we have looked at:

Assembling OMS from pieces:
Basic OMS, union, translation
Making a large OMS smaller:
module extraction, approximation, reduction, filtering
Non-monotonic reasoning through employing
a closed-world assumption:
minimization, maximization, freeness, cofreeness
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Today

We will focus today on:

Semantics of structured OMS
based on institutions

Proofs in OMS
based on entailment systems
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Semantics of OMS
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Institutions (intuition)

Σ → Σ’

Sen Σ

σ

Sen Σ’

Mod Σ Mod Σ’

Sen σ

Mod σ

|=Σ |=Σ’

Signatures

Sentences

Satisfaction

Models

Institutions
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Some Basic Category Theory

Our use of category theory is modest, oriented towards
providing easy proofs for very general results.

Definition (Category)
A category C is a graph together with a partial composition
operation defined on edges that match:

if f : A→ B and g : B → C , then f ; g : A→ C .
Graph nodes are called objects, graph edges are called morphisms.
Requirements on a category: morphisms behave monoid-like, that is,

Composition has a neutral element idA : A→ A (for each object
A ∈ |C|):
for f : A→ B , idA; f = f and f ; idB = f
Composition is associative:
(f ; g); h = f ; (g ; h) if both sides are defined
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Categories: Examples

sets and functions
FOL signatures and signature morphisms
OWL signatures and signature morphisms
logical theories and theory morphisms
groups and group homomorphisms
general algebras and homomorphisms
metric spaces and contractions
topological spaces and continuous maps
automata and simulations
each pre-order, seen as a graph, is a category
each monoid is a category with one object

1

id1
��

f ��

h=f ;g // 2

id2

qq

3

id3

YY

g

@@
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Opposite Categories

Definition (Opposite category)
Given a category C, its opposite category Cop has the same objects
and morphism as C, but with all morphisms reversed. That is,

if f : A→ B ∈ C, then f : B → A ∈ Cop.

if f ; g = h in C, then g ; f = h in Cop.
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Functors

Definition (Functor)
Given categories C1 and C2, a functor F : C1 → C2 is a graph
homomorphism F : C1 → C2 preserving the monoid structure, that is

Neutral elements are preserved:

F (idA) = idF (A)

for each object A ∈ |C|
Composition is preserved:

F (f ; g) = F (f );F (g)

for each f : A→ B , g : B → C ∈ C.
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Institutions (formal definition)
An institution I = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 consists of:

a category Sign of signatures;
a functor Sen : Sign→ Set, giving a set Sen(Σ) of
Σ-sentences for each signature Σ ∈ |Sign|, and a function
Sen(σ) : Sen(Σ)→ Sen(Σ′) that yields σ-translation of
Σ-sentences to Σ′-sentences for each σ : Σ→ Σ′;
a functor Mod : Signop → Cat, giving a category Mod(Σ) of
Σ-models for each signature Σ ∈ |Sign|, and a functor
|σ = Mod(σ) : Mod(Σ′)→Mod(Σ); for each σ : Σ→ Σ′;
for each Σ ∈ |Sign|, a satisfaction relation
|=I,Σ ⊆Mod(Σ)× Sen(Σ)

such that for any signature morphism σ : Σ→ Σ′, Σ-sentence
ϕ ∈ Sen(Σ) and Σ′-model M ′ ∈Mod(Σ′):

M ′ |=I,Σ′ σ(ϕ) iff M ′|σ |=I,Σ ϕ [Satisfaction condition]
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Sample Institutions

Prop, FOL and OWL are institutions
we have proven the satisfaction conditions in lecture 2
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Plenty of Institutions

Lary Moss’ logics from his ESSLLI evening talk on Tuesday
first-order, higher-order logic, polymorphic logics
logics of partial functions
modal logic (epistemic logic, deontic logic, description logics,
logics of knowledge and belief, agent logics)
µ-calculus, dynamic logic
spatial logics, temporal logics, process logics, object logics
intuitionistic logic
linear logic, non-monotonic logics, fuzzy logics
paraconsistent logic, database query languages
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Working in an Arbitrary Logical System

Many notions and results generalise to an arbitrary institution:
logical consequence
logical theory
satisfiability
conservative extension
theory morphism
many more . . .

In the sequel, fix an arbitrary instution I .
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Weakly inclusive institutions

Definition (adopted from Goguen, Roşu)
A weakly inclusive category is a category having a singled out class of
morphisms (called inclusions) which is closed under identities and
composition. Inclusions hence form a partial order.
An weakly inclusive institution is one with an inclusive signature
category such that

the sentence functor preserves inclusions,
the inclusion order has a least element (denote ∅), suprema
(denoted ∪), infima (denoted ∩), and differences (denoted \),
model categories are weakly inclusive.

M|Σ means M|ι where ι : Σ→ Sig(M) is the inclusion.
In the sequel, fix an arbitrary weakly inclusive instution I .
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Semantic domains for OMS in DOL
Flattenable OMS (can be flattened to a basic OMS)

basic OMS
extensions, unions, translations
approximations, module extractions, filterings
semantics: (Σ,Ψ) (theory-level)

Σ: a signature in I , also written Sig(O)
Ψ: a set of Σ-sentences, also written Th(O)

Elusive OMS (= non-flattenable OMS)
reductions, minimization, maximization, (co)freeness (elusive)
semantics: (Σ,M) (model-level)

Σ: a signature in I , also written Sig(O)
M: a class of Σ-models, also written Mod(O)

We can obtain the model-level semantics from the theory-level
semantics by takingM = {M ∈Mod(Σ) |M |= Ψ}.
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Semantics of OMS Proof calculus

Semantics of basic OMS
We assume that [[O]]basic = (Σ,Ψ) for some OMS language based on
I . The semantics consists of

a signature Σ in I
a set Ψ of Σ-sentences

This direct leads to a theory-level semantics for OMSx:

[[O]]TΓ = [[O]]basic

Generally, if a theory-level semantics is given: [[O]]TΓ = (Σ,Ψ), this
leads to a model-level semantics as well:

[[O]]MΓ = (Σ, {M ∈ Mod(Σ) |M |= Ψ})

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-18 16



Semantics of OMS Proof calculus

Semantics of extensions

O1 flattenable [[O1 then O2]]TΓ = (Σ1 ∪ Σ2,Ψ1 ∪Ψ2)
where

[[O1]]TΓ = (Σ1,Ψ1)
[[O2]]basic = (Σ2,Ψ2)

O1 elusive [[O1 then O2]]MΓ = (Σ1 ∪ Σ2,M′)
where

[[O1]]MΓ = (Σ1,M1)
[[O2]]basic = (Σ2,Ψ2)
M′ = {M ∈Mod(Σ1∪Σ2) |M |= Ψ2,M|Σ1 ∈M1}
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Semantics of OMS Proof calculus

Semantics of extensions (cont’d)

%mcons (%def, %mono) leads to the additional requirement that

each model inM1 has a (unique, unique up to
isomorphism) Σ1 ∪ Σ2-expansion to a model inM′.

%implies leads to the additional requirements that
Σ2 ⊆ Σ1 andM′ =M1.

%ccons leads to the additional requirement that

M′ |= ϕ impliesM1 |= ϕ for any Σ1-sentence ϕ.

Theorem
%mcons implies %ccons, but not vice versa.
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Semantics of OMS Proof calculus

References to Named OMS

Reference to an OMS existing on the Web
written directly as a URL (or IRI)
Prefixing may be used for abbreviation

http://owl.cs.manchester.ac.uk/co-ode-files/
ontologies/pizza.owl

co-ode:pizza.owl

Semantics Reference to Named OMS: [[iri ]]Γ = Γ(iri)
where Γ is a global map of IRIs to OMS denotations

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-18 19
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Semantics of OMS Proof calculus

Semantics of unions

O1, O2 flattenable [[O1 and O2]]TΓ = (Σ1 ∪ Σ2,Ψ1 ∪Ψ2), where
[[Oi ]]

T
Γ = (Σi ,Ψi) (i = 1, 2)

one of O1, O2 elusive [[O1 and O2]]MΓ = (Σ1 ∪ Σ2,M), where
[[Oi ]]

M
Γ = (Σi ,Mi) (i = 1, 2)

M = {M ∈Mod(Σ1 ∪ Σ2) |M|Σi ∈Mi , i = 1, 2}
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Semantics of OMS Proof calculus

Semantics of translations

O flattenable Let [[O]]TΓ = (Σ,Ψ). Then

[[O with σ : Σ→ Σ′]]TΓ = (Σ′, σ(Ψ))

O elusive Let [[O]]MΓ = (Σ,M). Then

[[O with σ : Σ→ Σ′]]MΓ = (Σ′,M′)

whereM′ = {M ∈Mod(Σ′) |M|σ ∈M}
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Semantics of OMS Proof calculus

Hide – Extract – Forget – Select
hide/reveal remove/extract forget/keep select/reject

semantic
background

model
reduct

conservative
extension

uniform
interpolation

theory
filtering

relation to
original

interpretable subtheory interpretable subtheory

approach model level theory level theory level theory
level

type of
OMS

elusive flattenable flattenable flattenable

signature
of result

= Σ ≥ Σ = Σ ≥ Σ

change of
logic

possible not possible possible not
possible

application specification ontologies ontologies blending
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Semantics of OMS Proof calculus

Semantics of reductions

Let [[O]]MΓ = (Σ,M)

[[O reveal Σ′ ]]MΓ = (Σ′,M|Σ′), where
M|Σ′ = {M|Σ′ | M ∈M})
[[O hide Σ′ ]]MΓ = [[O reveal Σ \ Σ′]]MΓ

M|Σ′ may be impossible to capture by a theory (even ifM is).
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Semantics of OMS Proof calculus

Modules

Definition
O ′ ⊆ O is a Σ-module of (flat) O iff O is a model-theoretic
Σ-conservative extension of O ′, i.e. for every model M of O ′, M|Σ
can be expanded to an O-model.
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Semantics of OMS Proof calculus

Depleting modules

Definition
Let O1 and O2 be two OMS and Σ ⊆ Sig(Oi).
Then O1 and O2 are Σ-inseparable (O1 ≡Σ O2) iff

Mod(O1)|Σ = Mod(O2)|Σ

Definition
O ′ ⊆ O is a depleting Σ-module of (flat) O iff O \ O ′ ≡Σ∪Sig(O′) ∅.

Theorem
1 Depleting Σ-modules are Σ-conservative.
2 The minimum depleting Σ-module always exists.
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Semantics of OMS Proof calculus

Semantics of module extraction (remove/extract)

Note: O must be flattenable!

Let [[O]]TΓ = (Σ,Ψ).
[[O extract Σ1]]TΓ = (Σ2,Ψ2)
where (Σ2,Ψ2) ⊆ (Σ,Ψ) is the minimum depleting Σ1-module of
(Σ,Ψ)

[[O remove Σ1]]TΓ = [[O extract Σ \ Σ1]]TΓ

Tools can extract other types of module though (i.e. using locality).
However, any two modules will have the same Σ-consequences.
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Semantics of OMS Proof calculus

Semantics of interpolation (forget/keep)

Note: O must be flattenable!
Let [[O]]TΓ = (Σ,Ψ).

[[O keep in Σ′]]TΓ =(Σ′, {ϕ ∈ Sen(Σ′) |Ψ |= ϕ})
Note: any logically equivalent theory will also do).
Challenge: find a finite theory (= uniform interpolant). This is not
always possible, and sometimes theoretically possible but not
computable.

[[O forget Σ′]]TΓ = [[O keep in Σ \ Σ′]]TΓ
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Semantics of OMS Proof calculus

Semantics of select/reject

Note: O must be flattenable!

Let [[O]]TΓ = (Σ,Ψ).

[[O select (Σ′,Φ)]]TΓ = (Σ, Sen(ι)−1(Ψ) ∪ Φ)
where ι : Σ′ → Σ is the inclusion

[[O reject (Σ′,Φ)]]TΓ =(Σ \ Σ′, Sen(ι)−1(Ψ) \ Φ)
where ι : Σ \ Σ′ → Σ is the inclusion
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Semantics of OMS Proof calculus

Relations among the different notions

Mod(O reveal Σ)
= Mod(O extract Σ)|Sig(O)\Σ
⊆ Mod(O keep Σ)
⊆ Mod(O select Σ)
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Semantics of OMS Proof calculus

Semantics of minimizations

Let [[O1]]MΓ = (Σ1,M1)
Let [[O1 then O2]]MΓ = (Σ2,M2)
Then

[[O1 then minimize O2]]MΓ = (Σ2,M)

where
M = {M ∈M2 |M is minimal in {M ′ ∈M2 |M ′|Σ1 = M|Σ1}}

Note that in a weakly inclusive institution, inclusion model morphisms
provide a partial order on models.

Dually: maximization.
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Semantics of OMS Proof calculus

Initial Objects

Definition
An object I in a category C is called an initial object, if for each
object A ∈ |C|, there is a unique morphism I → A.

Example
Initital objects in different categories:

sets and functions: the empty set
FOL signatures: the empty signature
algebras and homomorphisms: the term algebra
models of Horn clauses: the Herbrand model

Theorem
Initial objects are unique up to isomorphism.
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Semantics of OMS Proof calculus

Semantics of freeness

We only treat the special case of free {O}.

Let [[O]]MΓ = (Σ,M) Then

[[free O]]MΓ = (Σ, {M ∈M|M is initial inM})
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Semantics of OMS Proof calculus

Semantics of interpretations

Let [[Oi ]]
M
Γ = (Σi ,Mi) (i = 1, 2)

[[interpretation IRI : O1 to O2 = σ]]MΓ

is defined iff

Mod(σ)(M2) ⊆M1

Note that this is the same condition as for theory morphisms.
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Semantics of OMS Proof calculus

Proof calculus
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Semantics of OMS Proof calculus

Logical Consequences and Refinement of OMS

Definition (Logical Consequences of an OMS)

O |=Σ ϕ iff Σ = Sig(O), M |=Σ ϕ for all M ∈ Mod(O)

Definition (Refinement between two OMS)

O ∼∼∼>O ′ iff Mod(O ′) ⊆ Mod(O)
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Semantics of OMS Proof calculus

Entailment systems

Definition

Given an institution I = (Sign,Sen,Mod , |=), an entailment system
` for I consists of relations `Σ ⊆ P(Sen(Σ))× Sen(Σ) such that

1 reflexivity: for any ϕ ∈ Sen(Σ), {ϕ} `Σ ϕ,
2 monotonicity: if Γ `Σ ϕ and Γ′ ⊇ Γ then Γ′ `Σ ϕ,
3 transitivity: if Γ `Σ ϕi for i ∈ I and Γ ∪ {ϕi | i ∈ I} `Σ ψ, then

Γ `Σ ψ,
4 `-translation: if Γ `Σ ϕ, then for any σ : Σ−→Σ′ in Sign,
σ(Γ) `Σ′ σ(ϕ),

5 soundness: if Γ `Σ ϕ then Γ |=Σ ϕ.
The entailment system is complete if, in addition,
Γ |=Σ ϕ implies Γ `Σ ϕ.
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Semantics of OMS Proof calculus

Proof calculus for entailment (Borzyszkowski)
covering some part of DOL

(CR)
{O ` ϕi}i∈I {ϕi}i∈I ` ϕ

O ` ϕ
(basic)

ϕ ∈ Γ

〈Σ, Γ〉 ` ϕ

(sum1)
O1 ` ϕ

O1 and O2 ` ϕ
(sum2)

O2 ` ϕ
O2 and O2 ` ϕ

(trans)
O ` ϕ

O with σ ` σ(ϕ)
(derive)

O ` σ(ϕ)

O hide σ ` ϕ

Soundness means: O ` ϕ implies O |= ϕ
Completeness means: O |= ϕ implies O ` ϕ
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Semantics of OMS Proof calculus

Proof calculus for refinement (Borzyszkowski)

(Basic)
O ` Γ

〈Σ, Γ〉 O
(Sum)

O1  O O2  O

O1 and O2  O

(Trans)
O  O ′ hide σ

O with σ  O ′

(Derive)
O  O ′′

O hide σ  O ′
if σ : O ′−→O ′′

is a conservative extension

Soundness means: O1  O2 implies O1∼∼∼>O2

Completeness means: O1∼∼∼>O2 implies O1  O2
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Semantics of OMS Proof calculus

Soundness and Completeness

Theorem (Borzyszkowski, Tarlecki, Diaconescu)
The calculi for structured entailment and refinement are sound.
Under the assumptions that

the institution admits Craig-Robinson interpolation,
the institution has weak model amalgamation, and
the entailment system is complete,

the calculi are also complete.

For refinement, we need an oracle for conservative extensions.
Craig-Robinson interpolation, weak model amalgamation:
technical model-theoretic conditions
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Summary of Day 4

On Day 4 we have looked at:
Semantics of structured OMS

based on institutions
Proofs in OMS

based on entailment systems
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Today

We will close our introduction to DOL today by introducing several
advanced features. These include:

heterogeneity: working with multiple logical systems
alignments, expressive bridge ontologies
networks and combinations of networks
refinements
entailment, equivalences, queries
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Heterogeneity: Working
with Multiple Logical

Systems
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Example 1: DTV: Can you use these tools
together?

The OMG Date-Time Vocabulary (DTV) is a heterogenous∗

ontology:
SBVR: very expressive, readable for business users
UML: graphical representation
OWL DL: formal semantics, decidable
Common Logic: formal semantics, very expressive

Benefit: DTV utilizes advantages of different languages

∗ heterogenous = components are written in different languages
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Example 2: Relation between OWL and FOL
ontologies

Common practice: annotate OWL ontologies with informal FOL:
Keet’s mereotopological ontology [1],
Dolce Lite and its relation to full Dolce [2],
BFO-OWL and its relation to full BFO.

OWL gives better tool support, FOL greater expressiveness.

But: informal FOL axioms are not available for machine processing!

[1] C.M. Keet, F.C. Fernández-Reyes, and A. Morales-González. Representing mereotopological
relations in OWL ontologies with ontoparts. In Proc. of the ESWC’12, vol. 7295 LNCS, 2012.

[2] C. Masolo, S. Borgo, A. Gangemi, N. Guarino, and A. Oltramari. Descriptve ontology for

linguistic and cognitive engineering. http://www.loa.istc.cnr.it/DOLCE.html.

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-19 6

http://www.loa.istc.cnr.it/DOLCE.html


Heterogeneity Networks Refinements Refinements Networks Conclusion

Institution comorphisms (embeddings, encodings)

SenIΣ SenJΦΣ

ModIΣ ModJΦΣ

αΣ

βΣ

|=I
Σ |=J

ΦΣ

Signatures

Sentences

Satisfaction

Models

Institution com orphism  s  

Σ ΦΣΦ
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Institution comorphisms (embeddings, encodings)

Definition
Let I = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 and
I ′ = 〈Sign′,Sen′,Mod′, 〈|=′Σ′〉Σ′∈|Sign′|〉 be institutions. An
institution comorphism ρ : I → I ′ consists of:

a functor Φ: Sign→ Sign′;
a (natural) family of maps αΣ : Sen(Σ)→ Sen′(Φ(Σ)), and
a (natural) family of functors βΣ : Mod′(Φ(Σ))→Mod(Σ),

such that for any Σ ∈ |Sign|, any ϕ ∈ Sen(Σ) and any
M ′ ∈Mod′(Φ(Σ)):

M ′ |=′Φ(Σ) αΣ(ϕ) iff βΣ(M ′) |=Σ ϕ

[Satisfaction condition]
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Example comorphism: Prop to CASL

Translation of signatures: Φ(Σ) = (S ,F ,P) with
sorts: S = ∅
function symbols: Fw ,s = ∅

predicate symbols Pw =

{
Σ, if w = λ
∅, otherwise .

Translation of sentences:

αΣ(ϕ) = ϕ

Translation of models: For M ′ ∈ ModFOL(Φ(Σ)) and p ∈ Σ define

βΣ(M ′)(p) := M ′p

The satisfaction condition is trivial.
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Example comorphism: ALC to CASL

Translation of signatures:

Φ((C,R, I)) = (S ,F ,P) with
sorts: S = {Thing}
function symbols: F = {a : Thing | a ∈ I}
predicate symbols
P = {A : Thing | A ∈ C} ∪ {R : Thing × Thing | R ∈ R}
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Translation of concepts

Concepts are translated as follows (depending on some variable x):
αx(A) = A(x)

αx(>) = >
αx(⊥) = ⊥
αx(¬C ) = ¬αx(C )

αx(C u D) = αx(C ) ∧ αx(D)

αx(C t D) = αx(C ) ∨ αx(D)

αx(∃R .C ) = ∃y : Thing .(R(x , y) ∧ αy (C ))

αx(∀R .C ) = ∀y : Thing .(R(x , y)→ αy (C ))
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Translation of sentences

αΣ(C v D) = ∀x : Thing . (αx(C )→ αx(D))

αΣ(a : C ) = αx(C )[x 7→ a]1

αΣ(R(a, b)) = R(a, b)

1t[x 7→ a] means “in t, replace x by a”.
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Translation of models
For M ′ ∈ ModFOL(Φ(Σ)) define βΣ(M ′) := I := (∆, ·I) with
∆ = |M ′|Thing and AI = M ′A, a

I = M ′a,R
I = M ′R .

Lemma
C I =

{
m ∈ M ′Thing |M ′ + {x 7→ m} |= αx(C )

}
Proof.
By induction over the structure of C .

AI = M ′A =
{
m ∈ M ′Thing |M ′ + {x 7→ m} |= A(x)

}
(¬C )I = ∆ \ C I
=I .H. ∆ \ {m ∈ M ′>|M ′ + {x 7→ m} |= αx(C )}
= {m ∈ M ′>|M ′ + {x 7→ m} |= ¬αx(C )} etc.

The satisfaction condition now follows easily.
Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-19 13



Heterogeneity Networks Refinements Refinements Networks Conclusion

Heterogeneous logical environments

A heterogeneous logical environment (HLE) consists of
a logic graph, consisting of institutions, institution comorphisms
(translations) and institution morphisms (projections, see below),
an OMS language graph, and
support relations.

The support relations specify which language supports which logics
and which serializations, and which language translation supports
which logic translation or reduction.

Moreover, for each language we have a default selection of a logic
and a serialization. There are also default translations.
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Common Logic

SROIQ(D)

DL-LiteR

OWL 2 DL

RDF

RDFS

CL

RDFS

RDF

OWL 2 QL

OWL 2 RL

OWL 2 EL

DL-RL

EL++

Ontology Languages Logics

sublanguage of

CLIF

XCL

Manchester Syntax

OWL 2 XML

RDF / XML

Turtle

Serializations

supports serialization

induced translation exact logical expressivity

translatable to

sublogic of

FOLUML-CD

SubPCFOL

CASL UML-CD

TPTP

CASL

TPTP

XMI
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Ontologies: An Initial Logic Graph

CL

HOL

Prop

SROIQ
(OWL 2 DL)

FOL=

FOLms=

OBOOWL

EL++
(OWL 2 EL)

DL-LiteR
(OWL 2 QL)

DL-RL
(OWL 2 RL)

DDLOWL

ECoOWL

ECoFOL F-logic

bRDF

RDF

RDFS

OWL-Full

EER

subinstitute

theoroidal subinstitute

simultaneously exact and 
model-expansive comorphisms

model-expansive comorphisms

grey: no fixed expressivity

green: decidable ontology languages

yellow: semi-decidable

orange: some second-order constructs

red: full second-order logic 

OBO 1.4

CASL

UML-CD

CL-

Schema.org

SKOS

SKOS

D-FOL
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Specifications: An Initial Logic Graph
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UML models: An Initial Logic Graph
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Heterogeneous Translations
Let ρ be an institution comorphism and O an OMS. Then we have
the OMS

O with translation ρ

logic OWL
ontology Mereology =
ObjectProperty: isPartOf
ObjectProperty: isProperPartOf
Characteristics: Asymmetric SubPropertyOf: isPartOf
with translation OWL22CASL

then logic CASL : {
forall x,y,z:Thing .

isProperPartOf(x,y) /\ isProperPartOf(y,z)
=> isProperPartOf (x,z) }

%% transitivity; can’t be expressed in OWL together
%% with asymmetry

end
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Semantic domains for OMS in DOL, revisited

Semantics of flattenable OMS (can be flattened to a basic OMS):
(I ,Σ,Ψ) (theory-level)

I an institution
Σ: a signature in I , also written Sig(O)

Ψ: a set of Σ-sentences, also written Th(O)

Semantics of elusive OMS (= non-flattenable OMS):
(I ,Σ,M) (model-level)

I an institution
Σ: a signature in I , also written Sig(O)

M: a class of Σ-models, also written Mod(O)
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Semantics of heterogeneous translations

O flattenable Let [[O]]TΓ = (I ,Σ,Ψ)

homogeneous translation
[[O with σ : Σ→ Σ′]]TΓ = (I ,Σ′, σ(Ψ))
heterogeneous translation
[[O with translation ρ : I → I ′]]TΓ =
(I ′, ρSig (Σ), ρSen(Ψ))

O elusive Let [[O]]MΓ = (I ,Σ,M)

homogeneous translation
[[O with σ : Σ→ Σ′]]MΓ = (I ,Σ′,M′)
whereM′ = {M ∈Mod(Σ′) |M|σ ∈M}
heterogeneous translation
[[O with translation ρ : I → I ′]]MΓ =
(I ′, ρSig (Σ),M′) where
M′ = {M ∈ModI ′(ρSig (Σ)) | ρMod(M) ∈M}
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Extended task

New Task:
Are there any inbreds people
in our KB?

Charles II of Spain
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What is an inbred? I
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What is an inbred? II

u is inbread iff there are x y z such
that

x is a parent of u
y is a parent of u
x 6= y
z is an ancestor of x
z is an ancestor of y

DL has no variables →
switch language

Charles II of Spain
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Extended task: switch of logic

logic OWL
ontology Genealogy =
ObjectProperty: parentOf SubPropertyOf: ancestor
ObjectProperty: ancestor
ObjectProperty: ancestor Characteristics: Transitive

end

ontology Inbred =
Genealogy with translation OWL22CASL

then logic CASL : {
pred Inbred : Thing
forall u:Thing
. Inbred(u) <=> exists x,y,z:Thing .

parentOf(x,u) /\ parentOf(y,u)
/\ not x=y
/\ ancestor(z,x) /\ ancestor(z,y) }

end

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-19 25



Heterogeneity Networks Refinements Refinements Networks Conclusion

Extended task: entailment

ontology CharlesII_ABox =
Individual: CharlesII ... %% Charles II ABox

end

logic CASL
ontology anyInbreds =
{ CharlesII_ABox with translation OWL22CASL
and Inbred }

then %implies
. exists x:Thing . Inbred(x)

end
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A heterogeneous reduction

ontology Inbred_OWL =
Genealogy

and
logic CASL : {
sort Thing
preds Inbred : Thing

parentOf, ancestor : Thing*Thing
forall u:Thing
. Inbred(u) <=> exists x,y,z:Thing .

parentOf(x,u)
/\ parentOf(y,u)
/\ not x=y
/\ ancestor(z,x)
/\ ancestor(z,y) } hide along OWL22CASL

end

This ontology imports first-order axioms only “on-the-fly”. Overall, it
stays an OWL ontology (in contrast to the Inbred ontology).
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Institution morphisms (projections)

SenIΣ SenJΦΣ

ModIΣ ModJΦΣ

αΣ

βΣ

|=I
Σ |=J

ΦΣ

Signatures

Sentences

Satisfaction

Models

Institution morphisms

Σ ΦΣΦ
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Institution morphisms (projections)

Definition
Let I = 〈Sign,Sen,Mod, 〈|=Σ〉Σ∈|Sign|〉 and
I ′ = 〈Sign′,Sen′,Mod′, 〈|=′Σ′〉Σ′∈|Sign′|〉 be institutions. An
institution morphism µ : I → I ′ consists of:

a functor µSign : Sign→ Sign′;
a natural transformation µSen : µSign ; Sen′ → Sen, and
a natural transformation µMod : Mod→ (µSign)op ; Mod′,

such that for any signature Σ ∈ |Sign|, any ϕ′ ∈ Sen′(µSign(Σ)) and
any M ∈Mod(Σ):

M |=Σ µ
Sen
Σ (ϕ′) iff µMod

Σ (M) |=′
µSign(Σ) ϕ

′

[Satisfaction condition]
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Example morphism: CASL to Prop

Translation of signatures: Φ((S ,F ,P)) = Pλ.

Translation of sentences:

αΣ(ϕ) = ϕ

Translation of models: For M ′ ∈ ModFOL(Φ(Σ)) and p ∈ Σ define

βΣ(M ′)(p) := M ′p

The satisfaction condition is trivial.
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Example morphism: single-sorted CASL to ALC

Translation of signatures:

Φ(({s},F ,P)) = (C,R, I) with
concepts: C = {C | C : s ∈ P}
roles: R = {R | R : s × s ∈ P}
individuals I = {a | a : s ∈ F}

Translation of sentences and models:
same as for the comorphism ALC →CASL.
Also the satisfaction condition follows in the same way.
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Semantics of (heterogeneous) reductions

Let [[O]]MΓ = (I ,Σ,M)

homogeneous reduction
[[O reveal Σ′ ]]MΓ = (I ,Σ′,M|Σ′)
[[O hide Σ′ ]]MΓ = [[O reveal Σ \ Σ′]]MΓ
heterogeneous reduction
[[O hide along ρ : I → I ′]]MΓ = (I ′, ρSig (Σ), ρMod(M))

M|Σ′ may be impossible to capture by a theory (even ifM is).
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Semantics of heterogeneous approximation

Note: O must be flattenable!
Let [[O]]TΓ = (I ,Σ,Ψ).

homogeneous approximation
[[O keep in Σ′]]TΓ =(I ,Σ′, {ϕ ∈ Sen(Σ′) |Ψ |= ϕ})
(note: any logically equivalent theory will also do)
[[O forget Σ′]]TΓ = [[O keep in Σ \ Σ′]]TΓ
heterogeneous approximation
[[O keep in Σ′ with I ′]]TΓ =

(I ′,Σ′, {ϕ ∈ SenI ′(Σ′) |Ψ |= ρSen(ϕ)})
where ρ : I ′ → I is the inclusion
and Σ′ is such that ρSig (Σ′) ⊆ Σ
[[O forget Σ′ with I ′]]TΓ = [[O keep in Σ \ Σ′ with I ′]]TΓ
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Networks and Their
Combination
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OMS networks (diagrams)

network N =
N1, . . . ,Nm,O1, . . . ,On,M1, . . . ,Mp
excluding N ′

1, . . . ,N
′
i ,O

′
1, . . . ,O

′
j ,M

′
1, . . . ,M

′
k

Ni are other networks
Oi are OMS (possibly prefixed with labels, like n : O)
Mi are mappings (views, interpretations)
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Combinations

combine N
N is a network
semantics is the (a) colimit of the diagram N

ontology AlignedOntology1 =
combine N
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Sample combination

ontology Source =
Class: Person
Class: Woman SubClassOf: Person

ontology Onto1 =
Class: Person Class: Bank
Class: Woman SubClassOf: Person

interpretation I1 : Source to Onto1 =
Person |-> Person, Woman |-> Woman

ontology Onto2 =
Class: HumanBeing Class: Bank
Class: Woman SubClassOf: HumanBeing

interpretation I2 : Source to Onto2 =
Person |-> HumanBeing, Woman |-> Woman

ontology CombinedOntology =
combine Source, Onto1, Onto2, I1, I2
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Resulting colimit

{Woman,Person_HumanBeing , 1 : Bank , 2 : Bank}

Onto1

22

Onto2

ll

{Woman,Person}

ll 22
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Alignments

alignment Id card1 card2 : O1 to O2 = c1,. . . cn

assuming SingleDomain | GlobalDomain |
ContextualizedDomain
cardi is (optionally) one of 1, ?, +, *
the ci are correspondences of form sym1 rel conf sym2

symi is a symbol from Oi
rel is one of >, <, =, %, 3, ∈, 7→, or an Id
conf is an (optional) confidence value between 0 and 1

Syntax of alignments follows the alignment API
http://alignapi.gforge.inria.fr

alignment Alignment1 : { Class: Woman } to { Class: Person } =
Woman < Person

end
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Alignment: Example

ontology S = Class: Person
Individual: alex Types: Person
Class: Child

ontology T = Class: HumanBeing
Class: Male SubClassOf: HumanBeing
Class: Employee

alignment A : S to T =
Person = HumanBeing
alex in Male
Child < not Employee
assuming GlobalDomain
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Networks, revisited

network N =
N1, . . . ,Nm,O1, . . . ,On,M1, . . . ,Mp,A1, . . . ,Ar
excluding N ′

1, . . . ,N
′
i ,O

′
1, . . . ,O

′
j ,M

′
1, . . . ,M

′
k

Ni are other networks
Oi are OMS (possibly prefixed with labels, like n : O)
Mi are mappings (views, equivalences)
Ai are alignments

The resulting diagram N includes (institution-specific) W-alignment
diagrams for each alignment Ai . Using assuming, assumptions
about the domains of all OMS can be specified:
SingleDomain aligned symbols are mapped to each other
GlobalDomain aligned OMS are relativized
ContextualizedDomain alignments are reified as binary relations
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Diagram of a SingleDomain alignment

S B T

{Person, alex ,Child}

σ1
88

ι1
ff

{Male,HumanBeing ,Employee}

ι2
55

σ2
ii

where

ontology B =
Class: Person_HumanBeing
Class: Employee
Class: Child
SubClassOf: ¬ Employee
Individual: alex
Types: Male
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Resulting colimit

The colimit ontology of the diagram of the alignment above is:

ontology B = Class: Person_HumanBeing
Class: Employee
Class: Male SubClassOf: Person_HumanBeing
Class: Child SubClassOf: ¬ Employee
Individual: alex Types: Male, Person_HumanBeing
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Background: Simple semantics of diagrams

Framework: institutions like OWL, FOL, . . .
OMS are interpreted over the same domain

O1

m1
((

O2
m2

!!

. . . On

mn
xxD

model for A: (m1,m2) such that m1(s) R m2(t) for each s R t
in A
model for a diagram: family (mi) of models such that (mi ,mj) is
a model for Aij

local models of Oj modulo a diagram: jth-projection on models
of the diagram
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Alignment of Bioportal Ontologies
logic OWL
%prefix(
ontologies: <https://ontohub.org/bioportal/>
obo: <http://purl.obolibrary.org/obo/> )%

alignment ZFA2MA : ontologies:ZFA to ontologies:MA =
%% ZFA: zebrafish anatomical ontology
%% MA: adult mouse anatomy
obo:ZFA_0005153 = obo:MA_0000322,
obo:ZFA_0001197 = obo:MA_0000855,
obo:ZFA_0000529 = obo:MA_0000368,
obo:ZFA_0000413 = obo:MA_0002420,
obo:ZFA_0000816 = obo:MA_0000344,
obo:ZFA_0001114 = obo:MA_0000023,
obo:ZFA_0000010 = obo:MA_0000010,
obo:ZFA_0000539 = obo:MA_0001017,
obo:ZFA_0001101 = obo:MA_0002446 end

ontology combination = %cons
combine ZFA2MA end

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-19 45



Heterogeneity Networks Refinements Refinements Networks Conclusion

Alignment of Bioportal Ontologies
logic OWL
%prefix(
ontologies: <https://ontohub.org/bioportal/>
obo: <http://purl.obolibrary.org/obo/> )%

alignment ZFA2MA : ontologies:ZFA to ontologies:MA =
%% ZFA: zebrafish anatomical ontology
%% MA: adult mouse anatomy
obo:synovial joint = obo:synovial joint,
obo:pars intermedia = obo:pars intermedia,
obo:kidney = obo:kidney,
obo:gonad = obo:gonad,
obo:oral epithelium = obo:oral epithelium,
obo:head = obo:head,
obo:cardiovascular system = obo:cardiovascular system,
obo:locus coeruleus = obo:locus coeruleus,
obo:gustatory system = obo:gustatory system end

ontology combination = %cons
combine ZFA2MA end
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Alignment of Upper Ontologies

%prefix( gfo: <http://www.onto-med.de/ontologies/>
dolce: <http://www.loa-cnr.it/ontologies/>
bfo: <http://www.ifomis.org/bfo/> )%

logic OWL

alignment DolceLite2BFO : dolce:DOLCE-Lite.owl to bfo:1.1 =
endurant = IndependentContinuant,
physical-endurant = MaterialEntity,
physical-object = Object, perdurant = Occurrent,
process = Process, quality = Quality,
spatio-temporal-region = SpatiotemporalRegion,
temporal-region = TemporalRegion, space-region = SpatialRegion
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Alignment of Upper Ontologies (cont’d)
alignment DolceLite2GFO : dolce:DOLCE-Lite.owl to gfo:gfo.owl =
particular = Individual, endurant = Presential,
physical-object = Material_object,
amount-of-matter = Amount_of_substrate,
perdurant = Occurrent, quality = Property,
time-interval = Chronoid, generic-dependent < necessary_for,
part < abstract_has_part, part-of < abstract_part_of,
proper-part < has_proper_part,
proper-part-of < proper_part_of,
generic-location < occupies,
generic-location-of < occupied_by

alignment BFO2GFO : bfo:1.1 to gfo:gfo.owl =
Entity = Entity, Object = Material_object,
ObjectBoundary = Material_boundary, Role < Role ,
Occurrent = Occurrent, Process = Process, Quality = Property
SpatialRegion = Spatial_region,
TemporalRegion = Temporal_region
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Alignment of Upper Ontologies — Combination
ontology Space =
combine BFO2GFO, DolceLite2GFO, DolceLite2BFO
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Integrated semantics of diagrams

Framework: different domains reconciled in a global domain

O1

m
��

O2

m2
��

. . . On

mn
��

D1

γ1
((

D2
γ2

!!

. . . Dn

γn
xxU

model for a diagram: family (mi) of models with equalizing
function γ such that (γimi , γjmj) is a model for Aij
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Relativization of an OWL ontology

Let O be an ontology, define its relativization Õ:

concepts are concepts of O with a new concept >O ;
roles and individuals are the same
axioms:

each concept C is subsumed by >O ,
each individual i is an instance of >O ,
each role r has domain and range >O .

and the axioms of O where the following replacement of concept
is made:

each occurence of > is replaced by >O ,
each concept ¬C is replaced by >O \ C , and
each concept ∀R.C is replaced by >O u ∀R.C .
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Example: integrated semantics

C

S̃

33

B

OO

T̃

ll

{Person, alex ,Child}
σ1

88

@@

ι1
ff

{Male,HumanBeing ,Employee}

ι2
55

σ2

ii

cc

where

ontology B =
Class: ThingS Class: ThingT

Class: Person_HumanBeing SubClassOf: ThingS , ThingT

Class: Male Class: Employee
Class: Child SubClassOf: ThingT and ¬ Employee
Individual: alex Types: Male
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Example: integrated semantics (cont’d)

ontology C =
Class: ThingS
Class: ThingT
Class: Person_HumanBeing SubClassOf: ThingS, ThingC
Class: Male SubClassOf: Person_HumanBeing
Class: Employee SubClassOf: ThingT
Class: Child SubClassOf: ThingS
Class: Child SubClassOf: ThingT and ¬ Employee
Individual: alex Types: Male, Person_HumanBeing
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Contextualized semantics of diagrams
Framework: different domains related by coherent relations

O1

m
��

O2

m2
��

. . . On

mn
��

D1
r1,2 //

r1,3
::D2

r2,3 // . . . Dn

rn,1

ii

such that
rij is functional and injective,
rii is the identity (diagonal) relation,
rji is the converse of rij , and
rik is the relational composition of rij and rjk
model for a diagram: family (mi) of models with coherent
relations (rij) such that (mi , rjimj) is a model for Aij
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Contextualized semantics of diagrams, revisited

S̃ B T̃

O1

σ1

??
ι1

__

O2

ι2

??
σ2

__

where B modifies B as follows:

rij are added to B as roles with domain >S and range >T

the correspondences are translated to axioms involving these
roles:

si = tj becomes si rij tj
ai ∈ cj becomes ai ∈ ∃rij .cj
. . .

the properties of the roles are added as axioms in B
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Adding domain relations to the bridge

ontology B =
Class: ThingS
Class: ThingT
ObjectPropery: rST Domain: ThingS Range: ThingT
Class: Person EquivalentTo: rST some HumanBeing
Class: Employee
Class: Child SubClassOf: rST some ¬ Employee
Individual: alex Types: rST some Male
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Example: contextualized semantics

C

S

33

B

OO

T

ll

{Person, alex ,Child ,>s}
σ1

77

>>

ι1
gg

{Male,HumanBeing ,Employee,>T }

ι2
44

σ2

jj

dd

where

ontology C =
Class: ThingS
Class: ThingT
ObjectPropery: rST Domain: ThingS Range: ThingT
Class: Person EquivalentTo: rST some HumanBeing
Class: Employee
Class: Child SubClassOf: rST some ¬ Employee
Individual: alex Types: rST some Male, Person
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Refinements

O1 ; O2
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Refinements
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Recall Sorting Example
Informal specification:
To sort a list means to find a list with the same elements, which is in
ascending order.
Formal requirements specification:
%right_assoc( __::__ )%
logic CASL.FOL=
spec PartialOrder =
sort Elem
pred __leq__ : Elem * Elem
. forall x : Elem . x leq x %(refl)%
. forall x, y : Elem . x leq y /\ y leq x => x = y %(antisym)%
. forall x, y, z : Elem . x leq y /\ y leq z => x leq z %(trans)%

end
spec List = PartialOrder then
free type List ::= [] | __::__(Elem; List)
pred __elem__ : Elem * List
forall x,y:Elem; L,L1,L2:List
. not x elem []
. x elem (y :: L) <=> x=y \/ x elem L

end
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Sorting (cont’d)

spec AbstractSort =
List

then %def
preds is_ordered : List;

permutation : List * List
op sorter : List->List
forall x,y:Elem; L,L1,L2:List
. is_ordered([])
. is_ordered(x::[])
. is_ordered(x::y::L) <=> x leq y /\ is_ordered(y::L)
. permutation(L1,L2) <=>

(forall x:Elem . x elem L1 <=> x elem L2)
. is_ordered(sorter(L))
. permutation(L,sorter(L))

end
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Sorting (cont’d)

We want to show insert sort to enjoy these properties.
Formal design specification:

spec InsertSort = List then
ops insert : Elem*List -> List;

insert_sort : List->List
vars x,y:Elem; L:List
. insert(x,[]) = x::[]
. x leq y => insert(x,y::L) = x::insert(y,L)
. not x leq y => insert(x,y::L) = y::insert(x,L)
. insert_sort([]) = []
. insert_sort(x::L) = insert(x,insert_sort(L))

end
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Implementation (in Haskell)

spec HaskellInsertSort =
insert :: Ord a => (a,[a]) -> [a]
insert(x,[]) = [x]
insert(x,y:l) = if x <= y then x:y:l

else y:insert(x,l)

insert_sort :: Ord a => [a] -> [a]
insert_sort([]) = []
insert_sort(x:l) = insert(x,insert_sort(l))
end
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Refinement

We have the following refinement steps:
AbstractSort ; InsertSort ; HaskellInsertSort

refinement R =
AbstractSort

refined to InsertSort
refined via CASL2Haskell to HaskellInsertSort

end
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Refinement of Natural Numbers

spec Monoid =
sort Elem
ops 0 : Elem;

__+__ : Elem * Elem -> Elem, assoc, unit 0
end
spec NatWithSuc = %mono
free type Nat ::= 0 | suc(Nat)
op __+__ : Nat * Nat -> Nat, unit 0
forall x , y : Nat . x + suc(y) = suc(x + y)
op 1:Nat = suc(0)
end
spec Nat =
NatWithSuc hide suc

end
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Refinement of Natural Numbers (cont’d)

spec NatBin =
generated type Bin ::= 0 | 1 | __0(Bin) | __1(Bin)
ops __+__ , __++__ : Bin * Bin -> Bin
forall x, y : Bin
. 0 0 = 0 . 0 1 = 1
. not (0 = 1) . x 0 = y 0 => x = y . not (x 0 = y 1) .
x 1 = y 1 => x = y
. 0 + 0 = 0 . 0 ++ 0 = 1
. x 0 + y 0 = (x + y) 0 . x 0 ++ y 0 = (x + y) 1
. x 0 + y 1 = (x + y) 1 . x 0 ++ y 1 = (x ++ y) 0
. x 1 + y 0 = (x + y) 1 . x 1 ++ y 0 = (x ++ y) 0
. x 1 + y 1 = (x ++ y) 0 . x 1 ++ y 1 = (x ++ y) 1
end
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Refinement of Natural Numbers (cont’d)

refinement R1 =
Monoid refined via sort Elem |-> Nat to Nat
end
refinement R2 =
Nat refined via sort Nat |-> Bin to NatBin
end
refinement R3 =
Monoid refined via sort Elem |-> Nat to
Nat refined via sort Nat |-> Bin to NatBin
end
refinement R3’ =
Monoid refined via sort Elem |-> Nat to R2
end
refinement R3’’ =
Monoid refined via sort Elem |-> Nat to Nat then R2
end
refinement R3’’’ = R1 then R2
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Sample Network

spec Nat = ...
end
spec Int = Nat then ...
end
spec List = Nat then ...
end
network NatIntList = Nat, Int, List
end

Int List

Nat

<<bb
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Sample Refinement of Networks

spec NatBin = ...
end
spec IntBin = NatBin then ...
end
spec ArrayWithPointer = NatBin then ...
end
network NatIntListImpl = NatBin, IntBin, ArrayWithPointer
end
refinement NetRefine =
NatIntList refined via

R2,
Int refined via sort Int |-> BinInt to IntBin,
List via sort List |-> Array to ArrayWithPointer

to NatIntListImpl
end
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The Refinement, Graphically

Int
$$

List
((

BinInt ArrayWithPointer

Nat 88

>>``

Bin

66dd

NatIntList
// NatIntListImpl

Kutz, Mossakowski Distributed Ontology, Model and Specification Language (DOL) 2016-08-19 70



Heterogeneity Networks Refinements Refinements Networks Conclusion

Entailments, Equivalences,
Queries
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Entailments

entailment Id = O1 entails O2

use case: Ontology entails competency questions

entailment e =
BFO_FOL entails { BFO_OWL with translation OWL2FOL }

end
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Equivalences

equivalence Id : O1 ↔ O2 = O3

(fragment) OMS O3 is such that Oi then %def O3 is a
definitional extension of Oi for i = 1, 2;
this implies that O1 and O2 have model classes that are in
bijective correspondence

equivalence e : algebra:BooleanAlgebra
↔ algebra:BooleanRing =

x∧y = x·y
x∨y = x+y+x·y
¬x = 1+x
x·y = x∧y
x+y = (x∨y) ∧ ¬(x∧y)

end
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Conservativity Definitions (Module Relations)

cons-ext Id c : O1 of O2 for Σ

O1 is a module of O2 with restriction signature Σ and
conservativity c
c=%mcons every Σ-reduct of an O1-model can be expanded to

an O2-model
c=%ccons every Σ-sentence ϕ following from O2 already

follows from O1

This relation shall hold for any module O1 extracted from O2 using
the extract construct.
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Queries

DOL is a logical (meta) language
focus on ontologies, models, specifications,
and their logical relations: logical consequence, interpretations,
. . .

Queries are different:
answer is not “yes” or “no”, but an answer substitution
query language may differ from language of OMS that is queried
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Sample query languages

conjunctive queries in OWL
Prolog/Logic Programming
SPARQL
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Tentative Proposal for Syntax of Queries in DOL

New OMS declarations and relations:

query qname = select vars where sentence in OMS
[along language-translation]

substitution sname : OMS1 to OMS2 = derived-symbol-map
result rname = sname_1, ..., sname_n for qname

%% result is a substitution

New sentences (however, as structured OMS!):

apply(sname,sentence) %% apply substition

Open question: how to deal with “construct” queries?
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Conclusion
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Conclusion

DOL is a meta language for (formal) ontologies, specifications
and models (OMS)
DOL covers many aspects of modularity of and relations among
OMS (“OMS-in-the large”)
DOL is standardized at OMG
you can help with joining the DOL discussion

see dol-omg.org
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Challenges

What is a suitable abstract meta framework for non-monotonic
logics and rule languages like RIF and RuleML? Are institutions
suitable here? different from those for OWL?
What is a useful abstract notion of query (language) and answer
substitution?
How to integrate TBox-like and ABox-like OMS?
Can the notions of class hierarchy and of satisfiability of a class
be generalised from OWL to other languages?
How to interpret alignment correspondences with confidence
other that 1 in a combination?
Can logical frameworks be used for the specification of OMS
languages and translations?
Proof support for all of DOL
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Thank you for your attention

In case of questions, contact us:
Oliver Kutz Oliver.Kutz@unibz.it

Till Mossakowski till@iks.cs.ovgu.de

Feedback?
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